1
|
Zheng G, Fu P, Li Z, Zhang Y, Huang X, Chen J. Degradation performance of methylene blue in metal nanoparticle modified 3D mesoporous wood microchannels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95425-95437. [PMID: 37550480 DOI: 10.1007/s11356-023-29137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
Wood has a rich three-dimensional pore structure and many bottom-up nanochannels. However, the structure of wood itself has limited ability to adsorb dyes, so the effective combination of the unique structure of wood and Pd NPs was studied to achieve efficient degradation of dyes. First, the three-dimensional structure of natural wood is optimized by combining the complex pore structure of wood with Pd NPs to improve the contact process between the dye and Pd NPs. Then, Pd (II) ion can be well reduced to Pd NPs by wood lignin. In addition, Pd NPs can be fixed by hydroxyl groups on cellulose in wood. The flow state inside Pd NPs/wood film and the contact area between catalyst and dye were discussed in detail by hydrodynamic simulation, which filled the gap. It provides reference for composite structure. When Pd NPs/wood membrane was used to treat methylene blue (MB), the degradation efficiency was up to 96.7%, which was 90% higher than that of natural wood. Its TOF value was 1.82 molMB molPd-1min-1, which was higher than that in the previous literature. Therefore, the novelty of this study is that the mechanism of catalytic degradation of MB by Pd nanoparticles/wood composites is reported for the first time. The internal flow mode and contact condition of the new material are understood, which has a good application prospect.
Collapse
Affiliation(s)
- Guanfeng Zheng
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Peng Fu
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Zhiyu Li
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yuchun Zhang
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinfeng Huang
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jieming Chen
- College of Agricultural Engineering and Food Science, Shandong Research Center of Engineering & Technology for Clean Energy, Shandong University of Technology, Zibo, 255000, Shandong, China
| |
Collapse
|
2
|
Xu E, Ma S, Wu Z, Wang W, Zhang X, Tian J, Li D, Zhou J, Liu D. Bifunctional Fe 3O 4 nanoparticles as magnet and inducer in bioextruded fabrication of starch-based composite with hierarchical pore architecture. Int J Biol Macromol 2021; 190:876-886. [PMID: 34534582 DOI: 10.1016/j.ijbiomac.2021.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Starch (St) was used as green and renewable matrix (> 80%, db) for the preparation of Zn-St-MOCP/nFe3O4 composite via bioextrusion. Bifunction of Fe3O4 NPs as magnet and pore-inducer was confirmed and could be more homogeneously embedded in the St-based framework with hierarchical porous structure via SEM-EDS mapping. For the nFe3O4-induced microstructure of Zn-St-MOCP/nFe3O4 composite, submicronic pores and nanopores were observed with Fe3O4 NPs onto the inner surface of micron channels. According to the XPS, XRD, FTIR, TGA analyses, it is probably due to the coordination between Fe3+/2+ and Zn2+/hydroxy groups and the recombination of St chains in crystalline/amorphous zones interfered by Fe3O4 NPs. Saturation magnetization value was measured with an excellent separation behavior. Seven kinetic equations were conducted for the fitting of dye adsorption data. Overall, the nFe3O4-assisted bioextrusion strategy is developed for the continuous fabrication of bio-based materials with rapid magnetic separation and hierarchical-pore architecture promising in practical adsorption.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shuohan Ma
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwei Zhou
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; School of Mechanical and Energy Engineering, NingboTech University, Ningbo 315100, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
3
|
Gul K, Khan H, Muhammad N, Ara B, Zia TUH. Removal of toxic malachite green dye from aqueous environment using reduced magnetic graphene oxide as an efficient and reusable adsorbent. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1839498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kashif Gul
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Niaz Muhammad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Behisht Ara
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tanveer Ul Haq Zia
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| |
Collapse
|
4
|
Pan L, Liu YT, Zhong M, Xie XM. Coordination-Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902779. [PMID: 31496034 DOI: 10.1002/smll.201902779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Indexed: 06/10/2023]
Abstract
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad-ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination-driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure-property relationship. Furthermore, insights into the present challenges and future research directions are also presented.
