1
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59833-59848. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Hamelmann NM, Paulusse JMJ. Single-chain polymer nanoparticles in biomedical applications. J Control Release 2023; 356:26-42. [PMID: 36804328 DOI: 10.1016/j.jconrel.2023.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are a well-defined and uniquely sized class of polymer nanoparticles. The advances in polymer science over the past decades have enabled the development of a variety of intramolecular crosslinking systems, leading to particles in the 5-20 nm size regime. Which is aligned with the size regime of proteins and therefore making SCNPs an interesting class of NPs for biomedical applications. The high modularity of SCNP design and the ease of their functionalization have led to growing research interest. In this review, we describe different crosslinking systems, as well as the preparation of functional SCNPs and the variety of biomedical applications that have been explored.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
4
|
Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022; 185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Pulmonary delivery of nanomedicines is very promising in lung local disease treatments whereas several physiological barriers limit its application via the interaction with inhaled nanomedicines, namely bio-nano interactions. These bio-nano interactions may affect the pulmonary fate of nanomedicines and impede the distribution of nanomedicines in its targeted region, and subsequently undermine the therapeutic efficacy. Pulmonary diseases are under worse scenarios as the altered physiological barriers generally induce stronger bio-nano interactions. To mitigate the bio-nano interactions and regulate the pulmonary fate of nanomedicines, a number of manipulating strategies were established based on size control, surface modification, charge tuning and co-delivery of mucolytic agents. Visualized and non-visualized characterizations can be employed to validate the robustness of the proposed strategies. This review provides a guiding overview of the physiological barriers affecting the in vivo fate of inhaled nanomedicines, the manipulating strategies, and the validation methods, which will assist with the rational design and application of pulmonary nanomedicine.
Collapse
|
5
|
Cruz-Hernández C, García-Espinosa DA, Guadarrama P. Click synthesis of novel dendronized curcumin and analogs. Strengthening of physicochemical properties toward biological applications. Org Biomol Chem 2022; 20:2643-2650. [PMID: 35285845 DOI: 10.1039/d2ob00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin and its analogs, chalcones, and C5-monocarbonyl are molecules of great therapeutic potential, but their poor stability and hydrophobicity have hampered their extensive use in clinical trials. Therefore, significant efforts have been made in materials science to improve their physicochemical properties. In this study, we propose dendronization as a synthetic strategy to strengthen some physicochemical properties such as solubility and stability of curcumin and analogs, taking advantage of the click chemistry (CuAAC) to attach second-generation polyester dendrons to the unsaturated cores. The dendronization, with the subsequent formation of aromatic triazole groups as linkers, not only modified the solubility and stability of the molecular systems but also favored the diketo tautomeric form of curcumin, as demonstrated spectroscopically. This result is significant since the diketo tautomer, which preserves the antioxidant properties of curcumin, is the most biologically active form. The hydrophobic/hydrophilic balance, achieved after dendronization, allowed the solubilization of the chromophoric molecules in buffered solutions at relevant pH values (7.4 and 6.4). Furthermore, the stability of all molecules was also upgraded since UV-vis absorption spectra did not exhibit modified profiles after 7 days at physiologic pH. From photochemical stability experiments irradiating at 415 nm, the dendritic derivatives containing triazole linkers were more susceptible to being degraded. All derivatives exhibited emission properties according to the length of each conjugate fragment. Fluorescence experiments evidenced the role of dendrons in preventing emission quenching by aggregation and exhibited differentiated emission behavior depending on the linker type (triazole or ester) between the chromophoric core and the polyester dendrons.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
6
|
|
7
|
