1
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
2
|
Zhu Z, Ewen JP, Kritikos EM, Giusti A, Dini D. Effect of Electric Fields on the Decomposition of Phosphate Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15959-15973. [PMID: 39355011 PMCID: PMC11440609 DOI: 10.1021/acs.jpcc.4c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Phosphate esters decompose on metal surfaces and form protective polyphosphate films. For many applications, such as in lubricants for electric vehicles and wind turbines, an understanding of the effect of electric fields on molecular decomposition is urgently required. Experimental investigations have yielded contradictory results, with some suggesting that electric fields improve tribological performance, while others have reported the opposite effect. Here, we use nonequilibrium molecular dynamics (NEMD) simulations to study the decomposition of tri-n-butyl phosphate (TNBP) molecules nanoconfined between ferrous surfaces (iron and iron oxide) under electrostatic fields. The reactive force field (ReaxFF) method is used to model the effects of chemical bonding and molecular dissociation. We show that the charge transfer with the polarization current equalization (QTPIE) method gives more realistic behavior compared to the standard charge equilibration (QEq) method under applied electrostatic fields. The rate of TNBP decomposition via carbon-oxygen bond dissociation is faster in the nanoconfined systems than that in the bulk due to the catalytic action of the surfaces. In all cases, the application of an electric field accelerates TNBP decomposition. When electric fields are applied to the confined systems, the phosphate anions are pulled toward the surface with high electric potential, while the alkyl cations are pulled to the surface with lower potential, leading to asymmetric film growth. Analysis of the temperature- and electric field strength-dependent dissociation rate constants using the Arrhenius equation suggests that, on reactive iron surfaces, the increased reactivity under an applied electric field is driven mostly by an increase in the pre-exponential factor, which is linked to the number of molecule-surface collisions. Conversely, the accelerated decomposition of TNBP on iron oxide surfaces can be attributed to a reduction in the activation energy with increasing electric field strength. Single-molecule nudged-elastic band (NEB) calculations also show a linear reduction in the energy barrier for carbon-oxygen bond breaking with electric field strength, due to stabilization of the charged transition state. The simulation results are consistent with experimental observations of enhanced and asymmetric tribofilm growth under electrostatic fields.
Collapse
Affiliation(s)
- Zhaoran Zhu
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Efstratios M. Kritikos
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrea Giusti
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
3
|
Joll K, Schienbein P, Rosso KM, Blumberger J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat Commun 2024; 15:8192. [PMID: 39294144 PMCID: PMC11411082 DOI: 10.1038/s41467-024-52491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
The interaction of condensed phase systems with external electric fields is of major importance in a myriad of processes in nature and technology, ranging from the field-directed motion of cells (galvanotaxis), to geochemistry and the formation of ice phases on planets, to field-directed chemical catalysis and energy storage and conversion systems including supercapacitors, batteries and solar cells. Molecular simulation in the presence of electric fields would give important atomistic insight into these processes but applications of the most accurate methods such as ab-initio molecular dynamics (AIMD) are limited in scope by their computational expense. Here we introduce Perturbed Neural Network Potential Molecular Dynamics (PNNP MD) to push back the accessible time and length scales of such simulations. We demonstrate that important dielectric properties of liquid water including the field-induced relaxation dynamics, the dielectric constant and the field-dependent IR spectrum can be machine learned up to surprisingly high field strengths of about 0.2 V Å-1 without loss in accuracy when compared to ab-initio molecular dynamics. This is remarkable because, in contrast to most previous approaches, the two neural networks on which PNNP MD is based are exclusively trained on molecular configurations sampled from zero-field MD simulations, demonstrating that the networks not only interpolate but also reliably extrapolate the field response. PNNP MD is based on rigorous theory yet it is simple, general, modular, and systematically improvable allowing us to obtain atomistic insight into the interaction of a wide range of condensed phase systems with external electric fields.
Collapse
Affiliation(s)
- Kit Joll
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK
| | - Philipp Schienbein
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
- Department of Physics, Imperial College London, South Kensington, London, UK.