Collapse
Affiliation(s)
- Long Pan
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi-Tao Liu
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Zhong
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xu-Ming Xie
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Liu Q, Hu S, Yang Z, Zhang X, Ge J. Green Synthesis of Composite Graphene Aerogels with Robust Magnetism for Effective Water Remediation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4106. [PMID: 31817989 PMCID: PMC6947391 DOI: 10.3390/ma12244106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Graphene-based three-dimensional (3D) magnetic assemblies have attracted great research attention owing to their multiple natures inherited from 3D graphene assemblies and magnetic materials. However, at present, the practical applications of graphene-based magnetic materials are limited by the relative complex synthesis procedure and harsh operation conditions. Hence, a facile and green synthesis strategy is highly desired. Herein, a magnetic graphene aerogel with magnetite nanoparticles in-situ synthesized on the surface of its frameworks was fabricated through a green and facile strategy. The synthesis process was performed in a gentle condition with low energy consumption. The obtained graphene aerogels exhibited superior magnetism with a saturation magnetization of 55.7 emu·g-1. With the merits of well-developed pore structures, high surface area, and robust magnetic property, the obtained composite aerogels exhibited intriguing adsorption and photo-Fenton catalytic degradation performances for the organic dyes in water. Moreover, the utilized graphene aerogels could be recycled from the water due to their effective magnetic separation performance, indicating a promising capability for practical applications in the area of water remediation. We anticipate this synthesis strategy could provide some guidance for the design and development of 3D magnetic assemblies.
Collapse
Affiliation(s)
| | | | | | | | - Jianlong Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China; (Q.L.); (S.H.); (Z.Y.); (X.Z.)
| |
Collapse
|
6
|
Xu E, Wu Z, Ding T, Ye X, Jin Z, Liu D. Magnetic (Zn-St) 10Fe 0n ( n = 1, 2, 3, 4) Framework of Macro-Mesoporous Biomaterial Prepared via Green Enzymatic Reactive Extrusion for Dye Pollutants Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43553-43562. [PMID: 31644868 DOI: 10.1021/acsami.9b14750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biobased materials have the potential to be developed into green multifunctional products to replace their chemosynthetic counterparts, which have environmental and economic concerns. However, designing magnetic and porous biomaterials without pore spaces being occupied by exogenous magnets via traditional encapsulation, load, and/or deposition methods remains challenging. This paper describes a novel, facile, top-down strategy of fabricating zerovalent iron particles (Fe0 Ps) embedded into a three-dimensional (3D) zinc-modified starch (Zn-St) framework using the enzymatic reactive extrusion (eREX) method. Raw St underwent Zn-atom fortification, in situ Fe-atom deposition, and micromixing extrusion to produce (Zn-St)10Fe0n (n = 1, 2, 3, 4) extrudates (Es) in a continuous and large-scale mode. A hierarchical porous structure was formed during eREX processing, with mesopores (∼2-4 nm) and macropores (∼50-300 nm and ∼5-100 μm) generated regularly. The (Zn-St)10Fe0n Es were excellent at dye adsorption and magnetic separation, with high levels of St (>70%) as a biodegradable resource. For instance, (Zn-St)10Fe02 Es (St > 83%) removed 61.03 mg/g of methylene blue (∼19 times higher than that of raw St) at 298 K and pH 4.0 via simultaneous physisorption and degradation and were successfully separated due to their saturation magnetization (Ms) value of 25.41 emu/g. The dye adsorption rate and Ms of the (Zn-St)10Fe0n Es can be increased by manipulating the amount of Fe0 Ps. Thus, the novel 3D (Zn-St)10Fe0n Es are promising biomaterials for water purification applications, as well as other food, biological, and environmental fields.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking , Qilu University of Technology, Shandong Academy of Sciences , Jinan 250353 , China
| | - Tian Ding
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Zhengyu Jin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Joint International Research Laboratory on Food Safety , Jiangnan University , Wuxi 214122 , China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
7
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ce Su, Bai L, Zhang H, Chang K, Li G, Li S. Synthesis of Platinum Nanoparticles with High Catalytic Activity Supported on Magnetic Carbon Nanospheres. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419090036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Mikrochim Acta 2019; 186:232. [PMID: 30852695 DOI: 10.1007/s00604-019-3324-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