Duarte F, Cuerva C, Fernández-Lodeiro C, Fernández-Lodeiro J, Jiménez R, Cano M, Lodeiro C. Polymer Micro and Nanoparticles Containing B(III) Compounds as Emissive Soft Materials for Cargo Encapsulation and Temperature-Dependent Applications. NANOMATERIALS 2021; 11:nano11123437. [PMID: 34947786 PMCID: PMC8708886 DOI: 10.3390/nano11123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Polymer nanoparticles doped with fluorescent molecules are widely applied for biological assays, local temperature measurements, and other bioimaging applications, overcoming several critical drawbacks, such as dye toxicity, increased water solubility, and allowing imaging of dyes/drug delivery in water. In this work, some polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP) and poly(styrene-butadiene-styrene) (SBS) based micro and nanoparticles with an average size of about 200 nm and encapsulating B(III) compounds have been prepared via the reprecipitation method by using tetrahydrofuran as the oil phase and water. The compounds are highly hydrophobic, but their encapsulation into a polymer matrix allows obtaining stable colloidal dispersions in water (3.39 µM) that maintain the photophysical behavior of these dyes. Although thermally activated non-radiative processes occur by increasing temperature from 25 to 80 °C, the colloidal suspension of the B(III) particles continues to emit greenish light (λ = 509 nm) at high temperatures. When samples are cooling back to room temperature, the emission is restored, being reversible. A probe of concept drug delivery study was conducted using coumarin 6 as a prototype of a hydrophobic drug.
Collapse
Affiliation(s)
- Frederico Duarte
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
| | - Cristián Cuerva
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
- Correspondence: (C.C.); (C.L.)
| | - Carlos Fernández-Lodeiro
- CINBIO, Departamento de Química Física, Campus Universitario Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Raquel Jiménez
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
| | - Mercedes Cano
- MatMoPol Research Group, Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (R.J.); (M.C.)
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (F.D.); (J.F.-L.)
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
- Correspondence: (C.C.); (C.L.)
| |
Collapse
|
8
|
Liu Y, Bai S, Wu T, Chen CC, Liu Y, Chao X, Bai Y. Dendronized Arm Snowflake Polymer as a Highly Branched Scaffold for Cellular Imaging and Delivery. Biomacromolecules 2021; 22:3791-3799. [PMID: 34339173 DOI: 10.1021/acs.biomac.1c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of branched structures is a major pathway to build macromolecules with desired three-dimensional (3D) structures, which are of high importance in the rational design of functional polymeric scaffolds. Dendrimers and hyperbranched polymers have been extensively studied for this purpose, but proper gain-of-function for these structures usually requires large enough molecular weights and a highly branched interior so that a spherical 3D core-shell architecture can be obtained, yet it is generally challenging to achieve precise control over the structure, high molecular weight, and high degree of branching (DoB) simultaneously. In this article, we present a set of snowflake-shaped star polymers with functional cores and dendronized arms, which ensure a high DoB and an overall globular conformation, thus facilitating the introduction of functional moieties onto the easily achieved scaffold without the need for high-generation dendrons. Using a polyglycerol dendron (PGD) as a proof of concept, we propose that this dendronized arm snowflake polymer (DASP) structure can serve as a better performing alternative to high-generation PGDs. DASPs with molecular weights of 750, 1220, 2120, and 3740 kDa were prepared with >85% yields in all cases, and we show that these DASPs have high encapsulating efficiency of Nile Red due to their high DoB and high biocompatibility due to their hydroxyl-rich nature after ketal removal, as well as high cell permeability that is molecular-weight-dependent. Introduced fluorophores such as fluorescein and difluoroboron 1,3-diphenylaminophenyl β-diketonate with suitable excitation wavelengths may turn the DASPs into stable, endosome-staining fluorophores with ultra-large Stokes shifts, narrowed emission bands, and suitability for long-term cellular tracing. Moreover, the scaffold can encapsulate antibiotic molecules and deliver them into phagolysosomes for efficient elimination of intracellular Staphylococcus aureus, which is insensitive toward many antibiotics but is a key target for the clinical success of methicillin-resistant Staphylococcus aureus infection treatment. Elimination of Staphylococcus aureus could be improved to >99.9% for chloramphenicol at 32 μg/mL with 450 μg/mL DASP.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Liu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiangyu Chao
