1
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
2
|
Khavar AHC, Mahjoub AR, Khazaee Z. MoCu Bimetallic Nanoalloy-Modified Copper Molybdenum Oxide with Strong SPR Properties; a 2D-0D System for Enhanced Degradation of Antibiotics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Pu H, Zhang T, Dong K, Dai H, Zhou L, Wang K, Bai S, Wang Y, Deng Y. Evolution of PtCu tripod nanocrystals to dendritic triangular nanocrystals and study of the electrochemical performance to alcohol electrooxidation. NANOSCALE 2021; 13:20592-20600. [PMID: 34874030 DOI: 10.1039/d1nr07180g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the field of catalysis, the design and construction of nanomaterials is an efficient way to optimize the catalytic activity of catalysts. This study presents the synthesis of PtCu tripod nanocrystals with branching structures and high purity prepared using a simple hydrothermal method. The dendritic PtCu triangular nanocrystals were successfully synthesized by regulating the amount of I- ions to achieve different degrees of branching on PtCu nanocrystals, and the process was systematically studied and analyzed. Meanwhile, dumbbell nanocrystals of PtCu were successfully synthesized through slight adjustments to synthesis conditions. In electrochemical tests, the obtained dendritic PtCu triangular nanocrystals exhibited prominent electrocatalytic activity and long-term stability for ethylene glycol, methanol, and ethanol oxidation reactions due to the unique nanostructures as well as alloyed virtue, and were much better than commercial Pt/C. In addition, this study provides a general strategy for designing novel branched Pt-based nanomaterials with high electrocatalytic performance.
Collapse
Affiliation(s)
- Houkang Pu
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Te Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Kaiyu Dong
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Huizhen Dai
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Luming Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Kuankuan Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Shuxing Bai
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| | - Yingying Wang
- Qingdao Hengxing University of Science and Technology, Jiushui East Road 588, Qingdao 266100, China.
| | - Yujia Deng
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China.
| |
Collapse
|
4
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN, Izanloo C, Masoumi A. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Lee DW, Woo HY, Lee DHD, Jung MC, Lee D, Lee M, Kim JB, Chae JY, Han MJ, Paik T. N,N-Dimethylformamide-Assisted Shape Evolution of Highly Uniform and Shape-Pure Colloidal Copper Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103302. [PMID: 34468086 DOI: 10.1002/smll.202103302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the N,N-dimethylformamide (DMF)-assisted shape evolution of highly uniform and shape-pure copper nanocrystals (Cu NCs) is presented for the first time. Colloidal Cu NCs are synthesized via the disproportionation reaction of copper (I) bromide in the presence of a non-polar solvent mixture. It is observed that the shape of Cu NCs is systematically controlled by the addition of different amounts of DMF to the reaction mixture in high-temperature reaction conditions while maintaining a high size uniformity and shape purity. With increasing amount of DMF in the reaction mixture, the morphology of the Cu NCs change from a cube enclosed by six {100} facets, to a sphere with mixed surface facets, and finally, to an octahedron enclosed by eight {111} facets. The origin of this shape evolution is understood via first-principles density functional theory calculations, which allows the study of the change in the relative surface stability according to surface-coordinating adsorbates. Further, the shape-dependent plasmonic properties are systematically investigated with highly uniform and ligand-exchanged colloidal Cu NCs dispersed in acetonitrile. Finally, the facet-dependent electrocatalytic activities of the shape-controlled Cu NCs are investigated to reveal the activities of the highly uniform and shape-pure Cu NCs in the methanol oxidation reaction.
Collapse
Affiliation(s)
- Da Won Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Hyun David Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myung-Chul Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donguk Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - MinJi Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jong Bae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
6
|
Milica Spasojević, Ribić-Zelenović L, Spasojević M, Marković D. Methanol Electrooxidation on Pt/RuO2 Catalyst. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Platinum quantum dots enhance electrocatalytic activity of bamboo-like nitrogen doped carbon nanotubes embedding Co-MnO nanoparticles for methanol/ethanol oxidation. J Colloid Interface Sci 2021; 590:164-174. [PMID: 33548600 DOI: 10.1016/j.jcis.2021.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/24/2022]
Abstract
Interaction of multi-active components can effectively maximize the overall catalytic ability of alcohol fuel cells. Herein, the self-assembled nitrogen doped carbon nanotubes (NCNTs) containing Co-MnO composite (Co-MnO/NCNTs) are successfully synthesized using dihydrodiamine as carbon and nitrogen source through one-step synthesis. In order to further improve the catalytic activity of Co-MnO/NCNTs for alcohol oxidation, small amounts of platinum quantum dots are uniformly loaded on Co-MnO/NCNTs formation of quaternary hybrid (named Pt/Co-MnO/NCNTs) during microwave reduction stage. Notably, the prepared Pt/Co-MnO/NCNTs hybrids possess the excellent methanol and ethanol oxidation mass current density of 1775.4 and 1112.8 mA mg-1 in alkaline condition, which are 3.6 and 2.25 times higher than that of Pt/C catalysts, respectively. The current density of ethanol catalytic oxidation is lower than that of methanol, which may be due to the partial oxidation of acetyl (the intermediate product of ethanol) on the Pt (1 1 1) crystal surface. More importantly, CO oxidation experiments reveal that strong electronic synergistic effect between MnO and Pt quantum dot can greatly improve the CO anti-poisoning ability. Another significant advantage of Pt/Co-MnO/NCNTs is that low platinum loading leads to low cost effective, which demonstrates that the modification non-noble metal catalysts with a few noble metals quantum dots is a promising choice to mass produce high performance catalyst with remarkably boosting electrocatalytic activity for alcohol oxidation.