This review (with 115 refs) summarizes applications of 3-dimensional graphene (3DGs) and its derivatives in the fields of preconcentration, extraction, and sorption. Following an introduction into the field (including a definition of the materials treated here), the properties and synthetic strategies for 3DGs are described. The next section covers applications of 3DG-based adsorbents in solid phase extraction of organic species including drugs, phthalate esters, chlorophenols, aflatoxins, insecticides, and pesticides. Another section treats applications of 3DGs in solid phase microextraction of species such as polycyclic aromatic hydrocarbons, alcohols, and pesticides. We also describe how the efficiency of assays may be improved by using these materials as a sorbent. A final section covers conclusions and perspectives. Graphical abstract Graphical abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.Tiff file of graphical abstract was attached. Schematic presentation of synthesis of three-dimensional graphene (3DG) from two-dimensional graphene (2DG) with self-assembly, template-assisted and direct deposition methods. Application of 3DG-based nanoadsorbents in direct immersion-solid phase microextraction (DI-SPME), headspace-SPME (HS-SPME), magnetic-solid phase extraction (Magnetic-SPE), dispersive-SPE, and magnetic sheet-SPE.
Collapse
|
10
|
Guo R, Cai X, Liu H, Yang Z, Meng Y, Chen F, Li Y, Wang B. In Situ Growth of Metal-Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2705-2712. [PMID: 30726066 DOI: 10.1021/acs.est.8b06564] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organic contaminants in water have become one of the most serious environmental problems worldwide. Adsorption is one of the most promising approaches to remove organic pollutants from water. However, the existing adsorbents have relatively low removal efficiency, complex preparation processes, and high cost, which limit their practical applications. Here, we developed three-dimensional (3D) zirconium metal-organic frameworks (MOFs) encapsulated in a natural wood membrane (UiO-66/wood membrane) for highly efficient organic pollutant removal from water. UiO-66 MOFs were in situ grown in the 3D low-tortuosity wood lumens by a facile solvothermal strategy. The resulting UiO-66/wood membrane contains the highly mesoporous UiO-66 MOF structure as well as many elongated and open lumens along the direction of the wood growth. Such a unique structural feature improves the mass transfer of organic pollutants and increases the contact probability of organic contaminants with UiO-66 MOFs as the water flows through the membrane, thereby improving the removal efficiency. Furthermore, the integrated multilayer filter consisting of three pieces of UiO-66/wood membranes exhibits a high removal efficiency (96.0%) for organic pollutants such as rhodamine 6G, propranolol, and bisphenol A at the flux of 1.0 × 103 L·m-2·h-1. The adsorbed capacity of UiO-66/wood for Rh6G (based on the content of UiO-66 MOFs) is calculated to be 690 mg·g-1. We believe that such low-cost and scalable production of the UiO-66/wood membrane has broad applications for wastewater treatment and other related pollutant removal.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xiaohui Cai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Yajie Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Yiju Li
- Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
11
|
Robust construction of underwater superoleophobic CNTs/nanoparticles multifunctional hybrid membranes via interception effect for oily wastewater purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Klemes MJ, Ling Y, Chiapasco M, Alsbaiee A, Helbling DE, Dichtel WR. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chem Sci 2018; 9:8883-8889. [PMID: 30627407 PMCID: PMC6296297 DOI: 10.1039/c8sc03267j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022] Open
Abstract
Porous β-cyclodextrin polymers linked with tetrafluoroterephthalonitrile (TFN-CDPs) have shown promise for adsorbing organic micropollutants (MPs) more quickly and effectively than conventional adsorbents. Prior to their discovery, the nucleophilic aromatic substitution (SNAr) reaction used to prepare TFN-CDP was nearly unknown for the aliphatic alcohol nucleophiles, and the low isolated yields of TFN-CDP motivated model studies of the reaction between TFN and n-butanol. These experiments reveal a previously undescribed substitution reaction of TFN in which a fluorine is substituted by a hydroxyl group. This process is responsible for the low yields of the polymerization and incorporates phenolate groups into the polymer network. Phenolation and polymerization (etherification) are competing processes, and the level of phenolate incorporation was controlled by varying the rate of base addition and initial monomer concentrations. TFN-CDPs with varying phenolate content were prepared and evaluated as adsorbents for both Pb2+ ions and 83 MPs. More heavily phenolated polymers showed increased capacity to bind Pb2+ ions. Phenolation was also correlated with increased binding affinity for almost all of the 83 MPs tested, including neutral, cationic, and anionic substances. These results leverage a newly discovered side reaction during SNAr reactions of electron-poor aryl fluorides to improve both the yield and the uptake affinity for both lead and organic MPs of TFN-CDPs.
