1
|
Said M, Tavakoli C, Dumot C, Toupet K, Dong YC, Collomb N, Auxenfans C, Moisan A, Favier B, Chovelon B, Barbier EL, Jorgensen C, Cormode DP, Noël D, Brun E, Elleaume H, Wiart M, Detante O, Rome C, Auzély-Velty R. A novel injectable radiopaque hydrogel with potent properties for multicolor CT imaging in the context of brain and cartilage regenerative therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537520. [PMID: 37131613 PMCID: PMC10153246 DOI: 10.1101/2023.04.20.537520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases. The development of imaging tools that enable monitoring cells and hydrogel independently is key to achieving this goal. Our objective herein is to longitudinally study an iodine-labeled hydrogel, incorporating gold-labeled stem cells, by bicolor CT imaging after in vivo injection in rodent brains or knees. To this aim, an injectable self-healing hyaluronic acid (HA) hydrogel with long-persistent radiopacity was formed by the covalent grafting of a clinical contrast agent on HA. The labeling conditions were tuned to achieve sufficient X-ray signal and to maintain the mechanical and self-healing properties as well as injectability of the original HA scaffold. The efficient delivery of both cells and hydrogel at the targeted sites was demonstrated by synchrotron K-edge subtraction-CT. The iodine labeling enabled to monitor the hydrogel biodistribution in vivo up to 3 days post-administration, which represents a technological first in the field of molecular CT imaging agents. This tool may foster the translation of combined cell-hydrogel therapies into the clinics.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clément Tavakoli
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France; Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Chloé Dumot
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Karine Toupet
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yuxi Clara Dong
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nora Collomb
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Anaïck Moisan
- Cell Therapy and Engineering Unit, EFS Rhone Alpes, 38330 Saint Ismier, France
| | - Bertrand Favier
- Univ. Grenoble Alpes, Translational Innovation in Medicine & Complexity, UMR552, 38700 La Tronche, France
| | - Benoit Chovelon
- Univ. Grenoble-Alpes, Departement de Pharmacochimie Moleculaire UMR 5063, 38400 Grenoble, France; Institut de Biologie et Pathologie, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - David Peter Cormode
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danièle Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Marlène Wiart
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France
| |
Collapse
|
2
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
3
|
Kim S, Lee HJ, Jeong B. Hyaluronic acid-g-PPG and PEG-PPG-PEG hybrid thermogel for prolonged gel stability and sustained drug release. Carbohydr Polym 2022; 291:119559. [PMID: 35698385 DOI: 10.1016/j.carbpol.2022.119559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022]
|
4
|
Ghasemi N, Vakili MR, Lavasanifar A. Cross-linking of triblock copolymers of functionalized poly(caprolactone) and poly(ethylene glycol): The effect on the formation of viscoelastic thermogels. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
6
|
Gopan G, Susan KK, Jayadevan ER, Joseph R. Organic Compound with Potential for X-ray Imaging Applications. ACS OMEGA 2021; 6:24826-24833. [PMID: 34604664 PMCID: PMC8482459 DOI: 10.1021/acsomega.1c03671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
A radiopaque compound, namely, 4,4-bis(4-hydroxy-3,5-diiodophenyl)pentanoic acid, was synthesized by the electrophilic aromatic iodination of 4,4-bis(4-hydroxyphenyl)pentanoic acid using sodium iodide and sodium hypochlorite. The active iodines created by hypochlorite were selectively bound to the ortho positions of the diphenolic acid and obtained a tetraiodo compound. Characterization of this iodinated compound was accomplished by routine methods such as Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, energy-dispersive X-ray spectroscopy, mass spectroscopy, UV-Vis spectroscopy, and thermogravimetry. The iodine content in the compound was as high as 64% by weight and therefore expected to possess substantial radiopacity. A 5% solution of the compound in dimethyl sulfoxide exhibited radiopacity of 885 ± 7 Hounsfield Units when tested with computed tomography (CT) scanner. In vitro cytotoxicity test performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the compound was noncytotoxic to L929 fibroblast cells up to the level of 0.8 mg/mL concentration. Overall results indicate that this highly radiopaque compound has the potential to be used for X-ray imaging in the clinical scenario.