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. MATERIALS ADVANCES 2021; 2:3213-3233. [PMID: 34124681 PMCID: PMC8142673 DOI: 10.1039/d1ma00110h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Among biocompatible materials, block copolymers (BCPs) possess several advantages due to the control of their chemistry and the possibility of combining various blocks with defined properties. Consequently, BCPs drew considerable attention as biocompatible materials in the fields of drug delivery, medicine and bioimaging. Fluorescent labeling of BCPs quickly appeared to be a method of choice to image and track these materials in order to better understand the nature of their interactions with biological media. However, incorporating fluorescent markers (FM) into BCPs can appear tricky; we thus intend to help chemists in this endeavor by reviewing recent advances made in the last 10 years. With the choice of the FM being of prior importance, we first reviewed their photophysical properties and functionalities for optimal labeling and imaging. In the second part the different chemical approaches that have been used in the literature to fluorescently label BCPs have been reviewed. We also report and discuss relevant applications of fluorescent BCPs in bioimaging.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| |
Collapse
|
10
|
Chen R, Berda EB. 100th Anniversary of Macromolecular Science Viewpoint: Re-examining Single-Chain Nanoparticles. ACS Macro Lett 2020; 9:1836-1843. [PMID: 35653673 DOI: 10.1021/acsmacrolett.0c00774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single-chain nanoparticles (SCNP) are a class of polymeric nanoparticles obtained from the intramolecular cross-linking of polymers bearing reactive pendant groups. The development of SCNP has drawn tremendous attention since the fabrication of SCNP mimics the self-folding behavior in natural biomacromolecules and is highly desirable for a variety of applications ranging from catalysis, nanomedicine, nanoreactors, and sensors. The versatility of novel chemistries available for SCNP synthesis has greatly expanded over the past decade. Significant progress was also made in the understanding of a structure-property relationship in the single-chain folding process. In this Viewpoint, we discuss the effect of precursor polymer topology on single polymer folding. We summarize the progress in SCNP of complex architectures and highlight unresolved issues in the field, such as scalability and topological purity of SCNP.
Collapse
|
11
|
Chen J, Garcia ES, Zimmerman SC. Intramolecularly Cross-Linked Polymers: From Structure to Function with Applications as Artificial Antibodies and Artificial Enzymes. Acc Chem Res 2020; 53:1244-1256. [PMID: 32441091 DOI: 10.1021/acs.accounts.0c00178] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-linking of polymers significantly alters their physical properties, greatly expanding their everyday utility. Indeed, the polymeric networks resulting from linkages between polymer chains are found in everyday materials from soft contact lenses and automobile tires to enamel coatings and high-performance adhesives. In contrast, intramolecularly cross-linked polymers have received far less attention until recent years, in large part because they are synthetically more challenging to prepare. In this Account, we trace our own efforts to develop the chemistry of intramolecularly cross-linked macromolecules, starting with dendrimers. Dendrimers provided an excellent starting point for investigating intramolecular cross-linking because they are single molecular entities. We showed that the end groups of dendrimers can be extensively cross-linked using the ring-closing metathesis reaction and that the discrete structure of the dendrimer provides unique opportunities for characterizing the number and location of the cross-links as well as some physical properties of the macromolecule such as its size and rigidity. Increasing the number of ring-closing metathesis reactions correlated with a reduction in size and an increase in rigidity. The general strategy applied to dendrimers was extended to star polymers and hyperbranched polyglycerols. Each of these macromolecules has a core or an initiating group from which the branches emanate. Linking the end groups or branches of these polymers presents a unique opportunity to chemically remove the core of the cross-linked macromolecule in a process that is reminiscent of that used to produce covalent molecular imprinted polymers. Recognizing this analogy, we sought a compelling application for cross-linked dendrimers, the first example of unimolecular imprinting, where a single polymer contains a single molecular imprint. The quality of the imprinting was mixed but pointed to an alternative general strategy for molecular imprinting in polymers. The effort also focused attention