Collapse
Affiliation(s)
- Max J Klemes
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Yuhan Ling
- School of Civil and Environmental Engineering , Cornell University , Ithaca , NY 14853 , USA
| | - Marta Chiapasco
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Alaaeddin Alsbaiee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853 , USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering , Cornell University , Ithaca , NY 14853 , USA
| | - William R Dichtel
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| |
Collapse
|
13
|
Chen L, Han Q, Li W, Zhou Z, Fang Z, Xu Z, Wang Z, Qian X. Three-dimensional graphene-based adsorbents in sewage disposal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25840-25861. [PMID: 30039490 DOI: 10.1007/s11356-018-2767-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
A kind of graphene functional materials based on three-dimensional (3D) porous structure is a new star for environmental application in the past decades because it not only inherits the perfect carbon crystal structure of two-dimensional (2D) graphene sheets but also exhibits several advantages such as extremely low density, high porosity, and big surface area, all which enable diverse contaminants to easily access and diffuse into 3D networks, and make these materials ideal adsorbents with superior adsorptivity and recyclability. This review aims to summarize the recent progress in constructing 3D graphene-based adsorbents (3DGBAs) with two hybrid systems such as graphene/polymers and graphene/inorganic nanomaterials, and to provide a fundamental understanding of synthetic methods for interconnecting these nanostructures, structure-property relationships, and extensive applications in environmental protection towards adsorption of heavy metals, dyes, oils, and organic pollutants. Furthermore, we make a forecast on the future development opportunities and technical challenges, which is hoped to make an inspiration for the researchers to exploit a new family of graphene-based adsorption materials. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China.
| | - Qiaoqiao Han
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Wenxiao Li
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiyong Zhou
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhou Fang
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zhiwei Xu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| | - Zexiang Wang
- Tianjin Xuwo Technology Co., Ltd., Tianjin, 300000, People's Republic of China
| | - Xiaoming Qian
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin, 300160, People's Republic of China
| |
Collapse
|
14
|
Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Guo F, Wen Q, Guo Z. Low cost and non-fluoride flowerlike superhydrophobic particles fabricated for both emulsions separation and dyes adsorption. J Colloid Interface Sci 2017; 507:421-428. [DOI: 10.1016/j.jcis.2017.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
16
|
Chen F, Gong AS, Zhu M, Chen G, Lacey SD, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L. Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS NANO 2017; 11:4275-4282. [PMID: 28362487 DOI: 10.1021/acsnano.7b01350] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wood, an earth-abundant material, is widely used in our everyday life. With its mesoporous structure, natural wood is comprised of numerous long, partially aligned channels (lumens) as well as nanochannels that stretch along its growth direction. This wood mesostructure is suitable for a range of emerging applications, especially as a membrane/separation material. Here, we report a mesoporous, three-dimensional (3D) wood membrane decorated with palladium nanoparticles (Pd NPs/wood membrane) for efficient wastewater treatment. The 3D Pd NPs/wood membrane possesses the following advantages: (1) the uniformly distributed lignin within the wood mesostructure can effectively reduce Pd(II) ions to Pd NPs; (2) cellulose, with its abundant hydroxyl groups, can immobilize Pd NPs; (3) the partially aligned mesoporous wood channels as well as their inner ingenious microstructures increase the likelihood of wastewater contacting Pd NPs decorating the wood surface; (4) the long, Pd NP-decorated channels facilitate bulk treatment as water flows through the entire mesoporous wood membrane. As a proof of concept, we demonstrated the use and efficiency of a Pd NPs/wood membrane to remove methylene blue (MB, C16H18N3ClS) from a flowing aqueous solution. The turnover frequency of the Pd NPs/wood membrane, ∼2.02 molMB·molPd-1·min-1, is much higher than the values reported in the literature. The water treatment rate of the 3D Pd NPs/wood membrane can reach 1 × 105 L·m-2·h-1 with a high MB removal efficiency (>99.8%). The 3D mesoporous wood membrane with partially aligned channels exhibits promising results for wastewater treatment and is applicable for an even wider range of separation applications.