Collapse
Affiliation(s)
- Gopika
V. Gopan
- Division
of Polymeric Medical Devices, Department of Medical Devices Engineering,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum 695012, Kerala, India
| | - K. Kezia Susan
- Division
of Polymeric Medical Devices, Department of Medical Devices Engineering,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum 695012, Kerala, India
| | - Enakshy Rajan Jayadevan
- Imaging
Sciences and Intervention Radiology Department, Hospital Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695011, Kerala, India
| | - Roy Joseph
- Division
of Polymeric Medical Devices, Department of Medical Devices Engineering,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum 695012, Kerala, India
| |
Collapse
|
7
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021; 128:42-59. [PMID: 33857694 DOI: 10.1016/j.actbio.2021.04.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Collapse
|
9
|
Wu X, Wang X, Chen X, Yang X, Ma Q, Xu G, Yu L, Ding J. Injectable and thermosensitive hydrogels mediating a universal macromolecular contrast agent with radiopacity for noninvasive imaging of deep tissues. Bioact Mater 2021; 6:4717-4728. [PMID: 34136722 PMCID: PMC8165329 DOI: 10.1016/j.bioactmat.2021.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
It is very challenging to visualize implantable medical devices made of biodegradable polymers in deep tissues. Herein, we designed a novel macromolecular contrast agent with ultrahigh radiopacity (iodinate content > 50%) via polymerizing an iodinated trimethylene carbonate monomer into the two ends of poly(ethylene glycol) (PEG). A set of thermosensitive and biodegradable polyester-PEG-polyester triblock copolymers with varied polyester compositions synthesized by us, which were soluble in water at room temperature and could spontaneously form hydrogels at body temperature, were selected as the demonstration materials. The addition of macromolecular contrast agent did not obviously compromise the injectability and thermogelation properties of polymeric hydrogels, but conferred them with excellent X-ray opacity, enabling visualization of the hydrogels at clinically relevant depths through X-ray fluoroscopy or Micro-CT. In a mouse model, the 3D morphology of the radiopaque hydrogels after injection into different target sites was visible using Micro-CT imaging, and their injection volume could be accurately obtained. Furthermore, the subcutaneous degradation process of a radiopaque hydrogel could be non-invasively monitored in a real-time and quantitative manner. In particular, the corrected degradation curve based on Micro-CT imaging well matched with the degradation profile of virgin polymer hydrogel determined by the gravimetric method. These findings indicate that the macromolecular contrast agent has good universality for the construction of various radiopaque polymer hydrogels, and can nondestructively trace and quantify their degradation in vivo. Meanwhile, the present methodology developed by us affords a platform technology for deep tissue imaging of polymeric materials.
Collapse
Affiliation(s)
- Xiaohui Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, China.,Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
10
|
X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang W, Wei Z, Sang L, Wang Y, Zhang J, Bian Y, Li Y. Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Clinical Applications of Injectable Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:163-182. [DOI: 10.1007/978-981-13-0947-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Manchineella S, Murugan NA, Govindaraju T. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation. Biomacromolecules 2017; 18:3581-3590. [PMID: 28856890 DOI: 10.1021/acs.biomac.7b00924] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambidextrous supergelators are developed through structure-gelation screening of rationally designed cyclic dipeptides (CDPs). The organo- and hydrogels of CDPs were thoroughly characterized by their minimal gelation concentration (MGC) for organic and aqueous solvents, thermal stability (Tg), and viscoelastic properties. Intermolecular hydrogen bonding, the major driving force for gelation was evaluated using temperature-dependent nuclear magnetic resonance (NMR) spectroscopy. The contribution of attractive van der Waals interaction of tBoc group in driving CDP gelation was ascertained using β-cyclodextrin (β-CD)-adamantane carboxylic acid (AC)-based host-guest gelation and 1H NMR studies. The self-assembled fibrous network of CDPs in organic and aqueous solvents responsible for the molecular gelation was elucidated using field emission scanning electron microscopy (FESEM) analysis. Among the CDPs studied CDP-2 found to be supergelator with MGC of 0.3 wt % and form in situ hydrogels under simulated physiological conditions. The in situ gelation property was evaluated by the incorporation of curcumin, as a model study to demonstrate the drug delivery application. Furthermore, supergelator CDP-2 was found to exhibit in cellulo cytocompatibility. Moreover, density functional theory (DFT) calculations were carried out to propose the microscopic structure for the self-assembly of CDP compounds and intermolecular N-H···O hydrogen bonding interactions appear to stabilize the fibrous network. The hydrophobic interactions among the tert-butyloxycarbonyl (tBoc) groups and π-π stacking interactions between phenyl rings contribute to the further stabilization of self-assembled 2D fibrous networks of CDPs. Overall, the present study highlights the in situ gelation property of CDP-based supergelators and their potential for biomedical and regenerative medicine applications.
