1
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
2
|
Milne C, Song R, Zhu R, Johnson M, Zhao C, Ferrer FS, A S, Lyu J, Wang W. Fast one-step acrylate functionalization of hyaluronic acid via Williamson ether synthesis. Chem Commun (Camb) 2024; 60:9946-9949. [PMID: 39171691 DOI: 10.1039/d4cc03655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The synthetic route presented for acrylate-modified hyaluronic acid (HA-A-BEA) offers a simple and efficient process, reducing reaction time and purification steps while retaining biocompatibility. This study demonstrates the ability of HA-A-BEA to form tunable hydrogels via versatile techniques suitable for biomedical applications.
Collapse
Affiliation(s)
- Cameron Milne
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Runqi Zhu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Chunyu Zhao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Francesca Santoro Ferrer
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Sigen A
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
3
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
4
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Jiang Z, Zhang W, Liu C, Xia L, Wang S, Wang Y, Shao K, Han B. Facilitation of Cell Cycle and Cellular Migration of Rat Schwann Cells by O-Carboxymethyl Chitosan to Support Peripheral Nerve Regeneration. Macromol Biosci 2023; 23:e2300025. [PMID: 37282815 DOI: 10.1002/mabi.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Indexed: 06/08/2023]
Abstract
O-carboxymethyl chitosan (CM-chitosan), holds high potential as a valuable biomaterial for nerve guidance conduits (NGCs). However, the lack of explicit bioactivity on neurocytes and poor duration that does not match nerve repair limit the restorative effects. Herein, CM-chitosan-based NGC is designed to induce the reconstruction of damaged peripheral nerves without addition of other activation factors. CM-chitosan possesses excellent performance in vitro for nerve tissue engineering, such as increasing the organization of filamentous actin and the expression of phospho-Akt, and facilitating the cell cycle and migration of Schwann cells. Moreover, CM-chitosan exhibits increased longevity upon cross-linking (C-CM-chitosan) with 1, 4-Butanediol diglycidyl ether, and C-CM-chitosan fibers possess appropriate biocompatibility. In order to imitate the structure of peripheral nerves, multichannel bioactive NGCs are prepared from lumen fillers of oriented C-CM-chitosan fibers and outer warp-knitted chitosan pipeline. Implantation of the C-CM-chitosan NGCs to rats with 10-mm defects of peripheral nerves effectively improve nerve function reconstruction by increasing the sciatic functional index, decreasing the latent periods of heat tingling, enhancing the gastrocnemius muscle, and promoting nerve axon recovery, showing regenerative efficacy similar to that of autograft. The results lay a theoretical foundation for improving the potential high-value applications of CM-chitosan-based bioactive materials in nerve tissue engineering.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Chenqi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lixin Xia
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
6
|
Wang S, Qiu Y, Qu L, Wang Q, Zhou Q. Hydrogels for Treatment of Different Degrees of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:858656. [PMID: 35733529 PMCID: PMC9207401 DOI: 10.3389/fbioe.2022.858656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a common disease that severely restricts human activities and degrades the quality of life. Every year, millions of people worldwide are diagnosed with osteoarthritis, placing a heavy burden on society. Hydrogels, a polymeric material with good biocompatibility and biodegradability, are a novel approach for the treatment of osteoarthritis. In recent years, this approach has been widely studied with the development of materials science and tissue engineering technology. We reviewed the research progress of hydrogels in the treatment of osteoarthritis in the past 3 years. We summarized the required hydrogel properties and current applications according to the development and treatment of osteoarthritis. Furthermore, we listed the challenges of hydrogels for different types of osteoarthritis and presented prospects for future development.