on synthetic antibodies and the general biomimicry provided by this class of macromolecules. Indeed, cross-linking of polymers either covalently or non-covalently bears a loose resemblance to folding of proteins into defined three-dimensional shapes. The synthesis and study of cross-linked linear polymers, often called single-chain nanoparticles (SCNPs), has emerged as a very active area of research in the past few years. Our experience with the cross-linking of branched polymers combined with an interest in performing organic synthesis within living cells led us to develop copper-containing SCNPs as artificial clickases. These polymeric clickases exhibit all of the hallmarks of enzymatic catalysis. One clickase containing a polyacrylamide backbone performs low-concentration copper-assisted alkyne-azide click reactions at unprecedented rates. Another performs click reactions within living cells. Other organic transformations can be performed intracellularly, and some of the most advanced SCNPs engage in concurrent and tandem catalysis with a naturally occurring biocatalyst. By tracing our own efforts, this Account provides a few entry points into the broader literature and also points to both the remaining challenges and overall promising future envisioned for this unique class of functional macromolecules.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Edzna S. Garcia
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Liu X, Liu F, Liu W, Gu H. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1723022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
|
14
|
Liu X, Liu F, Astruc D, Lin W, Gu H. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Liu R, Lindsey JS. Single-Polymer-Single-Cargo Strategy Packages Hydrophobic Fluorophores in Aqueous Solution with Retention of Inherent Brightness. ACS Macro Lett 2019; 8:79-83. [PMID: 35619412 DOI: 10.1021/acsmacrolett.8b00907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy for encapsulating hydrophobic organic entities in aqueous solution has been developed through use of a self-assembling heterotelechelic amphiphilic random copolymer. The polymer (∼40 kDa), prepared by living radical polymerization, contains orthogonally reactive terminal groups and pendant hydrophobic (dodecyl), nonionic hydrophilic (PEG9), and ionic hydrophilic (sulfonate-terminated) groups. Covalent conjugation of a hydrophobic entity to the polymer terminus has been demonstrated for 8 classes of organic fluorophores. The resulting "pod-fluorophore" architecture is unimeric (∼15 nm in diameter) in aqueous solution with spectral features and fluorescence brightness resembling those of the benchmark fluorophore in organic solution. This strategy separates the functional design of the packaged molecular entity ("cargo") from the often vexing challenge of water solubilization and in so doing creates a unitary (one-pod-one-cargo) platform architecture for potential applications in cytometry, biomedical imaging, environmental sensing, and supramolecular chemistry.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
16
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Liu R, Vairaprakash P, Lindsey JS. Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution. NEW J CHEM 2019. [DOI: 10.1039/c9nj01787a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Profound morphological and fluorogenic changes ensue upon binding of a zinc ion by two polymers, each of which bears a single dipyrrin at one terminus, forming the bis(dipyrrinato)Zn(ii) complex.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, North Carolina State University
- Raleigh
- USA
| | | | | |
Collapse
|
18
|
Chen J, Wang J, Bai Y, Li K, Garcia ES, Ferguson AL, Zimmerman SC. Enzyme-like Click Catalysis by a Copper-Containing Single-Chain Nanoparticle. J Am Chem Soc 2018; 140:13695-13702. [DOI: 10.1021/jacs.8b06875] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junfeng Chen
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jiang Wang
- Department of Physics, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Yugang Bai
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Edzna S. Garcia
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Kröger APP, Paulusse JMJ. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J Control Release 2018; 286:326-347. [PMID: 30077737 DOI: 10.1016/j.jconrel.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of (biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired nanosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual nanoparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the size regime of many proteins and viruses (1-20 nm). Multifaceted syntheses and design strategies give access to a wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled drug delivery, targeted imaging and protein mimicry.