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington, UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
| |
Collapse
|
4
|
Guan L, Tan J, Qi B, Chen Y, Cao M, Zhang Q, Zou Y. Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study. Biophys Chem 2024; 312:107283. [PMID: 38941873 DOI: 10.1016/j.bpc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Meng Cao
- Department of Physical Education, College of Sport, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518061, PR China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, PR China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
5
|
Abamba OG, Kolebaje OT, Vincent UE, McClintock PVE. Vibrational resonance in bichromatically excited diatomic molecules in a shifted molecular potential. Phys Rev E 2024; 110:034209. [PMID: 39425406 DOI: 10.1103/physreve.110.034209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
For bichromatically excited diatomic molecules modeled in a shifted Tietz-Wei molecular potential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN) bifurcation takes place and its nonoccurrence in the absence of an SN bifurcation. We have examined the VR phenomenon and its connection with SN bifurcation for eight diatomic molecules, namely, H_{2}, N_{2}, Cl_{2}, I_{2}, O_{2}, HF, CO, and NO, consisting of homogeneous, heterogenous, and halogen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the SN-bifurcation point. We validate our analytic results by numerical simulations and show that the homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to their absence of SN bifurcation.
Collapse
Affiliation(s)
| | - O T Kolebaje
- Department of Physics, Adeyemi University of Education, Ondo 350106, Nigeria
| | | | | |
Collapse
|
6
|
Scheele T, Neudecker T. On the Interplay Between Force, Temperature, and Electric Fields in the Rupture Process of Mechanophores. Chemphyschem 2024:e202400648. [PMID: 39044653 DOI: 10.1002/cphc.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The use of oriented external electric fields (OEEFs) shows promise as an alternative approach to chemical catalysis. The ability to target a specific bond by aligning it with a bond-weakening electric field may be beneficial in mechanochemical reactions, which use mechanical force to selectively rupture bonds. Previous computational studies have focused on a static description of molecules in OEEFs, neglecting to test the influence of thermal oscillations on molecular stability. Here, we performed ab initio molecular dynamics (AIMD) simulations based on density functional theory (DFT) to investigate the behaviour of a model mechanophore under the simultaneous influence of thermal and electric field effects. We show that the change in bond length caused by a strong electric field is largely independent of the temperature, both without and with mechanical stretching forces applied to the molecule. The amplitude of thermal oscillations increases with increasing field strength and temperature, but at low temperatures, the application of mechanical force leads to an additional increase in amplitude. Our research shows that methods for applying mechanical force and OEEFs can be safely combined and included in an AIMD simulation at both low and high temperatures, allowing researchers to computationally investigate mechanochemical reactions in realistic application scenarios.
Collapse
Affiliation(s)
- Tarek Scheele
- University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße 6, D-28359, Bremen, Germany
| | - Tim Neudecker
- University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße 6, D-28359, Bremen, Germany
- University of Bremen, Bremen Center for Computational Materials Science, Am Fallturm 1, D-28359, Bremen, Germany
- University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359, Bremen, Germany
| |
Collapse
|
7
|
Průša J, Cifra M. Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field. Data Brief 2024; 52:109765. [PMID: 38370023 PMCID: PMC10873870 DOI: 10.1016/j.dib.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/20/2024] Open
Abstract
We present trajectories from non-equilibrium (in electric field) molecular dynamics (MD) simulations of a kinesin motor domain on tubulin heterodimers with two tubulin heterodimers forming neighbouring microtubule protofilaments. The trajectories are for no field (long equilibrium simulation), for four different electric field orientations (X, -X, Y, -Y) and for the X electric field at four different field strengths. We also provide a trajectory for larger simulation box. Our data enable to analyze the electric field effects on kinesin, which ultimately leads to kinesin detachment. This data set was used to understand the effect of electric field orientation and field strength on the kinetics and energetics of the electro-detachment of kinesin [1].
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czechia
| | | |
Collapse
|
8
|
Daub CD, Kurtén T. Effect of an Electric Field on the Structure and Stability of Atmospheric Clusters. J Phys Chem A 2024; 128:646-655. [PMID: 38217515 PMCID: PMC11389980 DOI: 10.1021/acs.jpca.3c07260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
We study the influence of an applied electric field on the structure and stability of some common bimolecular clusters that are found in the atmosphere. These clusters play an important role in new particle formation (NPF). For low values of the electric field (i.e., |E| ≤ 0.01 V Å-1), we demonstrate that the field response of the clusters can be predicted from simply calculating the dipole moment of the cluster and the dipole moments of the constituent molecules and that the influence on the association energy of the cluster is minimal (i.e., <0.5 kcal mol-1). For higher field strengths |E| > 0.2 V Å-1, there can be more dramatic effects on both structure and energetics, as the induced dipole, charge transfer, and geometric distortion play a larger role. Although such large fields are not very relevant in the atmosphere, they do exist in some situations of experimental interest, such as near interfaces and in intense laser fields.