Collapse
|
8
|
Li Z, Li M, Wang X, Fu G, Tang Y. The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. NANOSCALE ADVANCES 2021; 3:1813-1829. [PMID: 36133100 PMCID: PMC9416890 DOI: 10.1039/d1na00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Controlling the morphologies and structures of noble-metal nanocrystals has always been a frontier field in electrocatalysis. Functional molecules such as capping agents, surfactants and additives are indispensable in shape-control synthesis. Amino-based functional molecules have strong coordination abilities with metal ions, and they are widely used in the morphology control of nanocrystals. In this minireview, we pay close attention to recent advances in the use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals. The effects of various amino-based molecules on differently shaped noble-metal nanocrystals, including zero-, one-, two-, and three-dimensional nanocrystals, are reviewed and summarized. The roles and mechanisms of amino-based small molecules and long-chain ammonium salts relating to the morphology-control synthesis of noble-metal nanocrystals are highlighted. Relationships between shape and electrocatalytic properties are also described. Finally, some key prospects and challenges relating to the controllable synthesis of noble-metal nanocrystals and their electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
9
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
10
|
Xu J, Yun Q, Wang C, Li M, Cheng S, Ruan Q, Zhu X, Kan C. Gold nanobipyramid-embedded silver-platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions. NANOSCALE 2020; 12:23663-23672. [PMID: 33216083 DOI: 10.1039/d0nr03315d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core-shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.
Collapse
Affiliation(s)
- Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
12
|
Kwon T, Jun M, Lee K. Catalytic Nanoframes and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001345. [PMID: 32633878 DOI: 10.1002/adma.202001345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The ever-increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting technologies. Accordingly, the development of highly efficient electrocatalysts has attracted significant interest, as the fuel cell and water splitting technologies are critically dependent on their performance. Among numerous catalyst designs under investigation, nanoframe catalysts have an intrinsically large surface area per volume and a tunable composition, which impacts the number of catalytically active sites and their intrinsic catalytic activity, respectively. Nevertheless, the structural integrity of the nanoframe during electrochemical operation is an ongoing concern. Some significant advances in the field of nanoframe catalysts have been recently accomplished, specifically geared to resolving the catalytic stability concerns and significantly boosting the intrinsic catalytic activity of the active sites. Herein, general synthetic concepts of nanoframe structures and their structure-dependent catalytic performance are summarized, along with recent notable advances in this field. A discussion on the remaining challenges and future directions, addressing the limitations of nanoframe catalysts, are also provided.
Collapse
Affiliation(s)
- Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
13
|
Ma HM, Zhao HY, Wang J, Liu Y. Re 6C 32: A Magnetic Pentagonal Icositetrahedron Molecule. J Phys Chem A 2020; 124:4440-4444. [DOI: 10.1021/acs.jpca.0c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Man Ma
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Hui-Yan Zhao
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jing Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ying Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
14
|
Wu D, Zhang W, Lin A, Cheng D. Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9600-9608. [PMID: 32027803 DOI: 10.1021/acsami.9b20076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing highly active and durable electrocatalysts with low levels of Pt content toward some crucial reactions including oxygen reduction reaction, hydrogen evolution reaction, and methanol oxidation reaction in an acidic electrolyte environment are desirable but still an open challenge for clean and efficient energy conversion. Herein, we present a facile route to synthesize low Pt-content ternary PtNiCu nanostructures with hollow interior and accessible surfaces (H-PtNiCu-AAT NPs) as enhanced multifunctional electrocatalysts. The galvanic replacement reaction and atomic diffusion between in situ preformed CuNi nanocrystals and Pt species should be responsible for the formation of hollow PtNiCu NPs. Continuous activation by acid picking and annealing treatments were performed to leach out the excessive Cu and Ni on the surfaces and to enrich Pt-content on the surface. H-PtNiCu-AAT NPs exhibit excellent activity and durability toward HER, ORR, and MOR due to the rational integration of multiple structural advantages. Strikingly, the mass activity and specific activity of H-PtNiCu-AAT NPs (0.977 A mgPt-1 and 1.458 mA cm-2) is 7.1 and 6.9 times higher than that of commercial Pt/C (0.138 A mgPt-1 and 0.212 mA cm-2) toward ORR at 0.9 V (vs RHE), respectively. This present work provides an efficient strategy for the design of low Pt-content trimetallic electrocatalysts with excellent activity and durability.
Collapse
Affiliation(s)
- Dengfeng Wu
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Wei Zhang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Aijun Lin
- Department of Environmental Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Energy Environmental Catalysis & Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
15
|
Wang Y, Jiang X, Fu G, Li Y, Tang Y, Lee JM, Tang Y. Cu 5Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34869-34877. [PMID: 31502819 DOI: 10.1021/acsami.9b09153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tailoring composition and structure are significantly important to improve the utilization and optimize the performance of the precious Pt catalyst toward various reactions, which greatly relies on the feasible synthesis approach. Herein, we demonstrate that Cu-rich Cu5Pt alloys with unique excavated dodecahedral frame-like structure (Cu5Pt nanoframes) can be synthesized via simply adjusting the amounts of salt precursors and surfactants under hydrothermal conditions. It is established that the presence of hexamethylenetetramine and cetyltrimethylammonium bromide, as well as the selection of a proper Pt/Cu ratio are key for the acquisition of the target product. The immediate appeal of this material stems from frame-like architecture and ultralow Pt content involved, which can be used to greatly improve the utilization efficiency of Pt atoms. When benchmarked against commercial catalysts, the developed Cu5Pt nanostructures display superior electrocatalytic performance toward formic acid oxidation, owing to unique electronic effect and ensemble effect. This work elucidates a promising methodology for the synthesis of Pt-based nanostructures while highlights the significance of composition and structure in electrocatalysis.