Collapse
Affiliation(s)
- Shivaprasad Manchineella
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bengaluru-560064, Karnataka, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , S-106 91 Stockholm, Sweden
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bengaluru-560064, Karnataka, India
| |
Collapse
|
14
|
Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J. The design, mechanism and biomedical application of self-healing hydrogels. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Eawsakul K, Chinavinijkul P, Saeeng R, Chairoungdua A, Tuchinda P, Nasongkla N. Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide). Chem Pharm Bull (Tokyo) 2017; 65:530-537. [PMID: 28566645 DOI: 10.1248/cpb.c16-00871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RSPP050 (AG50) is one of the semi-synthetic andrographolide that is isolated from Andrographis paniculata NEES (Acanthaceae). The anti-proliferation effects of AG50 against cholangiocarcinoma (HuCCT1) were displayed high cytotoxicity. Unfortunately, poor water solubility of AG50 limited its clinical applications. This study aimed to increase the concentration of AG50 in water and drug loading and release study in phosphate-buffered saline (PBS) in the absence/presence of pig liver esterase enzyme. Cytotoxicity of AG50-loaded polymeric micelles was evaluated against HuCCT1. AG50 loaded micelles were prepared by film sonication and encapsulated by polymers including poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) or poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-b-PLA). Micelle properties were characterized such as solubility, drug loading, drug release and in vitro cytotoxicity against HuCTT1. AG50 was successfully loaded into both types of polymeric micelles. The best drug-polymer (D/P) ratio was 1 : 9. AG50/PCL and AG50/PLA-micelles had small particle size (36.4±5.1, 49.0±2.7 nm, respectively) and high yield (58.2±1.8, 58.8±2.9, respectively). AG50/PLA-micelles (IC50=2.42 µg/mL) showed higher cytotoxicity against HuCCT1 than AG50/PCL-micelles (IC50=4.40 µg/mL) due to the higher amount of AG50 released. Nanoencapsulation of AG50 could provide a promising development in clinical use for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Komgrit Eawsakul
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University.,Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University
| | - Panarin Chinavinijkul
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University.,Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University
| | | | | | - Patoomratana Tuchinda
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University.,Department of Chemistry, Faculty of Science, Mahidol University
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University.,Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University
| |
Collapse
|
16
|
Wee CY, Liow SS, Li Z, Wu YL, Loh XJ. New Poly[(R
)-3-hydroxybutyrate-co
-4-hydroxybutyrate] (P3HB4HB)-Based Thermogels. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700196] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chien Yi Wee
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
17
|
Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 2017; 55:396-409. [PMID: 28363786 DOI: 10.1016/j.actbio.2017.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023]
Abstract
In vivo behavior of hydrogel-based biomaterials is very important for rational design of hydrogels for various biomedical applications. Herein, we developed a facile method for in situ fabrication of radiopaque hydrogel. An iodinated functional diblock copolymer of poly(ethylene glycol) and aliphatic polyester was first synthesized by coupling the hydroxyl end of the diblock copolymer with 2,3,5-triiodobenzoic acid (TIB) and then a radiopaque thermoreversible hydrogel was obtained by mixing it with the virgin diblock copolymer. A concentrated aqueous solution of the copolymer blend was injectable