Collapse
Affiliation(s)
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| |
Collapse
|
9
|
Ajide MT, English NJ. Nonequilibrium Ab Initio Molecular Dynamics Simulation of Water Splitting at Fe 2O 3-Hematite/Water Interfaces in an External Electric Field. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:24088-24105. [PMID: 38148852 PMCID: PMC10749450 DOI: 10.1021/acs.jpcc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
In the exploration of the optimal material for achieving the photoelectrochemical dissociation of water into hydrogen, hematite (α-Fe2O3) emerges as a highly promising candidate for proof-of-concept demonstrations. Recent studies suggest that the concurrent application of external electric fields could enhance the photoelectrochemical (PEC) process. To delve into this, we conducted nonequilibrium ab initio molecular dynamics (NE-AIMD) simulations in this study, focusing on hematite-water interfaces at room temperature under progressively stronger electric fields. Our findings reveal intriguing evidence of water molecule adsorption and dissociation, as evidenced by an analysis of the structural properties of the hydrated layered surface of the hematite-water interface. Additionally, we scrutinized intermolecular structures using radial distribution functions (RDFs) to explore the interaction between the hematite slab and water. Notably, the presence of a Grotthuss hopping mechanism became apparent as the electric field strength increased. A comprehensive discussion based on intramolecular geometry highlighted aspects such as hydrogen-bond lengths, H-bond angles, average H-bond numbers, and the observed correlation existing among the hydrogen-bond strength, bond-dissociation energy, and H-bond lifetime. Furthermore, we assessed the impact of electric fields on the librational, bending, and stretching modes of hydrogen atoms in water by calculating the vibrational density of states (VDOS). This analysis revealed distinct field effects for the three characteristic band modes, both in the bulk region and at the hematite-water interface. We also evaluated the charge density of active elements at the aqueous hematite surface, delving into field-induced electronic charge-density variations through the Hirshfeld charge density analysis of atomic elements. Throughout this work, we drew clear distinctions between parallel and antiparallel field alignments at the hematite-water interface, aiming to elucidate crucial differences in local behavior for each surface direction of the hematite-water interface.
Collapse
Affiliation(s)
- Mary T. Ajide
- School of Chemical &
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Niall J. English
- School of Chemical &
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Li K, Chen B, Li M, Jiang L, Song Y, Yang M. Facilitation of Hydrate Dissociation and Structural Evolution by Major Marine Anions under Static Electric Fields. J Phys Chem B 2023; 127:10447-10457. [PMID: 37991934 DOI: 10.1021/acs.jpcb.3c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Electric fields have been proven to be capable of significantly affecting the equilibrium state of hydrates. In this study, the thermodynamic properties and structural changes of methane hydrate (MH) in various anion solutions in an electric field at 0.7 V/nm were investigated by molecular dynamics simulations. The presence of anions significantly enhances the instability of methane hydrates under electric fields, leading to a staged dissociation process. First, the anions coexist with MH to form a temporary metastable structure under the action of an electric field. Then, the migration of anions causes the dissociation of nearby hydrates and the formation of flow channels in the hydrate layer, which leads to the complete dissociation of MH after a period. The promotive effects of F-, Br-, I-, and Cl- ions were close, while SO42- was relatively weak. The anions are still in hydration shells in the MH phase, but the structure of the hydration shells differs slightly from that in solution (the coordination numbers of I- and SO42- ions increased). The migration resistances of multiple anions to cross the surface of the hydrate layer are similar. However, inside the hydrate phase, the anions with a larger radius have a higher migration resistance. It is difficult for SO42- ions to migrate inside the hydrate phase, and they tend to form a metastable structure on the hydrate surface. Combining our previous studies, SrCl2 solution has the best hydrate promotion under an electric field environment.