Collapse
Affiliation(s)
- Shuze Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Liu Qu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
7
|
Li L, Lei D, Zhang J, Xu L, Li J, Jin L, Pan L. Dual-Responsive Alginate Hydrogel Constructed by Sulfhdryl Dendrimer as an Intelligent System for Drug Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010281. [PMID: 35011513 PMCID: PMC8746751 DOI: 10.3390/molecules27010281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Intelligent stimulus-triggered release and high drug-loading capacity are crucial requirements for drug delivery systems in cancer treatment. Based on the excessive intracellular GSH expression and pH conditions in tumor cells, a novel glutathione (GSH) and pH dual-responsive hydrogel was designed and synthesized by conjugates of glutamic acid-cysteine dendrimer with alginate (Glu-Cys-SA) through click reaction, and then cross-linked with polyethylene glycol (PEG) through hydrogen bonds to form a 3D-net structure. The hydrogel, self-assembled by the inner disulfide bonds of the dendrimer, is designed to respond to the GSH heterogeneity in tumors, with a remarkably high drug loading capacity. The Dox-loaded Glu-Cys-SA hydrogel showed controlled drug release behavior, significantly with a release rate of over 76% in response to GSH. The cytotoxicity investigation indicated that the prepared DOX-loaded hydrogel exhibited comparable anti-tumor activity against HepG-2 cells with positive control. These biocompatible hydrogels are expected to be well-designed GSH and pH dual-sensitive conjugates or polymers for efficient anticancer drug delivery.
Collapse
Affiliation(s)
- Li Li
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dongyu Lei
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi 830011, China;
| | - Jiaojiao Zhang
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
| | - Lu Xu
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
| | - Jiashan Li
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
| | - Lu Jin
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
- Correspondence: (L.J.); (L.P.)
| | - Le Pan
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (J.Z.); (L.X.); (J.L.)
- Correspondence: (L.J.); (L.P.)
| |
Collapse
|
8
|
Effects of basic fibroblast growth factor combined with an injectable in situ crosslinked hyaluronic acid hydrogel for a dermal filler. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Yang IH, Lin IE, Chen TC, Chen ZY, Kuan CY, Lin JN, Chou YC, Lin FH. Synthesis, characterization, and evaluation of BDDE crosslinked chitosan-TGA hydrogel encapsulated with genistein for vaginal atrophy. Carbohydr Polym 2021; 260:117832. [PMID: 33712170 DOI: 10.1016/j.carbpol.2021.117832] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
Vagina atrophy is a common symptom in women after menopause owing to decreasing estrogen levels. The most conventional treatment for this condition is estrogen cream. The shortcoming is its weak adhesion to the vagina mucus, thus requiring frequent daily application. In this study, BDDE was selected to crosslink and graft chitosan with thioglycolic acid, to form thiolated chitosan (CT) and improve the mucoadhesive properties of chitosan. Genistein was selected as the bioactive molecule that could exhibit estrogen-like properties for long-term treatment of vaginal atrophy. The efficacies of the materials were characterized and evaluated both in vitro and in vivo. Results showed that the mucoadhesive property of CT was approximately two-fold stronger against the constant flow than unmodified chitosan. CT with genistein (CT-G) was administered intravaginally every three days in vivo. It showed that the developed CT-G recover 54 % of the epithelium thickness of an atrophic vagina and ease vaginal atrophy.
Collapse
Affiliation(s)
- I-Hsuan Yang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - I-En Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Tzu-Chien Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Zhi-Yu Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Che-Yung Kuan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Yu-Chia Chou
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
11
|
Mou D, Yu Q, Zhang J, Zhou J, Li X, Zhuang W, Yang X. Intra-articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Eng Regen Med 2021; 18:113-125. [PMID: 33511556 PMCID: PMC7862498 DOI: 10.1007/s13770-020-00322-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pain and cartilage destruction caused by osteoarthritis (OA) is a major challenge in clinical treatment. Traditional intra-articular injection of hyaluronic acid (HA) can relieve the disease, but limited by the difficulty of long-term maintenance of efficacy. METHODS In this study, an injectable and self-healing hydrogel was synthesized by in situ crosslinking of N-carboxyethyl chitosan (N-chitosan), adipic acid dihydrazide (ADH), and hyaluronic acid-aldehyde (HA-ALD). RESULTS This supramolecular hydrogel sustains good biocompatibility for chondrocytes. Intra-articular injection of this novel hydrogel can significantly alleviate the local inflammation microenvironment in knee joints, through inhibiting the inflammatory cytokines (such as TNF-α, IL-1β, IL-6 and IL-17) in the synovial fluid and cartilage at 2- and even 12-weeks post-injection. Histological and behavioral test indicated that hydrogel injection protected cartilage destruction and relieved pain in OA rats, in comparison to HA injection. CONCLUSION This kind of novel hydrogel, which is superior to the traditional HA injection, reveals a great potential for the treatment of OA.
