1
|
Li M, Song L, Yang L, Zhao Y, Yang M, Tao H. Development of Glycosylation Protocols Using Glycosyl N-Phenylethynyl Pyrrole-2-carboxylates as Donors. Org Lett 2024. [PMID: 39530637 DOI: 10.1021/acs.orglett.4c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We herein introduce glycosyl N-phenylethynyl pyrrole-2-carboxylates (PEPCs) as novel and highly efficient glycosyl donors. The unique inclusion of the pyrrole group, serving as both an electron-donating group and an ortho-tethering scaffold, imparts exceptional shelf stability while retaining reactivity for glycosylation reactions. PEPC donors exhibit broad utility for both O- and N-glycosylation across a variety of substrates. Additionally, their versatility and efficiency were further demonstrated in a one-pot saccharide synthesis, showcasing their potential for diverse synthetic applications.
Collapse
Affiliation(s)
- Mengyu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Song
- Group of Lead Compound, Department of Pharmacy, University of South China, Hengyang, Hunan 421001, China
| | - Liya Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian Zhao
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315100, China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Liu H, Liang ZF, Liu HJ, Liao JX, Zhong LJ, Tu YH, Zhang QJ, Xiong B, Sun JS. ortho-Methoxycarbonylethynylphenyl Thioglycosides (MCEPTs): Versatile Glycosyl Donors Enabled by Electron-Withdrawing Substituents and Catalyzed by Gold(I) or Cu(II) Complexes. J Am Chem Soc 2023; 145:3682-3695. [PMID: 36727591 DOI: 10.1021/jacs.2c13018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With easily accessible and operator-friendly reagents, shelf-stable ortho-methoxycarbonylethynylphenyl thioglycosides were efficiently prepared. Based on these MCEPT glycoside donors, a novel glycosylation protocol featuring mild and catalytic promotion conditions with Au(I) or Cu(II) complexes, expanded substrate scope encompassing challenging donors and acceptors and clinically used pharmaceuticals, and versatility in various strategies for highly efficient synthesis of glycosides has been established. The practicality of the MCEPT glycosylation protocol was fully exhibited by highly efficient and scalable synthesis of surface polysaccharide subunits of Acinetobacter baumannii via latent-active, reagent-controlled divergent orthogonal one-pot and orthogonal one-pot strategies. The underlying reaction mechanism was investigated systematically through control reactions, leading to the isolation and characterization of the vital catalyst species in MCEPT glycosylation, the benzothiophen-3-yl-gold(I) complex. Based on the results obtained both from control reactions and from studies leading to the glycosylation protocol establishment, an operative mechanism was proposed and the effect of the vital catalyst species reactivity on the results of metal-catalyzed alkyne-containing donor-involved glycosylation was disclosed. Moreover, the mechanism for C-glycosylation side product formation from ortho-(substituted)ethynylphenyl thioglycoside donors with electron-donating substituents was also illuminated.
Collapse
Affiliation(s)
- Hui Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhi-Fen Liang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Han-Jian Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Li-Jun Zhong
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuan-Hong Tu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qing-Ju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Bin Xiong
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.,School of Life Science and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
3
|
Lan X, Cai C, Wang J, Zhang Q, Feng Y, Chai Y. Tf2O/TfOH Catalytic Glycosylation Using o-(p-Methoxyphenylethynyl)benzyl Glycosides as Donors and Its Application in Synthesis of Oligosaccharides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
5
|
Cai C, Sun X, Feng Y, Zhang Q, Chai Y. Insights into the Activation of Alkyne-Installed Glycosyl Donors with Dual Acidic Metal Catalysts: Reaction Pathway, Influencing Factors, and Enlightenment for Glycosylation. Org Lett 2022; 24:6266-6271. [PMID: 35981218 DOI: 10.1021/acs.orglett.2c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of alkyne-installed glycosyl donors with dual acidic metal catalysts were studied. Lewis and/or π acidity-activated pathways were observed for alkynyl carbonate-, ester-, and ether-type donors, and π acidity-promoted reaction mode afforded higher efficiency and yields. The activation mode for a certain metal catalyst is determined by the nature of catalysts itself, protecting groups on sugar rings, type of sugars, and structure of aglycones. The discovery gives us valuable insights into the glycosylation of alkyne-containing donors.