Collapse
Affiliation(s)
- Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Bingbing Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Mingjun Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Lanlan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Hua H, Huang B, Yang X, Cheng J, Zhang P, Zhao J. Toward a molecular understanding of the conductivity of lithium-ion conducting polyanion polymer electrolytes by molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:29894-29904. [PMID: 37901964 DOI: 10.1039/d3cp02225k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
With the improved lithium-ion transference number near unity, the low conductivity of single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs) still hinders their application in high-rate batteries. Though some empirical conclusions on the conducting mechanism of SLIC-SPEs have been obtained, a more comprehensive study on the quantitative relationship between the molecular structure factors and ionic conduction performance is expected. In this study, a model structure that contains adjustable main chain and anion groups in the polyethylene oxide (PEO) matrix was used to clarify the influence of molecular structural factors on ionic conductivity and electrochemical stability of SLIC-SPEs. The anionic group was further disassembled into the intermediate group and end group while the main chain structure was distinguished into different degrees of polymerization and various lengths of the spacers between anions. Therefore, a well-defined molecular structure was employed to describe its relationship with ionic conductivity. In addition, the dissociation degree of salts and mobility of ions changing with the molecular structure were also discussed to explore the fundamental causes of conductivity. It can be concluded that the anion group affects the conductivity mainly via the dissociation degree, while the main chain structure impacts the conductivity by both dissociation degree and mobility.
Collapse
Affiliation(s)
- Haiming Hua
- College of Chemistry and Chemical Engineering, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technology, Ministry of Education, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | - Boyang Huang
- College of Chemistry and Chemical Engineering, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technology, Ministry of Education, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China.
| | - Xueying Yang
- College of Energy, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Peng Zhang
- College of Energy, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jinbao Zhao
- College of Chemistry and Chemical Engineering, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technology, Ministry of Education, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, Fujian, China.
- College of Energy, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
12
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
13
|
Vargas-Rosales P, D’Addio A, Zhang Y, Caflisch A. Disrupting Dimeric β-Amyloid by Electric Fields. ACS PHYSICAL CHEMISTRY AU 2023; 3:456-466. [PMID: 37780539 PMCID: PMC10540290 DOI: 10.1021/acsphyschemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
The early oligomers of the amyloid Aβ peptide are implicated in Alzheimer's disease, but their transient nature complicates the characterization of their structure and toxicity. Here, we investigate the stability of the minimal toxic species, i.e., β-amyloid dimers, in the presence of an oscillating electric field. We first use deep learning (AlphaFold-multimer) for generating initial models of Aβ42 dimers. The flexibility and secondary structure content of the models are then analyzed by multiple runs of molecular dynamics (MD). Structurally stable models are similar to ensemble representatives from microsecond-long MD sampling. Finally, we employ the validated model as the starting structure of MD simulations in the presence of an external oscillating electric field and observe a fast decay of β-sheet content at high field strengths. Control simulations using the helical dimer of the 42-residue leucine zipper peptide show higher structural stability than the Aβ42 dimer. The simulation results provide evidence that an external electric field (oscillating at 1 GHz) can disrupt amyloid oligomers which should be further investigated by experiments with brain organoids in vitro and eventually in vivo.
Collapse
Affiliation(s)
| | - Alessio D’Addio
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Yang Zhang
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| |
Collapse
|
14
|
Arepalli N, Mondal S, Chakraborty D, Chattaraj PK. Impact of Static-Oriented Electric Fields on the Kinetics of Some Representative Suzuki-Miyaura and Metal-Cluster Mediated Reactions. Molecules 2023; 28:6169. [PMID: 37630421 PMCID: PMC10459314 DOI: 10.3390/molecules28166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In order to examine the effect of oriented (static) electric fields (OEF) on the kinetics of some representative Suzuki-Miyaura and metal-cluster mediated reactions at ambient temperatures, density functional theory-based calculations are reported herein. Results indicate that, in general, OEF can facilitate the kinetics of the concerned reactions when applied along the suitable direction (parallel or anti-parallel with respect to the reaction axis). The reverse effect happens if the direction of the OEF is flipped. OEF (when applied along the 'right' direction) helps to polarize the transition states in the desired direction, thereby facilitating favorable bonding interactions. Given the growing need for finding appropriate catalysts among the scientific community, OEF can prove to be a vital route for the same.
