1
|
Imashiro C, Mei J, Friend J, Takemura K. Quantifying cell adhesion through forces generated by acoustic streaming. ULTRASONICS SONOCHEMISTRY 2022; 90:106204. [PMID: 36257212 PMCID: PMC9583098 DOI: 10.1016/j.ultsonch.2022.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The strength of cell adhesion is important in understanding the cell's health and in culturing them. Quantitative measurement of cell adhesion strength is a significant challenge in bioengineering research. For this, the present study describes a system that can measure cell adhesion strength using acoustic streaming induced by Lamb waves. Cells are cultured on an ultrasound transducer using a range of preculture and incubation times with phosphate-buffered saline (PBS) just before the measurement. Acoustic streaming is then induced using several Lamb wave intensities, exposing the cells to shear flows and eventually detaching them. By relying upon a median detachment rate of 50 %, the corresponding detachment force, or force of cell adhesion, was determined to be on the order of several nN, consistent with previous reports. The stronger the induced shear flow, the more cells were detached. Further, we employed a preculture time of 8 to 24 h and a PBS incubation time of 0 to 60 min, producing cell adhesion forces that varied from 1.2 to 13 nN. Hence, the developed system can quantify cell adhesion strength over a wide range, possibly offering a fundamental tool for cell-based bioengineering.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Jiyang Mei
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Andolfi L, Battistella A, Zanetti M, Lazzarino M, Pascolo L, Romano F, Ricci G. Scanning Probe Microscopies: Imaging and Biomechanics in Reproductive Medicine Research. Int J Mol Sci 2021; 22:ijms22083823. [PMID: 33917060 PMCID: PMC8067746 DOI: 10.3390/ijms22083823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
Basic and translational research in reproductive medicine can provide new insights with the application of scanning probe microscopies, such as atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). These microscopies, which provide images with spatial resolution well beyond the optical resolution limit, enable users to achieve detailed descriptions of cell topography, inner cellular structure organization, and arrangements of single or cluster membrane proteins. A peculiar characteristic of AFM operating in force spectroscopy mode is its inherent ability to measure the interaction forces between single proteins or cells, and to quantify the mechanical properties (i.e., elasticity, viscoelasticity, and viscosity) of cells and tissues. The knowledge of the cell ultrastructure, the macromolecule organization, the protein dynamics, the investigation of biological interaction forces, and the quantification of biomechanical features can be essential clues for identifying the molecular mechanisms that govern responses in living cells. This review highlights the main findings achieved by the use of AFM and SNOM in assisted reproductive research, such as the description of gamete morphology; the quantification of mechanical properties of gametes; the role of forces in embryo development; the significance of investigating single-molecule interaction forces; the characterization of disorders of the reproductive system; and the visualization of molecular organization. New perspectives of analysis opened up by applying these techniques and the translational impacts on reproductive medicine are discussed.
Collapse
Affiliation(s)
- Laura Andolfi
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Correspondence: (L.A.); (G.R.)
| | - Alice Battistella
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Doctoral School in Nanotechnology, University of Trieste, 34100 Trieste, Italy
| | - Michele Zanetti
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
- Doctoral School in Nanotechnology, University of Trieste, 34100 Trieste, Italy
| | - Marco Lazzarino
- Istituto Officina dei Materiali IOM-CNR, 34149 Trieste, Italy; (A.B.); (M.Z.); (M.L.)
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.P.); (F.R.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (L.A.); (G.R.)
| |
Collapse
|
3
|
Shang X, Guan Z, Zhang S, Shi L, You H. Predicting the aptamer SYL3C-EpCAM complex's structure with the Martini-based simulation protocol. Phys Chem Chem Phys 2021; 23:7066-7079. [PMID: 33496283 DOI: 10.1039/d0cp05003b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers (small single strand DNA/RNAs) such as SYL3C are considered as ideal alternatives to antibodies in cancer related research studies. However, 3D structure predictions for aptamers and aptamer-protein complexes are scarce due to the high cost of experimental measurements and unreliable computer-based methods. Thus aptamers' diagnostic and therapeutic applications are severely restricted. To meet the challenge, we proposed a Martini-based aptamer-protein complex prediction protocol. By combining the base-base contact map from simulation and secondary structure prediction from various tools, improved secondary structure predictions can be obtained. This method reduced the risk of providing incorrect or incomplete base pairs in secondary structure prediction. Thus 3D structure modeling based on the secondary structure can be more reliable. We introduced the soft elastic network to the hairpin folded regions of the Martini ssDNAs to preserve their canonical structure. Using our protocol, we predicted the first 3D structure of the aptamer SYL3C and the SYL3C-EpCAM complex. We believe that our work could contribute to the future aptamer-related research studies and medical implications.