Collapse
Affiliation(s)
- A Pia P Kröger
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
20
|
Huth K, Glaeske M, Achazi K, Gordeev G, Kumar S, Arenal R, Sharma SK, Adeli M, Setaro A, Reich S, Haag R. Fluorescent Polymer-Single-Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800796. [PMID: 29870583 DOI: 10.1002/smll.201800796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Indexed: 05/28/2023]
Abstract
Fluorescent nanomaterials are expected to revolutionize medical diagnostic, imaging, and therapeutic tools due to their superior optical and structural properties. Their inefficient water solubility, cell permeability, biodistribution, and high toxicity, however, limit the full potential of their application. To overcome these obstacles, a water-soluble, fluorescent, cytocompatible polymer-single-walled carbon nanotube (SWNT) complex is introduced for bioimaging applications. The supramolecular complex consists of an alkylated polymer conjugated with neutral hydroxylated or charged sulfated dendronized perylene bisimides (PBIs) and SWNTs as a general immobilization platform. The polymer backbone solubilizes the SWNTs, decorates them with fluorescent PBIs, and strongly improves their cytocompatibility by wrapping around the SWNT scaffold. In photophysical measurements and biological in vitro studies, sulfated complexes exhibit superior optical properties, cellular uptake, and intracellular staining over their hydroxylated analogs. A toxicity assay confirms the highly improved cytocompatibility of the polymer-wrapped SWNTs toward surfactant-solubilized SWNTs. In microscopy studies the complexes allow for the direct imaging of the SWNTs' cellular uptake via the PBI and SWNT emission using the 1st and 2nd optical window for bioimaging. These findings render the polymer-SWNT complexes with nanometer size, dual fluorescence, multiple charges, and high cytocompatibility as valuable systems for a broad range of fluorescence bioimaging studies.
Collapse
Affiliation(s)
- Katharina Huth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Mareen Glaeske
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georgy Gordeev
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Shiv Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Raúl Arenal
- Institute of Nanoscience of Aragon (INA), Advanced Microscopy Laboratory (LMA), University of Zaragoza, 50018, Zaragoza, Spain
- Foundation ARAID, 50018, Zaragoza, Spain
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, Khorram Abad, 68151-44316, Iran
| | - Antonio Setaro
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Stephanie Reich
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| |
Collapse
|
21
|
Mishra R, Mushtaq Z, Regar R, Mallik B, Kumar V, Sankar J. Selective Imaging of Lipids in Adipocytes
by Using an Imidazolyl Derivative of Perylene Bisimide. Chembiochem 2018; 19:1386-1390. [DOI: 10.1002/cbic.201800134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ruchika Mishra
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Zeeshan Mushtaq
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Ramprasad Regar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Bhagaban Mallik
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Vimlesh Kumar
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Jeyaraman Sankar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| |
Collapse
|
22
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules 2018; 19:2750-2758. [DOI: 10.1021/acs.biomac.8b00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianqun Shao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
23
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Li Y, Huth K, Garcia ES, Pedretti BJ, Bai Y, Vincil GA, Haag R, Zimmerman SC. Linear dendronized polyols as a multifunctional platform for a versatile and efficient fluorophore design. Polym Chem 2018. [DOI: 10.1039/c8py00193f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Linear dendronized polyols (LDPs)as a modular platform for bright, stable, and biocompatible polymeric fluorophores applicable for fluorescent bioimaging studies.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- USA
| | - Katharina Huth
- Institute of Chemistry and Biochemistry – Organic Chemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Edzna S. Garcia
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- USA
| | | | - Yugang Bai
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- USA
| | | | - Rainer Haag
- Institute of Chemistry and Biochemistry – Organic Chemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | |
Collapse
|
25
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polym Chem 2018. [DOI: 10.1039/c7py01730h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bifunctional peptide-polynorbornenes were designed and fabricated via modular ROMP for mitochondrial-dependent apoptosis induction and fluorescence imaging of cancer cells.