Collapse
Affiliation(s)
- Navya Arepalli
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sukanta Mondal
- Department of Education, A. M. School of Educational Sciences, Assam University, Silchar 788011, Assam, India
| | - Debdutta Chakraborty
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
15
|
Zhao T, Yao H, Ji X, Yang X, Wu S. Molecular dynamics simulation of water condensation with nucleus under electromagnetic wave irradiation. J Mol Graph Model 2023; 123:108513. [PMID: 37270895 DOI: 10.1016/j.jmgm.2023.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The condensation process of water with different nuclei under electromagnetic wave irradiation was studied by molecular dynamics simulation. It was found that there is a different electric-field effect when the condensation nucleus was a small (NH4)2SO4 cluster than a CaCO3 nucleus. Through the analysis of the hydrogen-bond number, energy change, and dynamic behavior, we found that the effect of external electric field on the condensation process mainly comes from the change of potential energy caused by the dielectric response and there is a competition effect between the dielectric response and the dissolution in the system with (NH4)2SO4.
Collapse
Affiliation(s)
- Tuan Zhao
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Hongzhi Yao
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Xiangfei Ji
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Xiaoqing Yang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Shiyue Wu
- Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang, 550009, PR China.
| |
Collapse
|
16
|
Salehi N, Lohrasebi A, Bordbar AK. Preventing the amyloid-beta peptides accumulation on the cell membrane by applying GHz electric fields: A molecular dynamic simulation. J Mol Graph Model 2023; 123:108516. [PMID: 37216829 DOI: 10.1016/j.jmgm.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
Alzheimer's disease is associated with accumulating different amyloid peptides on the nerve cell membranes. The non-thermal effects of the GHz electric fields in this topic have yet to be well recognized. Hence, in this study, the impacts of 1 and 5 GHz electric fields on the amyloid peptide proteins accumulation on the cell membrane have been investigated, utilizing molecular dynamics (MD) simulation. The obtained results indicated that this range of electric fields did not significantly affect the peptide structure. Moreover, it was found that the peptide penetration into the membrane was increased as the field frequency was increased when the system was exposed to a 20 mv/nm oscillating electric field. In addition, it was observed that the protein-membrane interaction is reduced significantly in the presence of the 70 mv/nm electric field. The molecular level results reported in this study could be helpful in better understanding Alzheimer's disease.
Collapse
Affiliation(s)
- N Salehi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - A Lohrasebi
- Department of Physics, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - A K Bordbar
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
17
|
Korede V, Nagalingam N, Penha FM, van der Linden N, Padding JT, Hartkamp R, Eral HB. A Review of Laser-Induced Crystallization from Solution. CRYSTAL GROWTH & DESIGN 2023; 23:3873-3916. [PMID: 37159656 PMCID: PMC10161235 DOI: 10.1021/acs.cgd.2c01526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/11/2023]
Abstract
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114-28 Stockholm, Sweden
| | - Noah van der Linden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
18
|
Zhao L, Zhang T, Luo Y, Li L, Cheng R, Shi Z, Wang G, Ren T. Effects of temperature and microwave on the stability of the blast effector complex APikL2A/sHMA25 as determined by molecular dynamics analyses. J Mol Model 2023; 29:134. [PMID: 37041399 DOI: 10.1007/s00894-023-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, and understanding how abiotic stress affects the resistance of plants to this disease is useful for designing disease control strategies. In this paper, the effects of temperature and microwave irradiation on the effector complex comprising APikL2A from M. oryzae and sHMA25 from foxtail millet were investigated by molecular dynamics simulations using the GROMACS software package. While the structure of APikL2A/sHMA25 remained relatively stable in a temperature range of 290 K (16.85 °C) to 320 K (46.85 °C), the concave shape of the temperature-dependent binding free energy curve indicated that there was maximum binding affinity between APikL2A and sHMA25 at 300 K-310 K. This coincided with the optimum infectivity temperature, thus suggesting that coupling of the two polypeptides may play a role in the infection process. A strong oscillating electric field destroyed the structure of APikL2A/sHMA25, although it was stable and not susceptible to weak electric fields.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Ting Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Yanjie Luo
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Lin Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Zhigang Shi
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China.
| | - Tiancong Ren
- School of Resources and Environmental Sciences, Shijiazhuang University, Shijiazhuang, 050035, China.
