1
|
Rhili K, Chergui S, Samih ElDouhaibi A, Mazzah A, Siaj M. One-Pot Synthesis of Cyclomatrix-Type Polyphosphazene Microspheres and Their High Thermal Stability. ACS OMEGA 2023; 8:9137-9144. [PMID: 36936297 PMCID: PMC10018513 DOI: 10.1021/acsomega.2c06394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Highly cross-linked inorganic and organic hybrid cyclomatrix-polyphosphazenes microspheres (C-PPZs) have been successfully synthesized by a one-pot polymerization technique between hexachlorocyclotriphosphazene and p-phenylenediamine in the presence of triethylamine (TEA), and they were used for enhancing the flame retardancy of epoxy resins (EPs). A thermoset EP was prepared by incorporating different percentages (2, 5, and 10%) of C-PPZs into diglycidyl ether of bisphenol A (DGEBA). The results reveal that the size and morphology of the microspheres can be tuned by varying the synthesis temperature. The average size of C-CPPZs gradually increased from 3.1, 4.9, to 7.8 μm as the temperature was increased from 100, 120, to 200 °C, respectively. The thermogravimetric analysis showed that the C-CPPZ microspheres have good thermal stability up to 900 °C with about ∼10 wt % mass loss for C-CPPZs formed at 200 °C compared to ∼30 wt % mass loss for those obtained at 100 and 120 °C. The 10% loss at 900 °C is much lower than the previous research concerning the thermal stability of cyclophosphazene, in which more weight losses were observed at lower temperatures. The resulting C-CPPZ microspheres were characterized by spectroscopic and imaging techniques including Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Khaled Rhili
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Siham Chergui
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Ahmad Samih ElDouhaibi
- Department
of Chemistry, College of Science III, Lebanese
University, Campus Mont
Michel, 1352 Tripoli, Lebanon
| | - Ahmed Mazzah
- Miniaturisation
pour la Synthèse, l’Analyse et la Protéomique,
USR 3290, MSAP, Université de Lille,
CNRS, F-59000 Lille, France
| | - Mohamed Siaj
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
2
|
Sun H, Leng Y, Zhou X, Li X, Wang T. Regulation of the nanostructures self-assembled from an amphiphilic azobenzene homopolymer: influence of initial concentration and solvent solubility parameter. SOFT MATTER 2023; 19:743-748. [PMID: 36621933 DOI: 10.1039/d2sm01059c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles by changing initial polymer concentrations, and prepare nanotubes and nanowires, both twisted and not, by using solvents with different solubility parameters. An amphiphilic azobenzene homopolymer (poly(4-(phenyldiazenyl)phenyl methacrylamide), PAzoMAA) is designed and synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, which can self-assemble into bowl-shaped nanoparticles promoted by the synergy of hydrogen bonding and π-π interaction. More significantly, the opening size of the bowl-shaped nanoparticles can be controlled by changing initial polymer concentrations. Nanotubes and nanowires, both twisted and not, are also obtained using a solvothermal method in alcohols. The relationship between the structure of the nanomaterials and the solubility parameters of the alcohols is investigated, revealing the molecular arrangement patterns of PAzoMAA in different nanostructures. Overall, we propose a facile strategy to manipulate the microstructure of bowl-shaped nanoparticles and one-dimensional nanomaterials by adjusting initial polymer concentration and solvent solubility parameters. Our study may bring new avenues for controlling the nanostructures of soft nanomaterials.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Ying Leng
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiaoyan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiao Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Sun H, Zhu Y, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Fire retardant polyethylene terephthalate containing 4,4′-(hexafluoroisopropylidene)diphenol-substituted cyclotriphosphazene microspheres. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221145881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyphosphazene derivatives are gaining popularity due to their eco-friendly character and high content of flame-retardant components. Herein, a polyphosphazene derivative (PZAF) microsphere was successfully synthesized utilizing an in-situ template approach, which was then employed as an additive flame retardant in polyethylene terephthalate (PET) to improve the fire safety. Thermogravimetric analysis revealed that PZAF promoted the pyrolysis of PET in advance to generate a stable char layer that protects the matrix from heat, consequently increasing char residues. With addition of 10 wt% PZAF, the PET nanocomposites obtained a V-0 grade in vertical combustion test and its LOI value increased from 24.2 vol% to 32.1 vol%. Moreover, the peak heat release and carbon monoxide production decreased by 46.6% and 50.6%, respectively. This was because the phosphonic acid fragments and pyridine ring compounds produced by the PZAF pyrolysis encouraged the development of a robust char layer. Meanwhile, the •PO radicals generated by the pyrolysis of PZAF could capture free radicals in the gas phase, ultimately ending the chain reaction of combustion. Also, mechanical properties of the PET nanocomposites were noticeably enhanced by the addition of 3 or 5 wt% PZAF.