Collapse
Affiliation(s)
- Chenglin Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xingchun Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yingle Feng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
6
|
Zhou SY, Liu HJ, Zhang QJ, Liao JX, Liu DY, Li MD, Sun JS. Investigations to mechanism and applications of the glycosylation protocol employing 8-methyltosylaminoethynyl-1-naphthyl (MTEAN) glycoside donors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2045021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Yu Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Hui-Juan Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Qing-Ju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - De-Yong Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Ming-Dong Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
7
|
Yangxing S, Yanzhi L, Yanlai C, Nengzhong W, Shaohua X, Mingguo L, Hui Y. Research Advances in Functional Group-Directed Stereoselective Glycosylation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Zhou SY, Hu XP, Liu HJ, Zhang QJ, Liao JX, Tu YH, Sun JS. 8-(Methyltosylaminoethynyl)-1-naphthyl (MTAEN) Glycosides: Potent Donors in Glycosides Synthesis. Org Lett 2021; 24:653-657. [PMID: 34967647 DOI: 10.1021/acs.orglett.1c04102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With 8-(methyltosylaminoethynyl)-1-naphthyl (MTAEN) glycoside as donors, a novel and efficient glycosylation protocol has been established. The MTAEN glycosylation protocol exhibits the merits of shelf-stable donors, mild catalytic promotion conditions, considerably extended substrate scope encompassing both free alcohols, silylated alcohols, nucleobases, primary amides, and C-type nucleophile acceptors, and applicability to various one-pot strategies for highly efficient synthesis of oligosaccharides, such as orthogonal one-pot, single-catalyst one-pot, and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Si-Yu Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xin-Ping Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Hui-Juan Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Qing-Ju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yuan-Hong Tu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
9
|
Das A, Jayaraman N. Carbon tetrachloride-free allylic halogenation-mediated glycosylations of allyl glycosides. Org Biomol Chem 2021; 19:9318-9325. [PMID: 34664608 DOI: 10.1039/d1ob01298c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The allylic bromination of allyl glycosides is conducted using NBS/AIBN reagents in (EtO)2CO and PhCF3 solutions, without using CCl4 as a solvent. The activated mixed halo-allyl glycosides led to glycosylations, mediated by a triflate, in a latent-active manner, with the allyl glycosides acting as donors and acceptors. Systematic glycosylation studies are performed with different triflate promoters, non-glycosyl acceptors and various allyl glycosyl donors. One-pot allylic halogenations and subsequent glycosylations are developed in PhCF3 solutions. This newer glycosylation method is utilized to obtain xylo-pyranoside di- and trisaccharides.
Collapse
Affiliation(s)
- Anupama Das
- Department of Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | | |
Collapse
|
10
|
Das A, Jayaraman N. Aglycon reactivity as a guiding principle in latent-active approach to chemical glycosylations. Carbohydr Res 2021; 508:108404. [PMID: 34352649 DOI: 10.1016/j.carres.2021.108404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Chemical glycosylations critically depend on the activation of a glycosyl donor and the reaction of this activated donor intermediate with an acceptor alcohol. Whereas many strategies are developed for the activation of an anomeric aglycon substituent, the latent-active method of glycosylation is based specifically on tuning the reactivity of the aglycon substituent of a glycosyl donor. Several novel methods have emerged to install reactive aglycon moiety in a glycosyl donor and fine-tuning the reactivity of the moiety. Remote functionalizations of the aglycon plays a key role in the reactivity tuning. Activation of a remote functionality enables an otherwise latent aglycon to an active moiety, suitable as a glycosyl donor. The latent-active approach provides an advantage to avoid the conversion of the aglycon to another donor prior to a glycosylation, in addition to advancing the contemporary glycosylations with alternate insights. The review analyzes the methodologies that consolidate the latent-active approach to chemical glycosylations.