Collapse
Affiliation(s)
- Yao Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xian Jiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Gengtao Fu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yuhan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yidan Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
16
|
Nosheen F, Anwar T, Siddique A, Hussain N. Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells. Front Chem 2019; 7:456. [PMID: 31334215 PMCID: PMC6616278 DOI: 10.3389/fchem.2019.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
Noble metal nanostructures are being used broadly as catalysts for energy conversion in fuel cells. To overcome the future energy crises, fuel cells are anticipated as clean energy sources because they can be operated at low temperature, their energy conversion is high and their carbon release is almost zero. However, an active and stable electrocatalyst is essential for the electrochemical reactions in fuel cells. Therefore, properties of the nanostructures greatly depend on the shape of the nanostructures. Individual as well as interaction properties are greatly affected by changes in the surface area of the nanostructures. By shape controlled synthesis, properties of the nanostructures could be further enhanced by increasing the surface area or active sites for electrocatalysts. Therefore, an efficient approach is needed for the fabrication of nanostructures to increase their efficiency, activity, or durability in fuel cells by reducing the usage of noble metals. Different types of hollow nanostructures until now have been prepared including nanoboxes, nanocages, nanoshells, nanoframes (NFs), etc. NFs are the hollow unique three-dimensional structure which have no walls-they only contain corners or edges so they have large surface area. In electrocatalytic reactions, the molecules involved in the reaction can easily reach the inner surface of the nanoframes, thus noble metals' utilization efficiency increases. NFs usually have high surface area, greater morphological and compositional stabilities, allowing them to withstand harsh environmental conditions. By considering the current challenges in fabrication of noble metal based alloy NFs as electrocatalysts, this review paper will highlight recent progress, design, and fabrication of noble metal alloy NFs through different strategies-mainly photocatalytic template, electrodeposition, Kirkendall effect, galvanic replacement, chemical/oxidative etching, combination of both and other methods. Then, electrochemical applications of NFs in fuel cells toward formic acid, methanol, ethanol, oxygen reduction reaction as well as bifunctional catalyst will also be highlighted. Finally, we will summarize different challenges in the fabrication of highly proficient nanocatalysts for the fuel cells with low cost, high efficiency and high durability, which are the major issues for the highly commercial use of fuel cells in the future.
Collapse
Affiliation(s)
- Farhat Nosheen
- Department of Chemistry, University of Education, Jauharabad, Pakistan
| | - Tauseef Anwar
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Ayesha Siddique
- Sulaiman bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Yoo S, Cho S, Kim D, Ih S, Lee S, Zhang L, Li H, Lee JY, Liu L, Park S. 3D PtAu nanoframe superstructure as a high-performance carbon-free electrocatalyst. NANOSCALE 2019; 11:2840-2847. [PMID: 30676593 DOI: 10.1039/c8nr08231f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we demonstrate how to synthesize a three-dimensional (3D) ordered PtAu nanoframe superstructure and evaluated its performance as an electrocatalyst. Compared to carbon supported platinum (Pt) nanocrystal electrocatalysts (wherein the aggregation- and carbon corrosion-induced fast degradation is a well-known drawback), the 3D PtAu nanoframe superstructure is free from aggregation and carbon corrosion. The 3D superstructure was self-assembled via drop-casting and evaporation using truncated octahedral PtAu nanoframes (TOh PtAu NFs) as building blocks that were produced by controlled wet-chemical etching of a TOh Au core whose edges and vertexes were selectively deposited with Pt atoms. Density functional theory calculations revealed that the surface alloy state of PtAu gave rise to an enhanced catalytic activity compared to pure Pt. Experimental investigations showed that such 3D superstructure electrocatalysts exhibited excellent mass transfer efficiency, higher catalytic activity and stability towards the methanol oxidation reaction (MOR) compared to a commercial Pt/C catalyst. The demonstrated 3D nanoframe superstructure shows great potential for practical catalytic application due to its high structural stability, high catalytic activity, high surface area and ease of fabrication.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen XL, Wen GL, Huang H, Wang AJ, Wang ZG, Feng JJ. Uric acid supported one-pot solvothermal fabrication of rhombic-like Pt 35Cu 65 hollow nanocages for highly efficient and stable electrocatalysis. J Colloid Interface Sci 2019; 540:486-494. [PMID: 30665171 DOI: 10.1016/j.jcis.2019.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/19/2022]
Abstract
High activity and good durability of electrocatalysts are of significance in practical applications of fuel cells. Among them, multi-component metallic hollow nanocages/nanoframes show great potential as advanced catalysts because of their highly open structures, large surface area and good stability. Herein, we report a general uric acid-mediated solvothermal method for shape-controlled synthesis of rhombic-like Pt35Cu65 hollow nanocages (HNCs) with uric acid as co-reductant and co-structure-directing agent. Uric acid and cetyltrimethylammonium chloride (CTAC) played important roles in the hollow cages. The specific architectures showed remarkably enhanced catalytic properties towards glycerol oxidation reaction (GOR), ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) with the enhanced specific activity, outperforming commercial Pt/C (20 wt%). This work provides a new avenue for rational design of novel bimetallic nanocatalysts with enhanced characters in energy storage and conversion.