Collapse
Affiliation(s)
- Haijian Sun
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
| | - Yuanzhao Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Yimeng Ma
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering,Donghua University, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Zhiping Mao
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|
5
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
6
|
Afshari M, Dinari M. Improving the Reaction-to-Fire Properties of Thermoplastic Polyurethane by New Phosphazene-Triazinyl-Based Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49003-49013. [PMID: 36282083 DOI: 10.1021/acsami.2c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, an approach to simultaneously improve fire resistance and mechanical performance of thermoplastic polyurethane (TPU) was introduced through the penetration of a conjugated network containing nitrogen and phosphorus elements. For this purpose, a Bg-HCCP COF was synthesized through a solvothermal method from benzoguanamine (Bg) and hexachlorophosphazene (HCCP) monomers. Then, it was combined with TPU using the wet mixing method. The TPU/Bg-HCCP composites showed better mechanical strength than the untreated sample. The fire safety of TPU/Bg-HCCP composites was greatly improved by increasing the Bg-HCCP contents. The reduction of the peak heat release rate and the total heat release for the TPU/Bg-HCCP composite with 3 wt % Bg-HCCP were about 44.8 and 60.4%, respectively. Besides, the results showed that adding Bg-HCCP to TPU significantly improved the suppression of smoke generation so that 3% by weight of the fire retardant reduced the total smoke released by 53.1%. It also decreased the peak of the carbon monoxide production rate by 26.5%. Generally, our research provides a promising strategy for constructing flame-retardant composites with high performance.
Collapse
Affiliation(s)
- Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| |
Collapse
|
7
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M. One‐Pot Synthesis of Size‐Controlled Poly(cyclotriphosphazene‐
co
‐hesperetin) Microspheres and Their Properties as Drug Delivery Carriers. ChemistrySelect 2022. [DOI: 10.1002/slct.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
9
|
Wang H, He Z, Wang Y, Zhang Z, Li X, Wang D, Su F, Yao D, Zheng Y. Phosphorus/nitrogen compound and zinc hydroxystannate‐modified graphene oxide for efficient flame retardancy and smoke suppression of epoxy resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongni Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yudeng Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Zhilin Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| |
Collapse
|
10
|
Chen F, Teniola OR, Laurencin CT. Biodegradable Polyphosphazenes for Regenerative Engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1417-1428. [PMID: 36203785 PMCID: PMC9531846 DOI: 10.1557/s43578-022-00551-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 05/05/2023]
Abstract
Regenerative engineering is a field that seeks to regenerate complex tissues and biological systems, rather than simply restore and repair individual tissues or organs. Since the first introduction of regenerative engineering in 2012, numerous research has been devoted to the development of this field. Biodegradable polymers such as polyphosphazenes in particular have drawn significant interest as regenerative engineering materials for their synthetic flexibility in designing into materials with a wide range of mechanical properties, degradation rates, and chemical functionality. These polyphosphazenes can go through complete hydrolytic degradation and provide harmlessly and pH neutral buffering degradation products such as phosphates and ammonia, which is crucial for reducing inflammation in vivo. Here, we discuss the current accomplishments of polyphosphazene, different methods for synthesizing them, and their applications in tissue regeneration such as bones, nerves, and elastic tissues.
Collapse
Affiliation(s)
- Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
| | - O R Teniola
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut
- Connecticut Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
- Connecticut Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
11
|
Li B, Zhu Y, Wang X, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Synthesis and application of poly (cyclotriphosphazene‐resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Baojie Li
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yuanzhao Zhu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xuan Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Hong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yimeng Ma
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Donghua University Shanghai China
| |
Collapse
|
12
|
Long H, Kuang WC, Wang SL, Zhang JX, Huang LH, Xiong YQ, Qing P, Cai X, Tan SZ. Preparation and Antimicrobial Activity of Antibacterial Silver-Loaded Polyphosphazene Microspheres. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5120-5130. [PMID: 33875097 DOI: 10.1166/jnn.2021.19335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(cyclotriphosphazene-co-4,4'-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4'-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.