Collapse
Affiliation(s)
- Anupama Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
11
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
Affiliation(s)
- Hayley B Steber
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | | | |
Collapse
|
12
|
Liu R, Hua Q, Lou Q, Wang J, Li X, Ma Z, Yang Y. NIS/TMSOTf-Promoted Glycosidation of Glycosyl ortho-Hexynylbenzoates for Versatile Synthesis of O-Glycosides and Nucleosides. J Org Chem 2021; 86:4763-4778. [PMID: 33689328 DOI: 10.1021/acs.joc.1c00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosidation plays a pivotal role in the synthesis of O-glycosides and nucleosides that mediate a diverse range of biological processes. However, efficient glycosidation approach for the synthesis of both O-glycosides and nucleosides remains challenging in terms of glycosidation yields, mild reaction conditions, readily available glycosyl donors, and cheap promoters. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf)-promoted glycosidation approach with glycosyl ortho-hexynylbenzoates as donors for the highly efficient synthesis of O-glycosides and nucleosides. The glycosidation approach highlights the merits of mild reaction conditions, cheap promoters, extremely wide substrate scope, and good to excellent yields. Notably, the glycosidation approach performs very well in the construction of a series of challenging O- and N-glycosidic linkages. The glycosidation approach is then applied to the efficient synthesis of oligosaccharides via the one-pot strategy and the stepwise strategy. On the basis of the isolation and characterization of the departure species derived from the leaving group, a plausible mechanism of NIS/TMSOTf-promoted glycosidation of glycosyl ortho-hexynylbenzoates is proposed.
Collapse
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Wang C, Liang H, Hang Z, Wang ZY, Xie Q, Xue W. Lewis acid/base pair as a catalytic system for α-stereoselective synthesis of 2-deoxyglycosides through the addition of alcohols to glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Hedberg C, Jessen KS, Hansson RF, Heuckendorff M, Jensen HH. Palladium-Catalyzed C–S Bond Formation as a Tool for Latent–Active Glycosylation. Org Lett 2020; 22:7068-7072. [DOI: 10.1021/acs.orglett.0c02090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christinne Hedberg
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kamilla S. Jessen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Rikke F. Hansson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Mads Heuckendorff
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Henrik H. Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Lou Q, Hua Q, Zhang L, Yang Y. Dimethylformamide-Modulated Kdo Glycosylation for Stereoselective Synthesis of α-Kdo Glycosides. Org Lett 2020; 22:981-985. [PMID: 31917587 DOI: 10.1021/acs.orglett.9b04509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and direct DMF-modulated α-selective Kdo glycosylation approach for the stereoselective synthesis of the α-linked Kdo glycosides is developed. Glycosylation of the readily available peracetylated Kdo ortho-hexynylbenzoate with common acceptor alcohols using SPhosAuNTf2 as a promoter and DMF as a modulating molecule afforded a range of Kdo glycosides with good α-selectivities. Furthermore, the present method is effectively applied in the latent-active synthesis of the α-linked di-Kdo glycoside bearing a linker at the reducing end. Finally, the first observation of a Kdo imidinium ion in the low-temperature NMR provides evidence for the plausible mechanism of the DMF-modulated α-selective Kdo glycosylation.
Collapse
Affiliation(s)
- Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Liangliang Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
17
|
Habert L, Diachenko I, Gillaizeau I. Rapid synthesis of 3-amino-1 H-isochromene from ortho-ynamidyl het(aryl) aldehyde derivatives. RSC Adv 2020; 10:9934-9939. [PMID: 35498568 PMCID: PMC9050208 DOI: 10.1039/d0ra00768d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
A simple and original efficient synthesis of 3-amino-1H-isochromene bearing a bromine atom at the C-1 position via a 6-endo-cyclization approach from in situ generated ortho-ynamidyl het(aryl) aldehyde derivatives is achieved under mild reaction conditions and with good yields. Original ortho-ynamidyl benzaldehyde compounds were also successfully obtained. Fast synthesis of 3-amino-1H-isochromene from in situ generated ortho-ynamidyl het(aryl) aldehyde derivatives.![]()
Collapse
Affiliation(s)
- Loïc Habert
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| | - Iryna Diachenko
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| |
Collapse
|
18
|
Okitsu T, Namura A, Kondo S, Tada S, Yanagida M, Wada A. Ynamides enabled 6-, 7-, and 8-endo-dig iodocyclization of ethoxyethyl ethers: rapid construction of medium-sized oxacycles at room temperature. Org Chem Front 2020. [DOI: 10.1039/d0qo00153h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodocyclization of ynamides enabled the construction of six, seven-, and eight-membered oxacycles in very short reaction times at room temperature.