Collapse
Affiliation(s)
- Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Gui-Lin Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
19
|
Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem Soc Rev 2018; 47:8173-8202. [PMID: 30009297 DOI: 10.1039/c8cs00336j] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chao T, Hu Y, Hong X, Li Y. Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem 2018. [DOI: 10.1002/celc.201801189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Chao
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Yanmin Hu
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Yadong Li
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
21
|
Chen Y, Yuan PX, Wang AJ, Luo X, Xue Y, Zhang L, Feng JJ. A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 2018; 126:187-192. [PMID: 30415153 DOI: 10.1016/j.bios.2018.10.057] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 02/03/2023]
Abstract
Herein, a novel electrochemical ultrasensitive immunosensor was designed for detecting prostate-specific antigen (PSA) with three-dimensional (3D) PtCu hollow nanoframes (PtCu HNFs) as signal amplification. The highly opened PtCu HNFs were synthesized by a one-pot solvothermal method with cetyltrimethylammonium chloride (CTAC) and trishydroxymethyl aminomethane (Tris) as co-structuring directors. The architectures enlarged the loading of prostate specific antibodies (Ab) and efficiently catalyzed hydrogen peroxide (H2O2) reaction, ultimately amplifying the signals. And polylysine was used to disperse PtCu HNFs, improve the biocompatibility and bind the Ab on the electrode surface. The fabricated immunosensor exhibited lower detection limit (0.003 ng mL-1, S/N = 3), and wider linear range (0.01-100.0 ng mL-1), along with the improved reproducibility, selectivity and stability for the assay of PSA. Thus, it is a desirable platform for PSA detection in clinical diagnosis and practical applications.
Collapse
Affiliation(s)
- Yao Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Xue
- Jinhua Central Hospital, Jinhua 321001, China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
22
|
Chung DY, Yoo JM, Sung YE. Highly Durable and Active Pt-Based Nanoscale Design for Fuel-Cell Oxygen-Reduction Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704123. [PMID: 29359829 DOI: 10.1002/adma.201704123] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/04/2017] [Indexed: 05/16/2023]
Abstract
Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Although recent advances in electrocatalysts have been achieved using various material designs such as alloys, core@shell structures, and shape control, many issues still remain to be resolved. Especially, material design issues for high durability and high activity are recently accentuated owing to severe instability of nanoparticles under fuel-cell operating conditions. To address these issues, fundamental understanding of functional links between activity and durability is timely urgent. Here, the activity and durability of nanoscale materials are summarized, focusing on the nanoparticle size effect. In addition to phenomenological observation, two major degradation origins, including atomic dissolution and particle size increase, are discussed related to the activity decrease. Based on the fundamental understanding of nanoparticle degradation, recent promising strategies for durable Pt-based nanoscale electrocatalysts are introduced and the role of each design for durability enhancement is discussed. Finally, short comments related to the future direction of nanoparticle issues are provided in terms of nanoparticle synthesis and analysis.
Collapse
Affiliation(s)
- Dong Young Chung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| |
Collapse
|
23
|
Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. J Colloid Interface Sci 2018; 525:260-268. [DOI: 10.1016/j.jcis.2018.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
|
24
|
Xue S, Deng W, Yang F, Yang J, Amiinu IS, He D, Tang H, Mu S. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00366] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengfeng Xue
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wentao Deng
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Fang Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinlong Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ibrahim Saana Amiinu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Kwon H, Kabiraz MK, Park J, Oh A, Baik H, Choi SI, Lee K. Dendrite-Embedded Platinum-Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction. NANO LETTERS 2018; 18:2930-2936. [PMID: 29634282 DOI: 10.1021/acs.nanolett.8b00270] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pt-based nanoframe catalysts have been explored extensively due to their superior activity toward the oxygen reduction reaction (ORR). Herein, we report the synthesis of Pt-Ni multiframes, which exhibit the unique structure of tightly fused multiple nanoframes and reinforced by an embedded dendrite. Rapid reduction and deposition of Ni atoms on Pt-Ni nanodendrites induce the alloying/dealloying of Pt and Ni in the overall nanostructures. After chemical etching of Ni, the newly formed dendrite-embedded Pt-Ni multiframes show an electrochemically active surface area (ECSA) of 73.4 m2 gPt-1 and a mass ORR activity of 1.51 A mgPt-1 at 0.93 V, which is 30-fold higher than that of the state-of-the-art Pt/C catalyst. We suggest that high ECSA and ORR performances of dendrite-embedded Pt-Ni multiframes/C can be attributed to the porous nanostructure and numerous active sites exposed on surface grain boundaries and high-indexed facets.
Collapse
Affiliation(s)
- Hyukbu Kwon
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Korea
| | - Jongsik Park
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Aram Oh
- Department of Chemistry , Korea University , Seoul 02841 , Korea
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Korea
| | - Kwangyeol Lee
- Department of Chemistry , Korea University , Seoul 02841 , Korea
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Korea
| |
Collapse
|
26
|
Park H, Kim KM, Kim H, Kim DK, Won YS, Kim SK. Electrodeposition-fabricated PtCu-alloy cathode catalysts for high-temperature proton exchange membrane fuel cells. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0059-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Zhen Z, Jiang Z, Tian X, Zhou L, Deng B, Chen B, Jiang ZJ. Core@shell structured Co–CoO@NC nanoparticles supported on nitrogen doped carbon with high catalytic activity for oxygen reduction reaction. RSC Adv 2018; 8:14462-14472. [PMID: 35540762 PMCID: PMC9079892 DOI: 10.1039/c8ra01680a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