Collapse
Affiliation(s)
- Hui Long
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei-Cong Kuang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Shi-Liang Wang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Jing-Xian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Lang-Huan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yong-Qiang Xiong
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Peng Qing
- Department of Acumoxibustion, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Shao-Zao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
13
|
Reddy SS, Varyambath A, Kalla RMN, Song W, Kim I. Synthesis of 3‐Indole Substituted Sulfonyl 4
H
‐Chromenes Using Recyclable Cyclometrix Polyphosphazene‐Base Catalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Anuraj Varyambath
- Department of Polymer Science and Engineering Pusan National University Busan 46241, Republic of Korea
| | - Reddi Mohan Naidu Kalla
- Department of Science and Humanities Sri Venkateswara Engineering College Tirupati Andhra Pradesh India
| | - Wenliang Song
- School of Materials Science & Engineering University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Il Kim
- Department of Polymer Science and Engineering Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Zhou N, Zhang N, Zhi Z, Jing X, Liu D, Shao Y, Wang D, Meng L. One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. J Mater Chem B 2020; 8:10540-10548. [PMID: 33118582 DOI: 10.1039/d0tb01992e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
In order to improve the therapeutic efficacy and reduce the side effects of anticancer drugs, stimuli-responsive and biodegradable drug-delivery systems have attracted significant attention in the past three decades. Herein, we report acid-responsive and degradable polyphosphazene nano-prodrugs synthesized via a one-pot cross-linking reaction of 4-hydroxybenzhydrazide-modified doxorubicin (BMD) with hexachlorocyclotriphosphazene (HCCP). The phenol groups in the as-synthesized BMD exhibited a high reactivity towards HCCP and in the presence of a basic catalyst the determined drug loading ratio of the nanoparticles, denoted as HCCP-BMD, was up to 85.64%. Interestingly, the hydrazone bonds in BMD and the skeleton of polyphosphazene tended to break down in acidic environments, and the antitumor active drug DOX was found to be released in an acidic tumor microenvironment (pH ∼ 6.8 for extracellular, and pH ∼ 5.0 for endosomes and lysosomes). The resulting HCCP-BMD prodrug exhibited high cytotoxicity to HeLa cells and could effectively suppress tumor growth, with negligible damage to normal tissues. We therefore believe that this acid- degradable polyphosphazene prodrug may offer great potential in various biomedical fields.
Collapse
Affiliation(s)
- Na Zhou
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Onder A, Ozay H. Synthesis and characterization of biodegradable and antioxidant phosphazene-tannic acid nanospheres and their utilization as drug carrier material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111723. [PMID: 33545874 DOI: 10.1016/j.msec.2020.111723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
In this study, hexachlorocyclotriphosphazene (HCCP) and tannic acid (TA) were used at different stoichiometric ratios to synthesize cyclomatrix-type polymeric materials with different surface features and dimensions. Using different reactive ratios, the structure and surface functional groups of the synthesized polymeric particles were explained using Fourier-Transform Infrared Spectroscopic (FTIR), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric (TG) analysis techniques. With morphologically fully spherical structure and mean 234.82 ± 49.37 nm dimensions, Phz-TA (4:1) nanospheres were researched for in vitro biodegradability, antioxidant features, and usability as a drug release system. In vitro biodegradability of Phz-TA (4:1) nanospheres was investigated at pH = 7.0 and pH = 1.2. Determined to degrade in 8-10 h at these pH values, nanospheres were used for releasing of Rhodamine 6G as a model drug. Due to the rich phenolic structure of the contained tannic acid units, nanospheres were determined to simultaneously have antioxidant features. Thus, this study determined that Phz-TA nanospheres with in vitro biodegradability and antioxidant features are promising polymeric materials for use as a potential drug-carrier in the future.