| |
Collapse
|
19
|
Gullbrekken Ø, Røe IT, Selbach SM, Schnell SK. Charge Transport in Water-NaCl Electrolytes with Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2729-2738. [PMID: 36921121 PMCID: PMC10068734 DOI: 10.1021/acs.jpcb.2c08047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A systematic description of microscopic mechanisms is necessary to understand mass transport in solid and liquid electrolytes. From Molecular Dynamics (MD) simulations, transport properties can be computed and provide a detailed view of the molecular and ionic motions. In this work, ionic conductivity and transport numbers in electrolyte systems are computed from equilibrium and nonequilibrium MD simulations. Results from the two methods are compared with experimental results, and we discuss the significance of the frame of reference when determining and comparing transport numbers. Two ways of computing ionic conductivity from equilibrium simulations are presented: the Nernst-Einstein approximation or the Onsager coefficients. The Onsager coefficients take ionic correlations into account and are found to be more suitable for concentrated electrolytes. Main features and differences between equilibrium and nonequilibrium simulations are discussed, and some potential anomalies and critical pitfalls of using nonequilibrium molecular dynamics to determine transport properties are highlighted.
Collapse
Affiliation(s)
- Øystein Gullbrekken
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Ingeborg Treu Røe
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Sverre Magnus Selbach
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Sondre Kvalvåg Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| |
Collapse
|
20
|
Chakraborty A, Venkatramani R. Capturing the Polarization Response of Solvated Proteins under Constant Electric Fields in Molecular Dynamics Simulations. Chemphyschem 2023; 24:e202200646. [PMID: 36395205 DOI: 10.1002/cphc.202200646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/10/2022] [Indexed: 11/19/2022]
Abstract
We capture and compare the polarization response of a solvated globular protein ubiquitin to static electric (E-fields) using atomistic molecular dynamics simulations. We collectively follow E-field induced changes, electrical and structural, occurring across multiple trajectories using the magnitude of the protein dipole vector (Pp ). E-fields antiparallel to Pp induce faster structural changes and more facile protein unfolding relative to parallel fields of the same strength. While weak E-fields (0.1-0.5 V/nm) do not unfold ubiquitin and produce a reversible polarization, strong E-fields (1-2 V/nm) unfold the protein through a pathway wherein the helix:β-strand interactions rupture before those for the β1-β5 clamp. Independent of E-field direction, high E-field induced structural changes are also reversible if the field is switched off before Pp exceeds 2 times its equilibrium value. We critically examine the dependence of water properties, protein rotational diffusion and E-field induced protein unfolding pathways on the thermostat/barostat parameters used in our simulations.
Collapse
Affiliation(s)
- Anustup Chakraborty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| |
Collapse
|
21
|
Karna NK, Wohlert J, Hjorth A, Theliander H. Capillary forces exerted by a water bridge on cellulose nanocrystals: the effect of an external electric field. Phys Chem Chem Phys 2023; 25:6326-6332. [PMID: 36779301 DOI: 10.1039/d2cp05563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Capillary forces play an important role during the dewatering and drying of nanocellulosic materials. Traditional moisture removal techniques, such as heating, have been proved to be deterimental to the properties of these materials and hence, there is a need to develop novel dewatering techniques without affecting the desired properties of materials. It is, therefore, important to explore novel methods for dewatering these high-added-value materials without negatively influencing their properties. In this context, we explore the effect of electric field on the capillary forces developed by a liquid-water bridge between two cellulosic surfaces, which may be formed during the water removal process following its displacement from the interfibrillar spaces. All-atom molecular dynamics (MD) simulations have been used to study the influence of an externally applied electric field on the capillary force exerted by a water bridge. Our results suggest that the equilibrium contact angle of water and the capillary force exerted by the water bridge between two nanocellulosic surfaces depend on the magnitude and direction of the externally applied electric fields. Hence, an external electric field can be applied to manipulate the capillary forces between two particles. The close agreement between the capillary forces measured through MD simulations and those calculated through classical equations indicates that, within the range of the electric field applied in this study, Young-Laplace equations can be safely employed to predict the capillary forces between two particles. The present study provides insights into the use of electric fields for drying of nanocellulosic materials.