Collapse
Affiliation(s)
| | | | - Shinji Kondo
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | - Shoya Tada
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | | | - Akimori Wada
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| |
Collapse
|
19
|
Tang Y, Yu B. Coinage Metal (Bisfluorosulfonyl)imide Complexes: Preparation, Characterization, and Catalytic Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| |
Collapse
|
20
|
Li X, Li C, Liu R, Wang J, Wang Z, Chen Y, Yang Y. Gold(I)-Catalyzed Glycosylation with Glycosyl Ynenoates as Donors. Org Lett 2019; 21:9693-9698. [DOI: 10.1021/acs.orglett.9b03851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenyu Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zixuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
21
|
Liu R, Li X, Li X, Wang J, Yang Y. Gold(I)-Catalyzed Intermolecular Rearrangement Reaction of Glycosyl Alkynoic β-Ketoesters for the Synthesis of 4-O-Glycosylated 2-Pyrones. J Org Chem 2019; 84:14141-14150. [DOI: 10.1021/acs.joc.9b01582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoqian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
Pal R, Das A, Jayaraman N. One-pot oligosaccharide synthesis: latent-active method of glycosylations and radical halogenation activation of allyl glycosides. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Chemical glycosylations occupy a central importance to synthesize tailor-made oligo- and polysaccharides of functional importance. Generation of the oxocarbenium ion or the glycosyl cation is the method of choice in order to form the glycosidic bond interconnecting a glycosyl moiety with a glycosyl/aglycosyl moiety. A number of elegant methods have been devised that allow the glycosyl cation formation in a fairly stream-lined manner to a large extent. The latent-active method provides a powerful approach in the protecting group controlled glycosylations. In this context, allyl glycosides have been developed to meet the requirement of latent-active reactivities under appropriate glycosylation conditions. Radical halogenation provides a newer route of activation of allyl glycosides to an activated allylic glycoside. Such an allylic halide activation subjects the glycoside reactive under acid catalysis, leading to the conversion to a glycosyl cation and subsequent glycosylation with a number of acceptors. The complete anomeric selectivity favoring the 1,2-trans-anomeric glycosides points to the possibility of a preferred conformation of the glycosyl cation. This article discusses about advancements in the selectivity of glycosylations, followed by delineating the allylic halogenation of allyl glycoside as a glycosylation method and demonstrates synthesis of a repertoire of di- and trisaccharides, including xylosides, with varied protecting groups.
Collapse
Affiliation(s)
- Rita Pal
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Anupama Das
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | | |
Collapse
|
23
|
Hu Z, Tang Y, Yu B. Glycosylation with 3,5-Dimethyl-4-(2′-phenylethynylphenyl)phenyl (EPP) Glycosides via a Dearomative Activation Mechanism. J Am Chem Soc 2019; 141:4806-4810. [DOI: 10.1021/jacs.9b00210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhifei Hu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
24
|
Du S, Ragains JR. MPTGs: Thioglycoside Donors for Acid-Catalyzed O-Glycosylation and Latent-Active Synthetic Strategies. Org Lett 2019; 21:980-983. [DOI: 10.1021/acs.orglett.8b03958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaofu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Wang J, Lou Q, Rong J, Yang Y. Gold(i)-promoted α-selective sialylation of glycosylortho-hexynylbenzoates for the latent-active synthesis of oligosialic acids. Org Biomol Chem 2019; 17:6580-6584. [DOI: 10.1039/c9ob00954j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A gold(i)-promoted α-selective glycosylation approach with sialylortho-hexynylbenzoates as donors is developed for the latent-active synthesis of α-(2 → 9)-linked oligosialic acids.
Collapse
Affiliation(s)
- Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jingjing Rong
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
26
|
Xiao Y, Lu Z, Zhao X, Wu P, Chen W, Wang R, Zeng J, Wan Q. Practical synthesis of active O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides via a catalytic and metal free oxidation of latent O-2-(2-propylthiol)benzyl (OPTB) glycosides. Carbohydr Res 2018; 469:10-13. [PMID: 30172109 DOI: 10.1016/j.carres.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
A catalytic and metal free sulfoxidation of O-2-(2-propylthiol)benzyl (OPTB) glycosides to O-2-(2-propylsulfinyl)benzyl (OPSB) glycosides has been developed by introducing NOBF4 as catalyst, oxygen as terminal oxidant and TBAB as additive. Wide variety of OPTB glycosides were efficiently oxidized without observation of over oxidation. The allowance of large scale synthesis, easy operation and purification highlighted its practical application in construction of complex oligosaccharides and glycoconjugates employing interrupted Pummerer reaction mediated glycosylation strategy.