Collapse
Affiliation(s)
- Alper Onder
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
16
|
Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, Meng L, Yu D. Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomater Sci Eng 2020; 6:4285-4293. [PMID: 33463351 DOI: 10.1021/acsbiomaterials.0c00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH ∼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH ∼ 6.8) and lysosome and endosome (∼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Demei Yu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Hou S, Zhou S, Chen S, Lu Q. Polyphosphazene-Based Drug Self-Framed Delivery System as a Universal Intelligent Platform for Combination Therapy against Multidrug-Resistant Tumors. ACS APPLIED BIO MATERIALS 2020; 3:2284-2294. [DOI: 10.1021/acsabm.0c00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shenglei Hou
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiliu Zhou
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Liao YJ, Wu XL, Peng X, Zhou Z, Wu JZ, Wu F, Jiang T, Chen JX, Zhu L, Yi T. Enhancing the mechanical and thermal properties of polypropylene composite by encapsulating styrene acrylonitrile with ammonium polyphosphate. BMC Chem 2019; 13:9. [PMID: 31384758 PMCID: PMC6661823 DOI: 10.1186/s13065-019-0534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
Backgrounds In recent decades, incorporating polypropylene (PP) within flame retardants has proved to be an effective method of improving the thermal stabilities of PP, but too much adversely affects the mechanical properties of this polymer materials. Herein we report a novel multifunctional flame retardant, (styrene acrylonitrile)-(titanate-modified ammonium polyphosphate) (SAN-TAPP), to simultaneously improve the mechanical properties and thermal stability of PP composites. Methods SAN-TAPP was synthesized by encapsulating SAN resins with functional titanate-modified APP (TAPP) and subsequently was incorporated into PP by a melt-blending process. The phase characteristics and morphology of SAN-TAPP were investigated, and the mechanical properties and thermal stability of different content of PP/SAN-TAPP composites were studied. Results The results showed that the TAPP was almost entirely wrapped in the SAN resins and PP/SAN-TAPP composites exhibited the sea-island morphology. For the mechanical properties, the impact strength of PP/SAN-TAPP composite was significantly improved, especially 15 wt% SAN-TAPP filled PP/SAN-TAPP composite exhibiting 2.17 times higher than that of pure PP. And the tensile strength and modulus also increased by addition of SAN-TAPP. For the thermal stabilities, melting temperatures (Tm) and residual char yield were improved. Furthermore, the LOI value of PP/SAN-TAPP composites increased from 19.8 to 27.5%; The 15 and 20 wt% SAN-TAPP filled in PP/SAN-TAPP composites passed the V-2 test of UL-94, and exerted the similar effect on the flame retardancy to TAPP with the same loading. Conclusions These results revealed that a novel PP/SAN-TAPP composites with synthetically enhancement on the mechanical properties, thermal stabilities and flame retardancy, suggesting a strong correlation between the phase structure, mechanical and thermal properties.
Collapse
Affiliation(s)
- Yi-Jun Liao
- School of Materials Engineering, Chengdu Technological University, Chengdu, 611730 China.,Center of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730 China
| | - Xiao-Li Wu
- School of Materials Engineering, Chengdu Technological University, Chengdu, 611730 China.,Center of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730 China
| | - Xin Peng
- 3Institute of Biopharmaceutical Technology, Zhejiang Pharmaceutical College, Zhejiang, 315100 China
| | - Zheng Zhou
- Center of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730 China.,College of Architectural and Environmental Engineering, Chengdu Technological University, Chengdu, 611730 China
| | - Ju-Zhen Wu
- Center of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730 China.,College of Architectural and Environmental Engineering, Chengdu Technological University, Chengdu, 611730 China
| | - Fang Wu
- 5National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Tao Jiang
- 6College of Chemistry, Leshan Normal University, Leshan, 614004 China
| | - Jia-Xuan Chen
- 6College of Chemistry, Leshan Normal University, Leshan, 614004 China
| | - Lin Zhu
- 7School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region China
| | - Tao Yi
- 7School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region China
| |
Collapse
|
19
|
Metinoğlu Örüm S, Süzen Demircioğlu Y. One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1615838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Simge Metinoğlu Örüm
- Faculty of Science and Art, Department of Chemistry, Mehmet Akif Ersoy University, Burdur, Turkey
| | | |
Collapse
|
20
|
Zhou Y, Huang Q, Low CTJ, Walton RI, McNally T, Wan C. Heteroatom-doped core/shell carbonaceous framework materials: synthesis, characterization and electrochemical properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj05193c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple heteroatom-doped core/shell carbonaceous framework materials showed a rapid charge–discharge capacity and excellent cycling stability, demonstrating great potential for anode materials for lithium ion batteries.
Collapse
Affiliation(s)
- Yutao Zhou
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Qianye Huang
- Energy Innovation Centre (EIC)
- WMG
- University of Warwick
- UK
| | | | | | - Tony McNally
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| |
Collapse
|
21
|
Hou SL, Chen SS, Huang ZJ, Lu QH. Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00801b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A drug self-framed delivery system (DSFDS) with dual-stimuli-responsive drug release and superhigh drug loaded capacity for efficient cancer chemotherapy is proposed.