A composite with a hierarchical structure consisting of nitrogen doped carbon nanosheets with the deposition of nitrogen doped carbon coated Co–CoO nanoparticles (Co–CoO@NC/NC) has been synthesized by a simple procedure involving the drying of the reaction mixture containing Co(NO3)2, glucose, and urea and its subsequent calcination. The drying step is found to be necessary to obtain a sample with small and uniformly sized Co–CoO nanoparticles. The calcination temperature has a great effect on the catalytic activity of the final product. Specifically, the sample prepared at the calcination temperature of 800 °C shows better catalytic activity of the oxygen reduction reaction (ORR). Urea in the reaction mixture is crucial to obtain the sample with the uniformly sized Co–CoO nanoparticles and also plays an important role in improving the catalytic activity of the Co–CoO@NC/NC. Additionally, there exists a strong electronic interaction between the Co–CoO nanoparticles and the NC. Most interestingly, the Co–CoO@NC/NC is highly efficient for the ORR and can deliver an ORR onset potential of 0.961 V vs. RHE and a half-wave potential of 0.868 V vs. RHE. Both the onset and half-wave potentials are higher than those of most catalysts reported previously and even close to those of the commercial Pt/C (the ORR onset and half-wave potential of the Pt/C are 0.962 and 0.861 V vs. RHE, respectively). This, together with its high stability, strongly suggests that the Co–CoO@NC/NC could be used as an efficient catalyst for the ORR. A simple method has been developed for the synthesis of Co–CoO@NC/NC, which exhibits high and stable performance for the ORR.![]()
Collapse
Affiliation(s)
- Zihao Zhen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
| | - Zhongqing Jiang
- Department of Physics
- Key Laboratory of ATMMT Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Xiaoning Tian
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- P. R. China
| | - Lingshan Zhou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
| | - Binglu Deng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
| | - Bohong Chen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- College of Environment and Energy
- South China University of Technology
- Guangzhou 510006
| |
Collapse
|
28
|
Park J, Kanti Kabiraz M, Kwon H, Park S, Baik H, Choi SI, Lee K. Radially Phase Segregated PtCu@PtCuNi Dendrite@Frame Nanocatalyst for the Oxygen Reduction Reaction. ACS NANO 2017; 11:10844-10851. [PMID: 29024581 DOI: 10.1021/acsnano.7b04097] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pt-based alloy nanoframes have shown great potential as electrocatalysts toward the oxygen reduction reaction (ORR) in fuel cells. However, the intrinsically infirm nanoframes could be severely deformed during extended electro-cyclings, which eventually leads to the loss of the initial catalytic activity. Therefore, the structurally robust nanoframe is a worthy synthetic target. Furthermore, ternary alloy phase electrocatalysts offer more opportunities in optimizing the stability and activity than binary alloy ones. Herein, we report a robust PtCuNi ternary nanoframe, structurally fortified with an inner-lying PtCu dendrite, which shows a highly active and stable catalytic performance toward ORR. Remarkably, the PtCu@PtCuNi catalyst exhibited 11 and 16 times higher mass and specific activities than those of commercial Pt/C.
Collapse
Affiliation(s)
- Jongsik Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , Daegu 41566, Korea
| | - Hyukbu Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Suhyun Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University , Daegu 41566, Korea
| | - Kwangyeol Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| |
Collapse
|
29
|
Wang Q, Zhao Z, Jia Y, Wang M, Qi W, Pang Y, Yi J, Zhang Y, Li Z, Zhang Z. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36817-36827. [PMID: 28975789 DOI: 10.1021/acsami.7b11268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although tremendous efforts have been devoted to the exploration of cost-effective, active, and stable electrochemical catalysts, only few significant breakthroughs have been achieved up to now. Therefore, exploring new catalysts and improving catalyst activity and stability are still major tasks at present. Controllable synthesis of Pt-based alloy nanocrystals with a uniform high-index surface and unique architecture has been regarded as an effective strategy to optimize their catalytic efficiency toward electrochemical reactions. Accordingly, here we present a one-pot facile solvothermal process to synthesize novel unique Cu@CuPt core-shell concave octahedron nanocrystals that exhibit both outstanding activity and long durability. By regulating temperatures during the synthesis process, we were able to control the reduction rate of Cu and Pt ions, which could subsequently lead to the sequential stacking of Cu and Pt atoms. Owing to the concave structure, the as-prepared core-shell nanoparticles hold a high-index surface of {312} and {413}. Such surfaces can provide a high density of atomic steps and terraces, which is suggested to be favorable for electrochemical catalysts. Specifically, the Cu@CuPt core-shell concave octahedron presents 8.6/13.1 times enhanced specific/mass activities toward the methanol oxidation reaction in comparison to those of a commercial Pt/C catalyst, respectively. Meanwhile, the as-prepared catalyst exhibits superior durability and antiaggregation properties under harsh electrochemical conditions. The facile method used here proposes a novel idea to the fabrication of nanocrystals with desired compositional distribution, and the as-prepared product offers exciting opportunities to be applied in direct methanol fuel cells.
Collapse
Affiliation(s)
| | - Zhiliang Zhao
- Faculty of Materials and Energy, Institute for Clean Energy & Advanced Materials, Southwest University , Chongqing 400715, P. R. China
| | - Yanlin Jia
- School of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dai C, Yang Y, Zhao Z, Fisher A, Liu Z, Cheng D. From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. NANOSCALE 2017; 9:8945-8951. [PMID: 28654116 DOI: 10.1039/c7nr03123h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell segregated bimetallic nanoparticles (NPs) exhibit increased enhanced catalytic performance compared to that of mixed bimetallic NPs. Here, we report a simple, yet efficient, one-pot synthetic strategy to synthesize uniform three-layer core/shell PtCu NPs by adding benzyl ether (BE) in the synthesis process of mixed PtCu NPs. In comparison with commercial Pt/C and also mixed PtCu NPs, the three-layer core/shell PtCu NPs exhibit superior activity in catalyzing the oxygen reduction reaction (ORR), formic acid oxidation reaction (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), mainly due to the ligand (BE)-induced surface segregation of Pt on the surface of the NPs.