at room temperature and spontaneously turned into an in situ hydrogel at body temperature after injection. The introduction of TIB moieties affords the capacity of X-ray opacity, enabling in vivo visualization of the hydrogel using Micro-CT. A rat model with cecum and abdominal defects was utilized to evaluate the efficacy of the radiopaque hydrogel in the prevention of post-operative adhesions, and a significant reduction of the post-operative adhesion formation was confirmed. Meanwhile, the maintenance of the radiopaque hydrogel in the abdomen after administration was non-destructively detected via Micro-CT scanning. The reconstructed three-dimensional images showed that the radiopaque hydrogel with an irregular morphology was located on the injured abdominal wall. The time-dependent profile of the volume of the radiopaque hydrogel determined by Micro-CT imaging was well consistent with the trend obtained from the dissection observation. Therefore, the radiopaque thermoreversible hydrogel can serve as a potential visualized biomedical implant and this practical mixing approach is also useful for further extension into the in vivo monitoring of other biomaterials. STATEMENT OF SIGNIFICANCE While a variety of biomaterials have been extensively studied, it is rare to monitor in vivo degradation and medical efficacy of a material after being implanted deeply into the body. Herein, the radiopaque thermoreversible hydrogel developed by us not only holds desirable performance on the prevention of post-operative abdominal adhesions, but also allows non-invasive monitoring of its in vivo degradation with CT imaging in a real-time, quantitative and three-dimensional manner. The methodology based on CT imaging provides important insights into the in vivo fate of the hydrogel after being deeply implanted into mammals for different biomedical applications and significantly reduces the amount of animals sacrificed.
Collapse
|
18
|
Wang HT, Chiang PC, Tzeng JJ, Wu TL, Pan YH, Chang WJ, Huang HM. In Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe₃O₄ Incorporated Poly-l-lactide Bone Screws. Polymers (Basel) 2017; 9:polym9060191. [PMID: 30970868 PMCID: PMC6432293 DOI: 10.3390/polym9060191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to fabricate biodegradable poly-l-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by loading 20%, 30%, and 40% Fe3O4 nanoparticles into the PLLA. The physical properties, including elastic modulus, thermal properties, and biocompatibility of the composites were tested. The 20% nano-Fe3O4/PLLA composite was used as the material for fabricating the 3D-printed bone screws. The mechanical performance of the nano-Fe3O4/PLLA bone screws was evaluated by anti-bending and anti-torque strength tests. The tissue response and radiopacity of the nano-Fe3O4/PLLA bone screws were assessed by histologic and CT imaging studies using an animal model. The addition of nano-Fe3O4 increased the crystallization of the PLLA composites. Furthermore, the 20% nano-Fe3O4/PLLA composite exhibited the highest thermal stability compared to the other Fe3O4 proportions. The 3D-printed bone screws using the 20% nano-Fe3O4/PLLA composite provided excellent local tissue response. In addition, the radiopacity of the 20% nano-Fe3O4/PLLA screw was significantly better compared with the neat PLLA screw.
Collapse
Affiliation(s)
- Hsin-Ta Wang
- School of Organic and Polymeric, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Pao-Chang Chiang
- Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| | - Jy-Jiunn Tzeng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ting-Lin Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Hwa Pan
- Department of General Dentistry, Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
- Chang Gung University, Taoyuan 33371, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Dental Department, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei 11031, Taiwan.
- Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Luo LJ, Lai JY. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery. Acta Biomater 2017; 49:344-357. [PMID: 27890728 DOI: 10.1016/j.actbio.2016.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
To improve ocular bioavailability and extend pharmacological response, this study aims to investigate the role of alkyl chain length of monothiol-terminated alkyl carboxylic acids in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) (GN) biodegradable in situ gelling carriers for antiglaucoma drug delivery. In the presence of mercaptoacetic acid (MAA), mercaptopropionic acid (MPA), mercaptobutyric acid (MBA), or mercaptohexanoic acid (MHA) as a chain transfer agent, the carboxylic end-capped poly(N-isopropylacrylamide) samples were prepared by free radical polymerization technique. Our results showed that with increasing alkyl chain length, the hydrophobicity of thermo-responsive polymer segments significantly increased, mainly due to an increase in CH stretching frequencies. In addition, the greater hydrophobic association favored the decrease in both phase transition temperature and weight loss of GN copolymers, thereby accelerating their temperature-triggered gelation process and retarding the degradation progress under physiological conditions. The benefits from these features allowed the pilocarpine carriers to increase drug payload and extend drug release. Irrespective of carbon number of monothiol-terminated alkyl carboxylic acid, the synthesized GN materials exhibited high tolerance to corneal endothelial cells without any evidence of inhibited proliferation, viability loss, inflammatory stimulation, and functional abnormality, indicating good biocompatibility. Results of clinical observations and histological examinations demonstrated that the therapeutic efficacies in treating glaucomatous damage are in response to in vivo drug release profiles from various intracamerally injected GN carriers. The research findings suggest the influence of alkyl chain length of chain transfer agent-mediated polymer hydrophobicity and degradability on pharmacological bioavailability and action of pilocarpine in a glaucomatous rabbit model. STATEMENT OF SIGNIFICANCE Considering that glaucoma is a chronic disease that requires long-term medical therapy to preserve vision in patients, it is highly desirable to augment pharmacological bioavailability and govern release profile by tuning the properties of drug delivery carriers. For the first time, the present study provide striking evidence that the alkyl chain length of monothiol-terminated alkyl carboxylic acid related to the synthesis of biodegradable in situ gelling copolymers plays a key role in molecular functionalization of intracameral delivery systems for ocular administration and controlled release of antiglaucoma medications. The therapeutic efficacies in treating glaucomatous damage are in response to in vivo pilocarpine release profiles modulated by the carbon number of thermo-responsive polymer segment-mediated carrier hydrophobicity and degradability.
Collapse
|
20
|
Luan J, Cui S, Wang J, Shen W, Yu L, Ding J. Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions. Polym Chem 2017. [DOI: 10.1039/c7py00232g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The linking angles of positional isomers in the middle of thermogelling mPEG-PLGA-mPEG polymers were found to affect their microscopic conformations and macroscopic properties.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Juntao Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
21
|
Ma Q, Lei K, Ding J, Yu L, Ding J. Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates. Polym Chem 2017. [DOI: 10.1039/c7py01411b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A universal route towards ultrahigh radiopaque aliphatic polycarbonates was developed based on a new iodinated carbonate monomer.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jian Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
22
|
Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W. Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 2016; 107:192-205. [PMID: 27432797 DOI: 10.1016/j.addr.2016.07.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 11/29/2022]
Abstract
Polylactide (PLA) and its copolymers are hydrophobic polyesters used for biomedical applications. Hydrogel medicinal implants have been used as drug delivery vehicles and scaffolds for tissue engineering, tissue augmentation and more. Since lactides are non-functional, they are copolymerized with hydrophilic monomers or conjugated to a hydrophilic moiety to form hydrogels. Copolymers of lactic and glycolic acids with poly(ethylene glycol) (PEG) provide thermo-responsive hydrogels. Physical crosslinking mechanisms of PEG-PLA or PLA-polysaccharides include: lactic acid segment hydrophobic interactions, stereocomplexation of D and L-lactic acid segments, ionic interactions, and chemical bond formation by radical or photo crosslinking. These hydrogels may also be tailored as stimulus responsive (pH, photo, or redox). PLA and its copolymers have also been polymerized to include urethane bonds to fabricate shape memory hydrogels. This review focuses on the synthesis, characterization, and applications of PLA containing hydrogels.