Collapse
Affiliation(s)
- Sheng-Lei Hou
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shuang-Shuang Chen
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
| | - Zhang-Jun Huang
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Qing-Hua Lu
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
22
|
Dhiman N, Mohanty P. A nitrogen and phosphorus enriched pyridine bridged inorganic–organic hybrid material for supercapacitor application. NEW J CHEM 2019. [DOI: 10.1039/c9nj03976g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heteroatom-enriched hybrid material, HPHM, has been synthesized and it was used to demonstrate the role of mass loading in supercapacitor performance.
Collapse
Affiliation(s)
- Nisha Dhiman
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee
- India
| | - Paritosh Mohanty
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee
- India
| |
Collapse
|
23
|
Synthesis of Negative‐Charged Metal‐Containing Cyclomatrix Polyphosphazene Microspheres Based on Polyoxometalates and Application in Charge‐Selective Dye Adsorption. Macromol Rapid Commun 2018; 40:e1800730. [DOI: 10.1002/marc.201800730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Indexed: 01/09/2023]
|
24
|
Arıcı TA, Örüm SM, Demircioğlu YS, Özcan A, Özcan AS. Assessment of adsorption properties of inorganic–organic hybrid cyclomatrix type polyphosphazene microspheres for the removal of Pb(II) ions from aqueous solutions. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1506783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tuğba Alp Arıcı
- Department of Chemical Technology, Emet Vocational School, Dumlupınar University, Kütahya, Turkey
| | - Simge Metinoğlu Örüm
- Department of Chemistry, Faculty of Arts and Science, Mehmet Akif Ersoy University, Burdur, Turkey
| | | | - Adnan Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - A. Safa Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
25
|
Crosslinked Polyphosphazene Nanospheres with Anticancer Quercetin: Synthesis, Spectroscopic, Thermal Properties, and Controlled Drug Release. Macromol Res 2018. [DOI: 10.1007/s13233-018-6092-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Carriedo GA, de la Campa R, Soto AP. Polyphosphazenes - Synthetically Versatile Block Copolymers (“Multi-Tool”) for Self-Assembly. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gabino A. Carriedo
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| |
Collapse
|
27
|
Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RKK, Hu Y. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:839-848. [PMID: 29190581 DOI: 10.1016/j.jhazmat.2017.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 05/24/2023]
Abstract
To achieve superior fire safety epoxy resins (EP), a novel multifunctional organic-inorganic hybrid, melamine-containing polyphosphazene wrapped ammonium polyphosphate (PZMA@APP) with rich amino groups was prepared and used as an efficient flame retardant. Thanks to the cross-linked polyphosphazene part, PZMA@APP exhibited high flame retardant efficiency and smoke suppression to the EP composites. Thermogravimetric analysis indicated that PZMA@APP significantly enhanced the thermal stability of EP composites. The obtained sample passed UL-94 V-0 rating with 10.0wt% addition of PZMA@APP. Notably, inclusion of incorporating PZMA@APP leads to significantly decrease on fire hazards of EP, for instance, bring about a 75.6% maximum decrease in peak heat release rate and 65.9% maximum reduction in total heat release, accompanied with lower smoke production rate and higher graphitized char layer. With regards to mechanical property, the glass transition temperature of EP/PZMA@APP10.0 was as high as 184.5°C. In particular, the addition of PZMA@APP did not worsen the mechanical properties, compared to pure APP. It was confirmed that the participation of melamine-containing polyphosphazene could significantly enhance the quality of char layer and thereby resulting the higher flame retardant efficiency of PZMA@APP.
Collapse
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chao Ma
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| | - Xia Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Xiaming Feng
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Richard K K Yuen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
28
|
Riensch NA, Deniz A, Kühl S, Müller L, Adams A, Pich A, Helten H. Borazine-based inorganic–organic hybrid cyclomatrix microspheres by silicon/boron exchange precipitation polycondensation. Polym Chem 2017. [DOI: 10.1039/c7py01006k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Borazine-based inorganic–organic hybrid cyclomatrix microspheres with a mean diameter of about 900 nm have been obtained via a novel silicon/boron exchange precipitation polycondensation approach.