Collapse
Affiliation(s)
- Donggang Mou
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Qunying Yu
- Department of Maternity, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650051, People's Republic of China
| | - Jimei Zhang
- Department of Gastroenterology, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Jianping Zhou
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Xinmin Li
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Weiyi Zhuang
- Department of Cardiology, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Xuming Yang
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China.
| |
Collapse
|
12
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| |
Collapse
|
13
|
Affiliation(s)
- Yabin Meng
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jun Wu
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
14
|
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2019; 8:405-412. [PMID: 31729512 DOI: 10.1039/c9bm01494b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels based on hyaluronic acid (HA) exhibit great potential as tissue engineering (TE) scaffolds as a consequence of their unique biological features. Herein, we examine how the advantages of two natural polymers (i.e. HA and alginate) are combined with the efficiency and rapid nature of the thiol-yne click chemistry reaction to obtain biocompatible matrices with tailored properties. Our injectable click-hydrogels revealed excellent mechanical performance, long-term stability, high cytocompatibility and adequate stiffness for the targeted application. This simple approach yielded HA hydrogels with characteristics that make them suitable for applications as 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
| | - Joshua E Shaw
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK and NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 2018; 195:62-68. [PMID: 30625593 DOI: 10.1016/j.talanta.2018.11.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
A new disposable microfluidic electrochemical paper-based device (ePAD) consisting of two spot sensors in the same working electrode for the simultaneous determination of uric acid and creatinine was developed. The spot 1 surface was modified with graphene quantum dots for direct uric acid oxidation and spot 2 surface modified with graphene quantum dots, creatininase and a ruthenium electrochemical mediator for creatinine oxidation. The ePAD was employed to construct an electrochemical sensor (based on square wave voltammetry analysis) for the simultaneous determination of uric acid and creatinine in the 0.010-3.0 µmol L-1 range. The device showed excellent analytical performance with a very low simultaneous detection limit of 8.4 nmol L-1 to uric acid and 3.7 nmol L-1 to creatinine and high selectivity. The ePAD was applied to the rapid and successful determination of those clinical biomarkers in human urine samples.
Collapse
Affiliation(s)
- Fernando H Cincotto
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elson L Fava
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Fernando C Moraes
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
16
|
Su J. Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels. Gels 2018; 4:E72. [PMID: 30674848 PMCID: PMC6209259 DOI: 10.3390/gels4030072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional networks composed of hydrated polymer chains and have been a material of choice for many biomedical applications such as drug delivery, biosensing, and tissue engineering due to their unique biocompatibility, tunable physical characteristics, flexible methods of synthesis, and range of constituents. In many cases, methods for crosslinking polymer precursors to form hydrogels would benefit from being highly selective in order to avoid cross-reactivity with components of biological systems leading to adverse effects. Crosslinking reactions involving the thiol group (SH) offer unique opportunities to construct hydrogel materials of diverse properties under mild conditions. This article reviews and comments on thiol-mediated chemoselective and biocompatible strategies for crosslinking natural and synthetic macromolecules to form injectable hydrogels for applications in drug delivery and cell encapsulation.