Collapse
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jianqun Shao
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
26
|
Ma X, Shi X, Bai S, Zhang J, Hou M, Zhang T, Li BS, Xue P, Kang Y, Xu Z. Water-soluble fluorescent unimolecular micelles: ultra-small size, tunable fluorescence emission from the visible to NIR region and enhanced biocompatibility for in vitro and in vivo bioimaging. Chem Commun (Camb) 2018; 54:6252-6255. [DOI: 10.1039/c8cc02261e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Water-soluble fluorescent unimolecular micelles with ultra-small size and various fluorescence emission for multicolor imaging.
Collapse
|
27
|
Kerr C, DeRosa CA, Daly ML, Zhang H, Palmer GM, Fraser CL. Luminescent Difluoroboron β-Diketonate PLA-PEG Nanoparticle. Biomacromolecules 2017; 18:551-561. [PMID: 28150934 DOI: 10.1021/acs.biomac.6b01708] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Luminescent difluoroboron β-diketonate poly(lactic acid) (BF2bdkPLA) materials serve as biological imaging agents. In this study, dye structures were modified to achieve emission colors that span the visible region with potential for multiplexing applications. Four dyes with varying π-conjugation (phenyl, naphthyl) and donor groups (-OMe, -NMe2) were coupled to PLLA-PEG block copolymers (∼11 kDa) by a postpolymerization Mitsunobu reaction. The resulting dye-polymer conjugates were fabricated as nanoparticles (∼55 nm diameter) to produce nanomaterials with a range of emission colors (420-640 nm). For increased stability, dye-PLLA-PEG conjugates were also blended with dye-free PDLA-PEG to form stereocomplex nanoparticles of smaller size (∼45 nm diameter). The decreased dye loading in the stereoblocks blue-shifted the emission, generating a broader range of fluorescence colors (410-620 nm). Tumor accumulation was confirmed in a murine model through biodistribution studies with a red emitting dimethyl amino-substituted dye-polymer analogue. The synthesis, optical properties, oxygen-sensing capabilities, and stability of these block copolymer nanoparticles are presented.
Collapse
Affiliation(s)
- Caroline Kerr
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Christopher A DeRosa
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Margaret L Daly
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | - Hengtao Zhang
- Department of Radiation Oncology, Duke University , Durham, North Carolina 27710, United States
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University , Durham, North Carolina 27710, United States
| | - Cassandra L Fraser
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| |
Collapse
|
28
|
Bai Y, Feng X, Xing H, Xu Y, Kim BK, Baig N, Zhou T, Gewirth AA, Lu Y, Oldfield E, Zimmerman SC. A Highly Efficient Single-Chain Metal-Organic Nanoparticle Catalyst for Alkyne-Azide "Click" Reactions in Water and in Cells. J Am Chem Soc 2016; 138:11077-80. [PMID: 27529791 DOI: 10.1021/jacs.6b04477] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We show that copper-containing metal-organic nanoparticles (MONPs) are readily synthesized via Cu(II)-mediated intramolecular cross-linking of aspartate-containing polyolefins in water. In situ reduction with sodium ascorbate yields Cu(I)-containing MONPs that serve as highly efficient supramolecular catalysts for alkyne-azide "click chemistry" reactions, yielding the desired 1,4-adducts at low parts per million catalyst levels. The nanoparticles have low toxicity and low metal loadings, making them convenient, green catalysts for alkyne-azide "click" reactions in water. The Cu-MONPs enter cells and perform efficient, biocompatible click chemistry, thus acting as intracellular nanoscale molecular synthesizers.
Collapse
Affiliation(s)
- Yugang Bai
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Xinxin Feng
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Hang Xing
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yanhua Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Boo Kyung Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Noman Baig
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Tianhui Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|