Collapse
Affiliation(s)
- Changqing Dai
- Beijing Key Laboratory of Energy Environmental Catalysis, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
31
|
Park J, Sa YJ, Baik H, Kwon T, Joo SH, Lee K. Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction. ACS NANO 2017; 11:5500-5509. [PMID: 28599106 DOI: 10.1021/acsnano.7b00233] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoframe electrocatalysts have attracted great interest due to their inherently high active surface area per a given mass. Although recent progress has enabled the preparation of single nanoframe structures with a variety of morphologies, more complex nanoframe structures such as a double-layered nanoframe have not yet been realized. Herein, we report a rational synthetic strategy for a structurally robust Ir-based multimetallic double-layered nanoframe (DNF) structure, nanoframe@nanoframe. By leveraging the differing kinetics of dual Ir precursors and dual transition metal (Ni and Cu) precursors, a core-shell-type alloy@alloy structure could be generated in a simple one-step synthesis, which was subsequently transformed into a multimetallic IrNiCu DNF with a rhombic dodecahedral morphology via selective etching. The use of single Ir precursor yielded single nanoframe structures, highlighting the importance of employing dual Ir precursors. In addition, the structure of Ir-based nanocrystals could be further controlled to DNF with octahedral morphology and CuNi@Ir core-shell structures via a simple tuning of experimental factors. The IrNiCu DNF exhibited high electrocatalytic activity for oxygen evolution reaction (OER) in acidic media, which is better than Ir/C catalyst. Furthermore, IrNiCu DNF demonstrated excellent durability for OER, which could be attributed to the frame structure that prevents the growth and agglomeration of particles as well as in situ formation of robust rutile IrO2 phase during prolonged operation.
Collapse
Affiliation(s)
- Jongsik Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | | | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841, Korea
| | - Taehyun Kwon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| | | | - Kwangyeol Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Seoul 02841, Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 02841, Korea
| |
Collapse
|
32
|
Liu T, Wang K, Yuan Q, Shen Z, Wang Y, Zhang Q, Wang X. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. NANOSCALE 2017; 9:2963-2968. [PMID: 28210732 DOI: 10.1039/c7nr00193b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of effective electrocatalysts with enhanced activity and stability for both the anode and the cathode reaction in fuel cells still remains a challenge. Here, we report a one-pot route to prepare monodispersed, uniform sub-5.0 nm PtCu alloy polyhedra with a narrow size distribution. These PtCu alloy polyhedra exhibit enhanced electrocatalytic activity for both cathode and anode reactions as compared to the commercial Pt/C catalyst under alkaline conditions. The specific activity and mass activity on Pt68Cu32 nanoalloys are 15 and 2.8 times that on Pt/C catalyst toward oxygen reduction reaction (ORR), respectively. And the peak current density and mass activity on Pt68Cu32 nanoalloys are 11.8 and 2.12 times that on Pt/C catalyst toward ethanol oxidation reaction (EOR), respectively. Furthermore, the as-synthesized Pt68Cu32 nanoalloys have much higher stability than commercial Pt/C black for both ORR and EOR. These experimental results show an effective approach to the development of monodispersed, sub-5.0 nm PtCu nanoalloys as bifunctional electrocatalysts for both the cathode and the anode reaction in fuel cells.
Collapse
Affiliation(s)
- Taiyang Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou province 550025, P. R. China.
| | - Kai Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Qiang Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou province 550025, P. R. China.
| | - Zebin Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Xun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
33
|
Chen L, Li H, Zhan W, Cao Z, Chen J, Jiang Q, Jiang Y, Xie Z, Kuang Q, Zheng L. Controlled Encapsulation of Flower-like Rh-Ni Alloys with MOFs via Tunable Template Dealloying for Enhanced Selective Hydrogenation of Alkyne. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31059-31066. [PMID: 27783897 DOI: 10.1021/acsami.6b11567] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For new composite materials with functional nanoparticles (NPs) embedded in metal organic frameworks (MOFs), rational design and precise control over their architectures are imperative for achieving enhanced performance and novel functions. Especially in catalysis, the activity and selectivity of such composite materials are strongly determined by the encapsulation state and thickness of the MOF shell, which greatly influences the diffusion and adsorption of substance molecules onto the NP surface. In this study, MOF-74(Ni)-encapsulated Rh-Ni hierarchical heterostructures (Rh-Ni@MOF-74(Ni)) were successfully constructed using magnetic Rh-Ni-alloyed nanoflowers (NFs) as a self-sacrificial template. Strikingly, the encapsulation state and thickness of the formed MOF shell were well-tuned via template dealloying by changing the Ni content in the Rh-Ni NFs template. More interestingly, such unique Rh-Ni composites encapsulated with MOFs as catalysts could be magnetically recyclable and exhibited enhanced catalytic performance for the selective hydrogenation of alkynes to cis products, owing to the confinement effect of the MOF shell, as compared to their pristine counterparts.
Collapse
Affiliation(s)
- Luning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Wenwen Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Zhenming Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jiayu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qiaorong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yaqi Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Lansun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
34
|
Zhang Z, Luo Z, Chen B, Wei C, Zhao J, Chen J, Zhang X, Lai Z, Fan Z, Tan C, Zhao M, Lu Q, Li B, Zong Y, Yan C, Wang G, Xu ZJ, Zhang H. One-Pot Synthesis of Highly Anisotropic Five-Fold-Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8712-8717. [PMID: 27511958 DOI: 10.1002/adma.201603075] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Five-fold-twinned PtCu nanoframes (NFs) with nanothorns protruding from their edges are synthesized by a facile one-pot method. Compared to commercial Pt/C catalyst, the obtained highly anisotropic five-fold-twinned PtCu NFs show enhanced electrocatalytic performance toward the oxygen reduction reaction and methanol oxidation reaction under alkaline conditions.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhimin Luo
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chao Wei
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Zhao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meiting Zhao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing Li
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yun Zong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Chengcheng Yan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhichuan J Xu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
35
|
Wang X, Ruditskiy A, Xia Y. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww062] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Nanoframes are unique for their 3D, highly open architecture. When made of noble metals, they are attractive for use as heterogeneous catalysts because of their large specific surface areas, high densities of catalytically active sites and low vulnerability toward sintering. They promise to enhance the catalytic activity and durability while reducing the material loading and cost. For nanoframes composed of Au and/or Ag, they also exhibit highly tunable plasmonic properties similar to those of nanorods. This article presents a brief account of recent progress in the design, synthesis and utilization of noble-metal nanoframes. We start with a discussion of the synthetic strategies, including those involving site-selected deposition and etching, as well as dealloying of both hollow and solid nanocrystals. We then highlight some of the applications enabled by noble-metal nanoframes. Finally, we discuss the challenges and trends with regard to future development.