Collapse
Affiliation(s)
- Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Pinru Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
27
|
Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Silver-catalyzed stereoselective formation of glycosides using glycosyl ynenoates as donors. Chem Commun (Camb) 2018; 54:8626-8629. [PMID: 30019713 DOI: 10.1039/c8cc02494d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A silver-catalyzed glycosylation reaction employing readily accessible and stable glycosyl ynenoates is developed. This reaction is mostly high yielding and exhibits varying levels of stereoinversion at the anomeric position. Compared to established and versatile Yu's gold catalysis, this chemistry features the use of substantially cheaper AgNTf2.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zaigang Luo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
28
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
29
|
Abstract
Naturally occurring glycans and glycoconjugates have extremely diverse structures and biological functions. Syntheses of these molecules and their artificial mimics, which have attracted the interest of those developing new therapeutic agents, rely on glycosylation methodologies to construct the various glycosidic linkages. In this regard, a wide array of glycosylation methods have been developed, and they mainly involve the substitution of a leaving group on the anomeric carbon of a glycosyl donor with an acceptor (a nucleophile) under the action of a particular promoter (usually a stoichiometric electrophile). However, glycosylations involving inherently unstable or unreactive donors/acceptors are still problematic. In those systems, reactions involving nucleophilic, electrophilic, or acidic species present on the leaving group and the promoter could become competitive and detrimental to the glycosylation. To address this problem, we applied the recently developed chemistry of alkynophilic gold(I) catalysts to the development of new glycosylation reactions that would avoid the use of the conventional leaving groups and promoters. Gratifyingly, glycosyl o-alkynylbenzoates (namely, glycosyl o-hexynyl- and o-cyclopropylethynylbenzoates) turned out to be privileged donors under gold(I) catalysis with Ph3PAuNTf2 and Ph3PAuOTf. The merits of this new glycosylation protocol include the following: (1) the donors are easily prepared and are generally shelf-stable; (2) the promotion is catalytic; (3) the substrate scope is extremely wide; (4) relatively few side reactions are observed; (5) the glycosylation conditions are orthogonal to those of conventional methods; and (6) the method is operationally simple. Indeed, this method has been successfully applied in the synthesis of a wide variety of complex glycans and glycoconjugates, including complex glycosides of epoxides, nucleobases, flavonoids, lignans, steroids, triterpenes, and peptides. The direct glycosylation of some sensitive aglycones, such as dammarane C20-ol and sugar oximes, and the glycosylation-initiated polymerization of tetrahydrofuran were achieved for the first time. The gold(I) catalytic cycle of the present glycosylation protocol has been fully elucidated. In particular, key intermediates, such as the 1-glycosyloxyisochromenylium-4-gold(I) and isochromen-4-ylgold(I) complexes, have been unambiguously characterized. Exploiting the former glycosyloxypyrylium intermediate, SN2-type glycosylations were realized in specific cases, such as β-mannosylation/rhamnosylation. The protodeauration of the latter vinylgold(I) intermediate has been reported to be critically important for the gold(I) catalytic cycle. Thus, the addition of a strong acid as a cocatalyst can dramatically reduce the required loading of the gold(I) catalyst (down to 0.001 equiv). C-Glycosylation with silyl nucleophiles can proceed catalytically when moisture, which is sequestered by molecular sieves, can serve as the H+ donor for the required protodeauration step. Indeed, the unique mechanism explains the merits and broad applicability of the present glycosylation method and provides a foundation for future developments in glycosylation methodologies that mainly involve improving the diastereoselectivity and catalytic efficiency of glycosylations.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Pal R, Das A, Jayaraman N. Radical halogenation-mediated latent–active glycosylations of allyl glycosides. Chem Commun (Camb) 2018; 54:588-590. [DOI: 10.1039/c7cc07332a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Radical halogenation-mediated glycosylation using allyl glycosides as donors and as acceptors emerges to be an efficient and hither-to unknown glycosylation method, adhering to the concept of the latent–active methodology.