Collapse
Affiliation(s)
- Xu Shang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | | | |
Collapse
|
4
|
Wang J, Dong HY, Zhou Y, Han LY, Zhang T, Lin M, Wang C, Xu H, Wu ZS, Jia L. Immunomagnetic antibody plus aptamer pseudo-DNA nanocatenane followed by rolling circle amplication for highly-sensitive CTC detection. Biosens Bioelectron 2018; 122:239-246. [PMID: 30267982 DOI: 10.1016/j.bios.2018.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023]
Abstract
Biosensing and detecting the rare circulating tumor cells (CTCs) in complex blood samples are a great challenge but necessary for cancer metastasis prevention. Here we show a novel highly-sensitive biosensing system for detecting CTCs in whole blood. The system is composed of Her2-coated immunomagnetic beads and an anti-EpCAM aptamer assembled pseudo-DNA nanocatenane (PDN) for dual targeting and separating CTCs, in conjunction with the rolling circle amplification (RCA) and molecular beacon (MB) system for CTCs signal amplification. The Her-2-coated beads separated CTCs from blood after their elution from a magnetic column. The unique PDN, which is a tailor-designed self-assembly of three circular DNAs that are inter-locked with independent and non-interfered templates for periodic RCA process, binds EpCAM-rich CTCs. In the presence of the RCA primer, phi29 DNA polymerase and MB, the system collaboratively generated the amplified fluorescent signals for highly-sensitive detection of CTCs. Through this system, we achieved the limit of detection less than 10 CTCs/mL blood, and quantified the number of CTCs in patient blood, which is proportional to the patient cancer status. Our technique is highly-sensitive, practicable and convenient enough for clinical detection of breast CTCs.
Collapse
Affiliation(s)
- Jie Wang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hai-Yan Dong
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Yuyang Zhou
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Long-Yu Han
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ting Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Min Lin
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chiahung Wang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J. Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 2018; 8:14798-14805. [PMID: 35541343 PMCID: PMC9079946 DOI: 10.1039/c8ra01362d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
Epithelial cell adhesion molecules (EpCAMs) play a significant role in tumorigenesis and tumor development. EpCAMs are considered to be tumor signaling molecules for cancer diagnosis, prognosis and therapy. Herein, an enzyme-free and highly sensitive fluorescent biosensor, with a combined aptamer-based EpCAM recognition and toehold-aided DNA recycling amplification strategy, was developed for sensitive and specific fluorescence detection of EpCAMs. Due to highly specific binding between EpCAMs and corresponding aptamers, strand a, which is released from the complex of aptamer/strand a in the presence of EpCAMs which is bound to the corresponding aptamer, triggered the toehold-mediated strand displacement process. An amplified fluorescent signal was achieved by recycling strand a for ultrasensitive EpCAM detection with a detection limit as low as 0.1 ng mL-1, which was comparable or superior to that of reported immunoassays and biosensor strategies. In addition, high selectivity towards EpCAMs was exhibited when other proteins were selected as control proteins. Finally, this strategy was successfully used for the ultrasensitive fluorescence detection of EpCAMs in human serum samples with satisfactory results. Importantly, the present strategy may be also expanded for the detection of other targets using the corresponding aptamers.
Collapse
Affiliation(s)
- Jishun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Bing Shang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Zhengpeng Zhu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Long Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Jun Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|
6
|
Zheng Y, Wang Q, Yang X, Li Z, Gao L, Zhang H, Nie W, Geng X, Wang K. Investigation of the interactions between aptamer and misfolded proteins: From monomer and oligomer to fibril by single-molecule force spectroscopy. J Mol Recognit 2017; 31. [PMID: 29143447 DOI: 10.1002/jmr.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Increasing knowledge on the understanding interactions of aptamer with misfolded proteins (including monomer, oligomer, and amyloid fibril) is crucial for development of aggregation inhibitors and diagnosis of amyloid diseases. Herein, the interactions of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer were investigated using single-molecule force spectroscopy. The results revealed that the aptamer screened against lysozyme monomer could also bind to oligomer and amyloid fibril, in spite of the recognition at a lower binding probability. It may be attributed to the inherent structural differences of misfolded proteins and the flexible conformation of aptamer. In addition, dynamic force spectra showed that there were similar dissociation paths in the dissociation process of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer complexes. It showed that the dissociation only passed 1 energy barrier from the binding state to the detachment. However, the dynamic parameters suggested that the oligomer- and amyloid fibril-aptamer were more stable than lysozyme monomer-aptamer. The phenomena may result from the exposure of aptamer-recognized sequences on the surface and the electrostatic interactions. This work demonstrated that single-molecule force spectroscopy could be a powerful tool to study the binding behavior of the aptamer with misfolded proteins at single-molecule level, providing abundant information for researches and comprehensive applications of aptamer probes in diagnosis of amyloid diseases.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|
7
|
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther 2017; 17:517-526. [DOI: 10.1080/14737140.2017.1322511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 2017; 409:2767-2776. [PMID: 28229174 PMCID: PMC5366180 DOI: 10.1007/s00216-017-0238-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s−1) indicates low dissociation of the sgc8c–PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per μm2. The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s−1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per μm2 in the cell membrane ![]()
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Alexandra Poturnayova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia.,Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Constanze Lamprecht
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Sabine Weich
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Maja Snejdarkova
- Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Ivana Karpisova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
9
|
Li G, Zhu T, Row KH. Deep eutectic solvents for the purification of chloromycetin and thiamphenicol from milk. J Sep Sci 2017; 40:625-634. [DOI: 10.1002/jssc.201600771] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Guizhen Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; School of Chemistry and Chemical Engineering; Tianjin University of Technology; Tianjin P.R. China
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; School of Chemistry and Chemical Engineering; Tianjin University of Technology; Tianjin P.R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| |
Collapse
|
10
|
Li G, Ahn WS, Row KH. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin fromHerba Artemisiae Scopariae. J Sep Sci 2016; 39:4465-4473. [DOI: 10.1002/jssc.201600892] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| | - Wha Seung Ahn
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| |
Collapse
|
11
|
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Tang W, Li G, Row KH, Zhu T. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea. Talanta 2016; 152:1-8. [DOI: 10.1016/j.talanta.2016.01.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
|