Collapse
Affiliation(s)
- Xue Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aleksey Ruditskiy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
36
|
Oh A, Sa YJ, Hwang H, Baik H, Kim J, Kim B, Joo SH, Lee K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. NANOSCALE 2016; 8:16379-16386. [PMID: 27714051 DOI: 10.1039/c6nr04572c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rational design of highly efficient electrocatalysts for the hydrogen evolution reaction (HER) is of prime importance for establishing renewable and sustainable energy systems. The alkaline HER is particularly challenging as it involves a two-step reaction of water dissociation and hydrogen recombination, for which platinum-based binary catalysts have shown promising activity. In this work, we synthesized high performance platinum-nickel-cobalt alloy nanocatalysts for the alkaline HER through a simple synthetic route. This ternary nanostructure with a Cartesian-coordinate-like hexapod shape could be prepared by a one-step formation of core-dual shell Pt@Ni@Co nanostructures followed by a selective removal of the Ni@Co shell. The cobalt precursor brings about a significant impact on the control of size and shape of the nanostructure. The PtNiCo nanohexapods showed a superior alkaline HER activity to Pt/C and binary PtNi hexapods, with 10 times greater specific activity than Pt/C. In addition, the PtNiCo nanohexapods demonstrated excellent activity and durability for the oxygen reduction reaction in acidic media.
Collapse
Affiliation(s)
- Aram Oh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea and Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Young Jin Sa
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Hyeyoun Hwang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea and Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Jun Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea and Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Byeongyoon Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea and Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Kwangyeol Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Korea and Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Li GG, Villarreal E, Zhang Q, Zheng T, Zhu JJ, Wang H. Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23920-23931. [PMID: 27557567 DOI: 10.1021/acsami.6b07309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atomic-level understanding of the structural transformations of multimetallic nanoparticles triggered by external stimuli is of vital importance to the enhancement of our capabilities to fine-tailor the key structural parameters and thereby to precisely tune the properties of the nanoparticles. Here, we show that, upon thermal annealing in a reducing atmosphere, Au@Cu2O core-shell nanoparticles transform into Au-Cu alloy nanoparticles with tunable compositional stoichiometries that are predetermined by the relative core and shell dimensions of their parental core-shell nanoparticle precursors. The Au-Cu alloy nanoparticles exhibit distinct dealloying behaviors that are dependent upon their Cu/Au stoichiometric ratios. For Au-Cu alloy nanoparticles with Cu atomic fractions above the parting limit, nanoporosity-evolving percolation dealloying occurs upon exposure of the alloy nanoparticles to appropriate chemical etchants, resulting in the formation of particulate spongy nanoframes with solid/void bicontinuous morphology composed of hierarchically interconnected nanoligaments. The nanoporosity evolution during percolation dealloying is synergistically guided by two intertwining structural rearrangement processes, ligament domain coarsening driven by thermodynamics and framework expansion driven by Kirkendall effects, both of which can be maneuvered by controlling the Cu leaching rates during the percolation dealloying. The dealloyed nanoframes possess large open surface areas accessible by the reactant molecules and high abundance of catalytically active undercoordinated atoms on the ligament surfaces, two unique structural features highly desirable for high-performance electrocatalysis. Using the room temperature electro-oxidation of methanol as a model reaction, we further demonstrate that, through controlled percolation dealloying of Au-Cu alloy nanoparticles, both the electrochemically active surface areas and the specific activity of the dealloyed metallic nanoframes can be systematically tuned to achieve the optimal electrocatalytic activities.
Collapse
Affiliation(s)
- Guangfang Grace Li
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Esteban Villarreal
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Qingfeng Zhang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Tingting Zheng
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
38
|
Jiang B, Li C, Tang J, Takei T, Kim JH, Ide Y, Henzie J, Tominaka S, Yamauchi Y. Tunable-Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Jiang
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Cuiling Li
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jing Tang
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Toshiaki Takei
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jung Ho Kim
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Yusuke Ide
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Joel Henzie
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Satoshi Tominaka
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
39
|
Jiang B, Li C, Tang J, Takei T, Kim JH, Ide Y, Henzie J, Tominaka S, Yamauchi Y. Tunable-Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angew Chem Int Ed Engl 2016; 55:10037-41. [DOI: 10.1002/anie.201603967] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Jiang
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Cuiling Li
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jing Tang
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Toshiaki Takei
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jung Ho Kim
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| | - Yusuke Ide
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Joel Henzie
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Satoshi Tominaka
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Mesoscale Materials Chemistry Group; International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong NSW 2500 Australia
| |
Collapse
|
40
|
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem Rev 2016; 116:10414-72. [DOI: 10.1021/acs.chemrev.6b00211] [Citation(s) in RCA: 1109] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Gilroy
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | | | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Ding J, Bu L, Guo S, Zhao Z, Zhu E, Huang Y, Huang X. Morphology and Phase Controlled Construction of Pt-Ni Nanostructures for Efficient Electrocatalysis. NANO LETTERS 2016; 16:2762-2767. [PMID: 26950511 DOI: 10.1021/acs.nanolett.6b00471] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.