Collapse
Affiliation(s)
- Jing Su
- Department of Chemistry, Northeastern Illinois University, Chicago, IL 60625, USA.
| |
Collapse
|
17
|
He Z, Wang B, Hu C, Zhao J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloids Surf B Biointerfaces 2017; 154:33-39. [PMID: 28288340 DOI: 10.1016/j.colsurfb.2017.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Drug administration by intra-articular injection is an emerging popular treatment for knee osteoarthritis (OA). This method of drug administration minimizes the toxic effects of the drugs administered systemically, and maximizes local effects. However, traditional oral drugs delivered via intra-articular injection are limited by the lack of sustained release. Injectable materials such as hydrogels or hydrogel microspheres have been extensively studied for their applications as intra-articular injection for the treatment of OA, which is attribute to their minimally invasive manner, extended drug retention time and high loading efficiency. In this review, we summarized hydrogel types and hydrogel characteristics for intra-articular injection, and the drugs, proteins and cells used in the injectable delivery systems. Through this review, we hope to inspire researchers to construct novel hydrogel-based delivery system for the intra-articular injection treatment of knee OA.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Beiyue Wang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Changmin Hu
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
18
|
Fan Z, Cheng P, Liu M, Li D, Liu G, Zhao Y, Ding Z, Chen F, Wang B, Tan X, Wang Z, Han J. Poly(glutamic acid) hydrogels crosslinked via native chemical ligation. NEW J CHEM 2017. [DOI: 10.1039/c7nj00439g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(glutamic acid) hydrogels crosslinked by NCL have good biocompatibility and tunable properties.
Collapse
|
19
|
Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, Machado SAS, Pingarrón JM, Villalonga R. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 2016; 89:343-351. [PMID: 27450540 DOI: 10.1016/j.bios.2016.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023]
Abstract
A novel nanocomposite material consisting of reduced graphene oxide/Rh nanoparticles was prepared by a one-pot reaction process. The strategy involved the simultaneous reduction of RhCl3 and graphene oxide with NaBH4 and the in situ deposition of the metal nanoparticles on the 2D carbon nanomaterial planar sheets. Glassy carbon electrode coated with this nanocomposite was employed as nanostructured support for the cross-linking of the enzyme laccase with glutaraldehyde to construct a voltammperometric biosensor for 17β-estradiol in the 0.9-11 pM range. The biosensor showed excellent analytical performance with high sensitivity of 25.7AµM-1cm-1, a very low detection limit of 0.54pM and high selectivity. The biosensor was applied to the rapid and successful determination of the hormone in spiked synthetic and real human urine samples.
Collapse
Affiliation(s)
- Eloy Povedano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Fernando H Cincotto
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain; Institute of Chemistry, State University of São PauloPO Box 780São CarlosSP13560-970Brazil
| | - Concepción Parrado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Paula Díez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain.
| | - Thiago C Canevari
- Engineering School, Mackenzie Presbiterian UniversitySão PauloSP01302-907Brazil
| | - Sergio A S Machado
- Institute of Chemistry, State University of São PauloPO Box 780São CarlosSP13560-970Brazil
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain.
| |
Collapse
|
20
|
Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 2016; 40:35-40. [PMID: 26930175 DOI: 10.1016/j.copbio.2016.02.008] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Hyaluronic acid (HA) is widely used in the design of engineered hydrogels, due to its biofunctionality, as well as numerous sites for modification with reactive groups. There are now widespread examples of modified HA macromers that form either covalent or physical hydrogels through crosslinking reactions such as with click chemistry or supramolecular assemblies of guest-host pairs. HA hydrogels range from relatively static matrices to those that exhibit spatiotemporally dynamic properties through external triggers like light. Such hydrogels are being explored for the culture of cells in vitro, as carriers for cells in vivo, or to deliver therapeutics, including in an environmentally responsive manner. The future will bring new examples of HA hydrogels due to the synthetic diversity of HA.
Collapse
Affiliation(s)
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|