Collapse
Affiliation(s)
- Rita Pal
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anupama Das
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|
31
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
32
|
Zeng J, Wang R, Yao W, Zhang S, Sun G, Liao Z, Meng L, Wan Q. Diversified synthesis and α-selective glycosylation of 3-amino-2,3,6-trideoxy sugars. Org Chem Front 2018. [DOI: 10.1039/c8qo00948a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quick access to various unnatural 3-amino-2,3,6-trideoxy sugars was achieved by sequential functionalization of a glycal intermediate. This strategy and the further glycosylation method allowed the efficient late-stage modification of bioactive natural products and drugs.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
- Institute of Brain Research
| |
Collapse
|
33
|
Chen W, Zeng J, Wang H, Xiao X, Meng L, Wan Q. Tracking the leaving group in the remote activation of O -2-[(propan-2-yl)sulfinyl]benzyl (OPSB) glycoside. Carbohydr Res 2017; 452:1-5. [DOI: 10.1016/j.carres.2017.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
|
34
|
Hu Y, Yu K, Shi LL, Liu L, Sui JJ, Liu DY, Xiong B, Sun JS. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J Am Chem Soc 2017; 139:12736-12744. [DOI: 10.1021/jacs.7b07020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Hu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Ke Yu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Li-Li Shi
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Lei Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jing-Jing Sui
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - De-Yong Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Bin Xiong
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| |
Collapse
|
35
|
Practical synthesis of latent disarmed S -2-(2-propylthio)benzyl glycosides for interrupted Pummerer reaction mediated glycosylation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
37
|
Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q. Remote Activation of Disarmed Thioglycosides in Latent-Active Glycosylation via Interrupted Pummerer Reaction. J Am Chem Soc 2016; 138:13402-13407. [DOI: 10.1021/jacs.6b08305] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiong Xiao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Yueqi Zhao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Penghua Shu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Xiang Zhao
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Yan Liu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Jiuchang Sun
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Qian Zhang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Jing Zeng
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Qian Wan
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
- Institute
of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| |
Collapse
|
38
|
Vibhute AM, Dhaka A, Athiyarath V, Sureshan KM. A versatile glycosylation strategy via Au(iii) catalyzed activation of thioglycoside donors. Chem Sci 2016; 7:4259-4263. [PMID: 30090287 PMCID: PMC6054025 DOI: 10.1039/c6sc00633g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Among various methods of chemical glycosylations, glycosylation by activation of thioglycoside donors using a thiophilic promoter is an important strategy. Many promoters have been developed for the activation of thioglycosides. However, incompatibility with substrates having alkenes and the requirement of a stoichiometric amount of promoters, co-promoters and extreme temperatures are some of the limitations. We have developed an efficient methodology for glycosylation via the activation of thioglycoside donors using a catalytic amount of AuCl3 and without any co-promoter. The reaction is very fast, high-yielding and very facile at room temperature. The versatility of this method is evident from the facile glycosylation with both armed and disarmed donors and sterically demanding substrates (acceptors/donors) at ambient conditions, from the stability of the common protecting groups, and from the compatibility of alkene-containing substrates during the reaction.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Arun Dhaka
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Vignesh Athiyarath
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| |
Collapse
|
39
|
Huang H, Tang L, Liu Q, Xi Y, He G, Zhu H. Formation of α-chalcogenyl acrylamides through unprecedented chalcogen-mediated metal-free oxyfunctionalization of ynamides with DMSO as an oxidant. Chem Commun (Camb) 2016; 52:5605-8. [DOI: 10.1039/c5cc10517j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel chalcogen-mediated metal-free oxyfunctionalization mode of ynamides for the synthesis of α-chalcogenyl acrylamides has been developed.
Collapse
Affiliation(s)
- Hai Huang
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Luning Tang
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Qi Liu
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Yang Xi
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Guangke He
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| | - Hongjun Zhu
- Department of Applied Chemistry
- College of Sciences
- Nanjing Tech University
- Nanjing 211816
- People's Republic of China
| |
Collapse
|
40
|
Shu P, Yao W, Xiao X, Sun J, Zhao X, Zhao Y, Xu Y, Tao J, Yao G, Zeng J, Wan Q. Glycosylation via remote activation of anomeric leaving groups: development of 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org Chem Front 2016. [DOI: 10.1039/c5qo00359h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New glycosyl donors with recyclable and regenerable leaving groups, which could be activated via remote mode, were designed for latent-active glycosylation.
Collapse
|
41
|
Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q. Interrupted Pummerer Reaction in Latent‐Active Glycosylation: Glycosyl Donors with a Recyclable and Regenerative Leaving Group. Angew Chem Int Ed Engl 2015; 54:14432-6. [DOI: 10.1002/anie.201507861] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Penghua Shu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Yueqi Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Yang Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Jinyi Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Zimin Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
- Institute of Brain Research, Huazhong University of Science and Technology (China)
| |
Collapse
|
42
|
Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q. Interrupted Pummerer Reaction in Latent-Active Glycosylation: Glycosyl Donors with a Recyclable and Regenerative Leaving Group. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|