Collapse
Affiliation(s)
- Arijit Basu
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Konda Reddy Kunduru
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel
| | - Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem 91120, Israel.
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
23
|
Hu H, Wang X, Lee KI, Ma K, Hu H, Xin JH. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite. Sci Rep 2016; 6:31815. [PMID: 27539298 PMCID: PMC4990926 DOI: 10.1038/srep31815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023] Open
Abstract
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO's unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.
Collapse
Affiliation(s)
- Huawen Hu
- Foshan University, Guangdong, 528000, China
| | - Xiaowen Wang
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Ka I Lee
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kaikai Ma
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hong Hu
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - John H. Xin
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
24
|
Chen Y, Li Y, Shen W, Li K, Yu L, Chen Q, Ding J. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep 2016; 6:31593. [PMID: 27531588 PMCID: PMC4987673 DOI: 10.1038/srep31593] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide.
Collapse
Affiliation(s)
- Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yuzhuo Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Kun Li
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qinghua Chen
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
25
|
Chou SF, Luo LJ, Lai JY. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers. Acta Biomater 2016; 38:116-28. [PMID: 27130273 DOI: 10.1016/j.actbio.2016.04.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/27/2023]
Abstract
UNLABELLED Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. STATEMENT OF SIGNIFICANCE Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma treatment. For the first time, this study demonstrated that the biodegradable in situ gelling copolymers can incorporate different levels of antioxidant gallic acid to tailor the structure-property-function relationship of the intracameral drug delivery system. The systematic evaluation fully verified the dependence of phase transition, degradation behavior, drug release mechanism, and antiglaucoma efficacy on intrinsic antioxidant capacities of carrier biomaterials. The report highlights the significant role of grafting amount of gallic acid in optimizing performance of antioxidant-functionalized polymer therapeutics as new drug delivery platforms in disease treatment.
Collapse
|
26
|
Gao L, Sun Q, Wang Y, Zhu W, Li X, Luo Q, Li X, Shen Z. Injectable poly(ethylene glycol) hydrogels for sustained doxorubicin release. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Sun
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province; Hangzhou 310027 China
| | - Xiaojun Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Qiaojie Luo
- The First Affiliated Hospital, College of Medicine; Zhejiang University; Hangzhou 310003 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
27
|
Park HS, Jung SY, Kim HY, Ko DY, Chung SM, Jeong B, Kim HS. Feasibility of injectable thermoreversible gels for use in intramuscular injection of parathyroid autotransplantation. Eur Arch Otorhinolaryngol 2016; 273:3827-3834. [PMID: 26994900 DOI: 10.1007/s00405-016-3990-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/15/2016] [Indexed: 11/25/2022]
Abstract
Surgical transplantation of parathyroid tissue into the forearm muscle is one of the most commonly used surgical techniques. While simple, the procedure suffers from drawbacks. This study evaluated the feasibility of thermoreversible gel as an injectable carrier for parathyroid autotransplantation. Polyethyleneglycol-polyalanine-co-phenylalanine (PEG-PAF) thermoreversible gel (sol form at 4 °C, gel form at 37 °C) were manufactured. Thirty-eight Sprague-Dawley rats were divided into two groups (19 control, C group; 19 experimental, P group). The parathyroid glands of rats were excised. Parathyroid tissues were transplanted into the muscle pocket in sternocleidomastoid muscle in the C group. In the P group, the tissues were injected into the same muscle mixed with 0.3 ml thermoreversible gel. The serum levels of parathyroid hormone (PTH), ionized calcium, and phosphorous were measured before surgical procedure, on 7, 21, 56, and 70 days after surgery. Histology and immunohistochemistry were performed. Preoperative median PTH level of the C and the P group were 60.80 and 43.85 pg/ml, respectively (p = 0.641). Seventy days after surgery, median PTH level was 32.8 and 25.61 pg/ml, respectively. On day 70, the PTH level was restored by 54 % in the C group and 56 % in the P group compared to the preoperative value (p = 0.620). There were no significant intergroup differences in the ionized calcium/phosphorous level. Histology and immunohistochemistry revealed the successful transplantation of parathyroid tissues into the muscles in both groups. In conclusion, the PEG-PAF-based thermoreversible gel is a good candidate carrier material for intramuscular parathyroid autotransplantation.