Collapse
Affiliation(s)
- Fengjuan Chen
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Amy S Gong
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Mingwei Zhu
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Guang Chen
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Steven D Lacey
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Feng Jiang
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yongfeng Li
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yanbin Wang
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jiaqi Dai
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yonggang Yao
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Jianwei Song
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Boyang Liu
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Kun Fu
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering and ‡Department of Mechanical Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| |
Collapse
|
17
|
Das D, Biradha K. Metal–organic gels of silver salts with an α,β-unsaturated ketone: the influence of anions and solvents on gelation. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00328e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A bis-pyridyl substituted α,β-unsaturated ketone was shown to form MOGs with silver salts having anions BF4, ClO4, CF3SO3 and SF6 in various organic solvents. They have shown selectivity towards adsorbing an anionic dye from a mixture of cationic and anionic dyes.
Collapse
Affiliation(s)
- Debarati Das
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
18
|
Liu J, Hu G, Yang Y, Zhang H, Zuo W, Liu W, Wang B. Rational synthesis of Pd nanoparticle-embedded reduced graphene oxide frameworks with enhanced selective catalysis in water. NANOSCALE 2016; 8:2787-2794. [PMID: 26763211 DOI: 10.1039/c5nr07835k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A three-dimensional (3D) Pd-reduced graphene oxide framework (Pd-rGOF) with hierarchical macro- and mesoporous structures has been developed via covalence- and coordination-assisted self-assembly approach. In this facile fabrication process, GO was first cross-linked with triethylene tetramine (TETA) to form 3D GOF, in which well-dispersed and ultrasmall Pd nanoparticles (NPs) in situ grew and embedded the framework. The obtained nanopores, 3D Pd-rGOF, can act as nanoreactors to help the reaction substrates thoroughly contact with the surface of Pd NPs, thereby exhibiting high activity and selectivity toward the Tsuji-Trost reaction in water, with 99% conversion and selectivity for most substrates. Moreover, the 3D Pd-rGOF catalyst can be reused more than ten times without significant loss of activity, rendering this catalyst long-term stability. The abovementioned observations make the rGOF a universal platform to coordinate other noble metal ions (NM) to construct desired NM-rGOF nanocatalysts with improved activity, selectivity, and durability that can be used in a broad range of practical applications.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Guowen Hu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Yanmei Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Haoli Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Wei Zuo
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | - Baodui Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| |
Collapse
|
19
|
Mahida VP, Patel MP. A novel approach for the synthesis of hydrogel nanoparticles and a removal study of reactive dyes from industrial effluent. RSC Adv 2016. [DOI: 10.1039/c5ra19441e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel amphoteric monomer, N,N-diallyl carboxypiperidinium bromide (DACPB), has been synthesized by the stepwise condensation of isonipecotic acid to an ester and then with allyl chloride and allyl bromide.
Collapse
Affiliation(s)
- Viran P. Mahida
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388120
- India
| | - Manish P. Patel
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar-388120
- India
| |
Collapse
|
20
|
Liu R, Xi X, Xing X, Wu D. A facile biomass based approach towards hierarchically porous nitrogen-doped carbon aerogels. RSC Adv 2016. [DOI: 10.1039/c6ra15185j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-doped carbon aerogels with hierarchically porous architectures (NHCAs) are prepared via the hydrothermal treatment of cantaloupe and the following activation with potassium hydroxide.
Collapse
Affiliation(s)
- Ruili Liu
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xin Xi
- Department of Chemical Engineering
- School of Environment and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Xia Xing
- Department of Chemical Engineering
- School of Environment and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|