Collapse
Affiliation(s)
- Jiabao Ding
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Jiangsu 215123, China
| | - Lingzheng Bu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Jiangsu 215123, China
| | - Shaojun Guo
- Materials Science & Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Enbo Zhu
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Jiangsu 215123, China
| |
Collapse
|
42
|
Park J, Kim J, Yang Y, Yoon D, Baik H, Haam S, Yang H, Lee K. RhCu 3D Nanoframe as a Highly Active Electrocatalyst for Oxygen Evolution Reaction under Alkaline Condition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500252. [PMID: 27774397 PMCID: PMC5054855 DOI: 10.1002/advs.201500252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/25/2015] [Indexed: 05/24/2023]
Abstract
One pot synthesis of RhCu alloy truncated octahedral nanoframes, Cu@Rh core-shell nanoparticles, and a bundle of five RhCu nanowires is demonstrated. The RhCu alloy 3D nanoframe, in particular, exhibits excellent catalytic activity toward the oxygen evolution reaction under alkaline conditions.
Collapse
Affiliation(s)
- Jongsik Park
- Center for Molecular Spectroscopy and Dynamics Institute for Basic Science (IBS) Department of Chemistry Korea University Seoul 136-701 South Korea
| | - Jongchan Kim
- Department of Chemistry and Chemistry, Institute of Functional Materials Pusan University Busan 609-735 South Korea
| | - Yoojin Yang
- Center for Molecular Spectroscopy and Dynamics Institute for Basic Science (IBS) Department of Chemistry Korea University Seoul 136-701 South Korea
| | - Donghwan Yoon
- Center for Molecular Spectroscopy and Dynamics Institute for Basic Science (IBS) Department of Chemistry Korea University Seoul 136-701 South Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) Seoul 136-713 South Korea
| | - Seungjoo Haam
- Department of Chemical & Biomolecular Engineering Younsei University Seoul 120-749 South Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry, Institute of Functional Materials Pusan University Busan 609-735 South Korea
| | - Kwangyeol Lee
- Center for Molecular Spectroscopy and Dynamics Institute for Basic Science (IBS) Department of Chemistry Korea University Seoul 136-701 South Korea
| |
Collapse
|
43
|
Sun L, Wang H, Eid K, Wang L. Shape-controlled synthesis of porous AuPt nanoparticles and their superior electrocatalytic activity for oxygen reduction reaction. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:58-62. [PMID: 27877858 PMCID: PMC5101958 DOI: 10.1080/14686996.2016.1140307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/24/2023]
Abstract
Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a simple stirring treatment of an aqueous reactive mixture including K2PtCl4, HAuCl4, Pluronic F127 and ascorbic acid at a pH value of 1 without organic solvent or high temperature. Due to their porous structure and bimetallic composition, as-made PAuPt NPs exhibit excellent electrocatalytic activity for oxygen reduction reaction.
Collapse
Affiliation(s)
- Litai Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, PR China
- University of Chinese Academy of Sciences, Beijing100039, PR China
| | - Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, PR China
| | - Kamel Eid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, PR China
- University of Chinese Academy of Sciences, Beijing100039, PR China
| | - Liang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin130022, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, PR China
| |
Collapse
|
44
|
Yu X, Li L, Su Y, Jia W, Dong L, Wang D, Zhao J, Li Y. Platinum-Copper Nanoframes: One-Pot Synthesis and Enhanced Electrocatalytic Activity. Chemistry 2016; 22:4960-5. [DOI: 10.1002/chem.201600079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofei Yu
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Lanlan Li
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Yanqiu Su
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Wei Jia
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering; Tsinghua University; Beijing 100084 P. R. China
| | - Lili Dong
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Dingsheng Wang
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering; Tsinghua University; Beijing 100084 P. R. China
| | - Jianling Zhao
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300130 P. R. China
| | - Yadong Li
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
45
|
Wang Z, Suo Q, Zhang C, Chai Z, Wang X. Solvent-controlled platinum nanocrystals with a high growth rate along 〈100〉 to 〈111〉 and enhanced electro-activity in the methanol oxidation reaction. RSC Adv 2016. [DOI: 10.1039/c6ra18171f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Platinum nanocrystals with high growth rate along 〈100〉 to 〈111〉 are obtained under a high reduction rate and exhibit enhanced electro-activity in MOR.
Collapse
Affiliation(s)
- Zhanzhong Wang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Quanyu Suo
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Caixia Zhang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Zhanli Chai
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Xiaojing Wang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| |
Collapse
|
46
|
Xiong Y, Ma Y, Lin Z, Xu Q, Yan Y, Zhang H, Wu J, Yang D. Facile synthesis of PtCu3alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. CrystEngComm 2016. [DOI: 10.1039/c6ce01695b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Pei J, Mao J, Liang X, Chen C, Peng Q, Wang D, Li Y. Ir–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chem Commun (Camb) 2016; 52:3793-6. [DOI: 10.1039/c6cc00552g] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We achieved successful synthesis of alloy nanoframes, including bi-metallic and tri-metallic nanoframes, which show superior catalytic properties toward OER.
Collapse
Affiliation(s)
- Jiajing Pei
- School of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Junjie Mao
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xin Liang
- School of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Chen Chen
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Qing Peng
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Dingsheng Wang
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yadong Li
- Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
48
|
Wan XX, Zhang DF, Guo L. Concave Pt–Cu nanocuboctahedrons with high-index facets and improved electrocatalytic performance. CrystEngComm 2016. [DOI: 10.1039/c6ce00081a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Mao J, Chen Z, Chen Y, Wang D, Li Y. Controllable synthesis of Pt–Cu nanocrystals and their tunable catalytic properties. CrystEngComm 2016. [DOI: 10.1039/c6ce00588h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zhou LN, Zhang XT, Wang ZH, Guo S, Li YJ. Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem Commun (Camb) 2016; 52:12737-12740. [DOI: 10.1039/c6cc07338g] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cubic superstructure of PtPd alloy nanocubes with superior electrocatalytic activity towards methanol oxidation was produced in a one-pot synthesis by spontaneously manipulating the reaction kinetics.
Collapse
Affiliation(s)
- Lin-Nan Zhou
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Xiao-Ting Zhang
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Ze-Hong Wang
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Shaojun Guo
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing
- P. R. China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|