Collapse
Affiliation(s)
- Hae Sang Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Du Young Ko
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea
| | - Sung Min Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
28
|
Cao L, Li Q, Zhang C, Wu H, Yao L, Xu M, Yu L, Ding J. Safe and Efficient Colonic Endoscopic Submucosal Dissection Using an Injectable Hydrogel. ACS Biomater Sci Eng 2016; 2:393-402. [PMID: 33429543 DOI: 10.1021/acsbiomaterials.5b00516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endoscopic submucosal dissection (ESD) has not yet been widely adopted in the treatment of early colonic cancers due to the greater technical difficulty involved, longer procedure time, and the increased risk of perforation. Adequate mucosal elevation by submucosal injection is crucial for en bloc resection and prevention of perforation during colonic ESD. This study is aimed to evaluate the efficacy of an injectable thermoreversible hydrogel as the colonic submucosal agent for the first time. Triblock copolymer poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) was synthesized, and its concentrated aqueous solution was injected into the colonic submucosa of living minipig and spontaneously transformed into an in situ hydrogel with adequate mucosal elevation at body temperature. Such a mucosal lifting lasted for a longer time than that created by the control group, glycerol fructose. Colonic ESD was then performed with the administration of hydrogels at various polymer concentrations or glycerol fructose. All colonic lesions were successfully resected en bloc after one single injection of the hydrogel, and repeated injections were not needed. No evidence of major hemorrhage, perforation and tissue damage were observed. Considering the injection pressure, duration of mucosal elevation and efficacy of "autodissection", the hydrogel containing 15 wt % polymer was the optimized system for colonic ESD. Consequently, the thermoreversible hydrogel is an ideal submucosal fluid that provides a durable mucosal lifting and makes colonic ESD accessible to a large extent. In particular, the efficacy of "autodissection" after one single injection of the hydrogel simplifies significantly the procedures while minimizing the complications.
Collapse
Affiliation(s)
- Luping Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Quanlin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haocheng Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meidong Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Liow SS, Dou Q, Kai D, Karim AA, Zhang K, Xu F, Loh XJ. Thermogels: In Situ Gelling Biomaterial. ACS Biomater Sci Eng 2016; 2:295-316. [DOI: 10.1021/acsbiomaterials.5b00515] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Qingqing Dou
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Anis Abdul Karim
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
- Department
of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|
30
|
Lee JY, Chung SJ, Cho HJ, Kim DD. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterials 2016; 85:218-31. [PMID: 26874284 DOI: 10.1016/j.biomaterials.2016.01.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 01/07/2023]
Abstract
Nano-sized self-assemblies based on amphiphilic iodinated hyaluronic acid (HA) were developed for use in cancer diagnosis and therapy. 2,3,5-Triiodobenzoic acid (TIBA) was conjugated to an HA oligomer as a computed tomography (CT) imaging modality and a hydrophobic residue. Nanoassembly based on HA-TIBA was fabricated for tumor-targeted delivery of doxorubicin (DOX). Cellular uptake of DOX from nanoassembly, compared to a DOX solution group, was enhanced via an HA-CD44 receptor interaction, and subsequently, the in vitro antitumor efficacy of DOX-loaded nanoassembly was improved in SCC7 (CD44 receptor positive squamous cell carcinoma) cells. Cy5.5, a near-infrared fluorescence (NIRF) dye, was attached to the HA-TIBA conjugate and the in vivo tumor targetability of HA-TIBA nanoassembly, which is based on the interaction between HA and CD44 receptor, was demonstrated in a NIRF imaging study using an SCC7 tumor-xenografted mouse model. Tumor targeting and cancer diagnosis with HA-TIBA nanoassembly were verified in a CT imaging study using the SCC7 tumor-xenografted mouse model. In addition to efficient cancer diagnosis using NIRF and CT imaging modalities, improved antitumor efficacies were shown. HA and TIBA can be used to produce HA-TIBA nanoassembly that may be a promising theranostic nanosystem for cancers that express the CD44 receptor.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
31
|
Shi K, Wang YL, Qu Y, Liao JF, Chu BY, Zhang HP, Luo F, Qian ZY. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo. Sci Rep 2016; 6:19077. [PMID: 26752008 PMCID: PMC4707506 DOI: 10.1038/srep19077] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/03/2015] [Indexed: 02/05/2023] Open