Collapse
Affiliation(s)
- Nicolas A. Riensch
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Ayse Deniz
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Sebastian Kühl
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Lars Müller
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Alina Adams
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Holger Helten
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
29
|
Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev 2016; 45:5200-15. [PMID: 27314867 PMCID: PMC5048340 DOI: 10.1039/c6cs00340k] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 01/24/2023]
Abstract
Poly(organo)phosphazenes are a family of inorganic molecular hybrid polymers with very diverse properties due to the vast array of organic substituents possible. This tutorial review aims to introduce the basics of the synthetic chemistry of polyphosphazenes, detailing for readers outside the field the essential knowledge required to design and prepare polyphosphazenes with desired properties. A particular focus is given to some of the recent advances in their chemical synthesis which allows not only the preparation of polyphosphazenes with controlled molecular weights and polydispersities, but also novel branched architectures and block copolymers. We also discuss the preparation of supramolecular structures, bioconjugates and in situ forming gels from this diverse family of functional materials. This tutorial review aims to equip the reader to prepare defined polyphosphazenes with unique property combinations and in doing so we hope to stimulate further research and yet more innovative applications for these highly interesting multifaceted materials.
Collapse
Affiliation(s)
- Sandra Rothemund
- NanoScience Technology Center , University of Central Florida , 12424 Research Parkway Suite 400 , Orlando , FL 32826 , USA
| | - Ian Teasdale
- Institute of Polymer Chemistry , Johannes Kepler University , Altenberger Strasse 69 , 4040 Linz , Austria .
| |
Collapse
|
30
|
The Preparation of Phosphazene Crosslinked Cyclen Microspheres as Host for Cu2+ Ions and Their Utilization as a Support Material for the Preparation of a Copper Nanocatalyst. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0453-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S. "Stereoscopic" 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:95-104. [PMID: 27107239 DOI: 10.1016/j.jhazmat.2016.04.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/19/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0-2.1nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1-2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50mg/g) and selectivity (>60%) were obtained under strong acidic condition (1M HNO3). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Xiaosheng Zhao
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Bo Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Chiyao Bai
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Yang Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Lei Wang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Rui Wen
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Meicheng Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China
| | - Shoujian Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu 610064, PR China.
| |
Collapse
|
32
|
Wei W, Lu R, Ye W, Sun J, Zhu Y, Luo J, Liu X. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1707-1715. [PMID: 26854870 DOI: 10.1021/acs.langmuir.5b04697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Increasing attention has been paid to fabricate multifunctional stabilizers of liquid marbles for expanding their application. Here, a kind of hydrophobic cyclomatrix polyphosphazene particles (PZAF) were facilely prepared using a one-step precipitation polycondensation of hexachlorocyclotriphosphazene and 4,4'-(hexafluoroisopropylidene)diphenol, and their ability to stabilize liquid marbles was first investigated. The Ag nanoparticle-decorated PZAF particles (Ag/PZAF) were then fabricated by an in situ reduction of silver nitrate onto PZAF particles and used to construct catalytic liquid marbles. The results revealed that the reduction of methylene blue (MB) in aqueous solution by sodium borohydride could be highly efficiently catalyzed in the catalytic liquid marbles, even with a large volume. An excellent cycle use performance of the catalytic liquid marbles without losing catalytic efficiency was also present. The high catalytic activity is mainly attributed to the uniform immobilization of Ag nanoparticles onto PZAF particles and the adsorption behavior of PZAF particles toward MB, which may play an effect on allowing high catalytic surface area and effective accelerating the mass transfer of MB to the Ag catalytic active sites, respectively. Therefore, the combination of Ag nanoparticles with PZAF particles has been demonstrated clearly to be a facile and effective strategy to obtain the functional stabilizer for preparing the catalytic liquid marbles as promising miniature reactors used in heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Rongjie Lu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Weitao Ye
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianhua Sun
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Ye Zhu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Luo
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
33
|
Huang Z, Zheng F, Chen S, Lu X, Catharina Elizabeth van Sittert CG, Lu Q. A strategy for the synthesis of cyclomatrix-polyphosphazene nanoparticles from non-aromatic monomers. RSC Adv 2016. [DOI: 10.1039/c6ra13486f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclomatrix-polyphosphazenes (C-PPZs) are a new class of nanomaterials that have attracted significant interest owing to their unique inorganic–organic hybrid structure and tunable properties.
Collapse
Affiliation(s)
- Zhangjun Huang
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Feng Zheng
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Shuangshuang Chen
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| | | | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai
- P. R. China
| |
Collapse
|