Abstract
In this study, a series of injectable thermoreversible and thermogelling PDLLA-PEG-PDLLA copolymers were developed and a systematic evaluation of the thermogelling system both in vitro and in vivo was performed. The aqueous PDLLA-PEG-PDLLA solutions above a critical gel concentration could transform into hydrogel spontaneously within 2 minutes around the body temperature in vitro or in vivo. Modulating the molecular weight, block length and polymer concentration could adjust the sol-gel transition behavior and the mechanical properties of the hydrogels. The gelation was thermally reversible due to the physical interaction of copolymer micelles and no crystallization formed during the gelation. Little cytotoxicity and hemolysis of this polymer was found, and the inflammatory response after injecting the hydrogel to small-animal was acceptable. In vitro and in vivo degradation experiments illustrated that the physical hydrogel could retain its integrity as long as several weeks and eventually be degraded by hydrolysis. A rat model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative adhesion has been found in the group of PDLLA-PEG-PDLLA hydrogel-treated, compared with untreated control group and commercial hyaluronic acid (HA) anti-adhesion hydrogel group. As such, this PDLLA-PEG-PDLLA hydrogel might be a promising candidate of injectable biomaterial for medical applications.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ya-Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jin-Feng Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bing-Yang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hua-Ping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
32
|
Jing Y, Quan C, Liu B, Jiang Q, Zhang C. A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1111380] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Yang R, Tan L, Cen L, Zhang Z. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Adv 2016. [DOI: 10.1039/c5ra27870h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An injectable scaffold of crosslinked hyaluronic acid gel for tissue regeneration.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering
- Department of Product Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai
| | - Linhua Tan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering
- Department of Product Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering
- Department of Product Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai
| | - Zhibing Zhang
- School of Chemical Engineering
- The University of Birmingham
- Birmingham
- UK
| |
Collapse
|
34
|
Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B 2016; 4:7793-7812. [DOI: 10.1039/c6tb02019d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo imaging of biomedical hydrogels enables real-time and non-invasive visualization of the status of structure and function of hydrogels.
Collapse
Affiliation(s)
- Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
35
|
|
36
|
Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Carbohydr Polym 2016; 136:300-6. [DOI: 10.1016/j.carbpol.2015.08.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/16/2015] [Accepted: 08/30/2015] [Indexed: 11/22/2022]
|
37
|
An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-016-1740-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Compositional- and time-dependent dissipation, recovery and fracture toughness in hydrophobically reinforced hybrid hydrogels. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Chang WJ, Pan YH, Tzeng JJ, Wu TL, Fong TH, Feng SW, Huang HM. Development and Testing of X-Ray Imaging-Enhanced Poly-L-Lactide Bone Screws. PLoS One 2015; 10:e0140354. [PMID: 26466309 PMCID: PMC4605620 DOI: 10.1371/journal.pone.0140354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4) nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA) to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.
Collapse
Affiliation(s)
- Wei-Jen Chang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of General Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Jy-Jiunn Tzeng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ting-Lin Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Haw-Ming Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Luan J, Shen W, Chen C, Lei K, Yu L, Ding J. Selenium-containing thermogel for controlled drug delivery by coordination competition. RSC Adv 2015. [DOI: 10.1039/c5ra22307e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A coordination-responsive selenium-containing thermogel was designed and synthesized for controlled cisplatin delivery by competitive coordination of glutathione, which broadens the strategy of tuning drug release using thermogelling systems.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|