Collapse
Affiliation(s)
- Nabin Kumar Karna
- Chalmers University of Technology, Chalmersplatsen-4, Sweden. .,Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden.,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Hjorth
- Chalmers University of Technology, Chalmersplatsen-4, Sweden. .,Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden
| | - Hans Theliander
- Chalmers University of Technology, Chalmersplatsen-4, Sweden.
| |
Collapse
|
22
|
Kalita S, Bergman H, Dubey KD, Shaik S. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer's and Other Senile Plaques? J Am Chem Soc 2023; 145:3543-3553. [PMID: 36735972 PMCID: PMC9936589 DOI: 10.1021/jacs.2c12305] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of β-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of β-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the β-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on β-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), The Hebrew University of Jerusalem, Hadassah Medical Faculty, Jerusalem, Israel 91120
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
23
|
Chen B, Li K, Sun H, Jiang L, Yang M, Song Y. Promoting Effect of Common Marine Cations on Hydrate Dissociation and Structural Evolution under a Static Electric Field. J Phys Chem B 2023; 127:698-709. [PMID: 36629388 DOI: 10.1021/acs.jpcb.2c05382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural gas hydrate, a potential energy resource, is attracting worldwide attention. In this study, we propose a new method of hydrate dissociation which uses seawater and electrostatic fields (SE method) cooperatively. The hydrate molecular dissociation mechanism of gas hydrate is a key issue in studying the kinetic properties of gas hydrate using the SE method. Therefore, molecular dynamics simulations were used to investigate the thermodynamic properties and structural changes of methane hydrate (MH) in multiple kinds of salt solutions under an electrostatic field. The results show that the electric field can drive cations into the MH phase to form a series of random semiopen cages, which are essentially temporary and metastable. The variation in free energy indicates that it is more difficult for divalent cations to enter the hydrate phase than monovalent cations, meaning that the hydrate structures formed with divalent cations are more unstable. Then, the ion current occurred in the hydrate phase (called ion migration in this study), which greatly accelerated hydrate dissociation. In contrast, the promotion effect of cations with the same charge on MH dissociation is as follows: Sr2+ > K+ ≈ Na+ > Ca2+ ≈ Mg2+. In general, the presence of common marine cations enhanced the promotion effect of the electric field on gas hydrate dissociation.
Collapse
Affiliation(s)
- Bingbing Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Huiru Sun
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Lanlan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
24
|
Průša J, Cifra M. Electro-detachment of kinesin motor domain from microtubule in silico. Comput Struct Biotechnol J 2023; 21:1349-1361. [PMID: 36814722 PMCID: PMC9939557 DOI: 10.1016/j.csbj.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Collapse
|
25
|
Li M, Wan X, He X, Rong C, Liu S. Impacts of external fields on aromaticity and acidity of benzoic acid: a density functional theory, conceptual density functional theory and information-theoretic approach study. Phys Chem Chem Phys 2023; 25:2595-2605. [PMID: 36602177 DOI: 10.1039/d2cp04557e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of external fields on the molecular structure and reactivity properties has been of considerable interest in the recent literature. Benzoic acid as one of the most widely used compounds in medicinal and materials sciences is known for its dual propensity in aromaticity and acidity. In this work, we systematically investigate the impact of a uniform external electric field on these properties. We apply density functional theory, conceptual density functional theory, and an information-theoretic approach to appreciate the change pattern of aromaticity and acidity properties in external fields with different strengths. Our results show that they possess different change patterns under external fields, which can be satisfactorily rationalized by variations in reactivity descriptors and partial charges. The surprising yet novel results from this study should enrich the body of our knowledge about the impact of external fields for different kinds of electronic properties and provide guidance and foundation for future studies of this phenomenon in other molecular systems.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Xinjie Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
26
|
Hadidi H, Kamali R. Non-equilibrium molecular dynamics study of human aquaporin-2 in the static external electric fields. J Biomol Struct Dyn 2022; 40:10793-10801. [PMID: 34243696 DOI: 10.1080/07391102.2021.1950570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this paper, non-equilibrium MD simulations (NEMD) of human aquaporin-2 (AQP2) in the presence of an external static electric field have been performed along + z and - z directions of the pore axis. The impacts of the electric field direction on the gating mechanism corresponding to the selectivity filter (SF) region of AQP2 have been studied. Besides, the effects of applied external electric field on the PMF profile of water molecules translocation, water permeability, and molecules dipole orientation are investigated. Our results showed that when the external electric field is implemented along the + z direction of the channels, the selectivity filter region is kept in the wide conformation for the majority of the time. Therefore, a remarkable increase in the overall water permeability can be seen compared to the case without any external electric field. This is in contrast to the effects of - z-directed electric field on the conformations of the selectivity filter, which induces mostly narrow conformations in this constriction region. A substantial higher energy barrier emerged in the middle of the AQP2's pores under the effect of -z-directed electric field in comparison with the zero and + z-directed electric field strengths, which is mainly ascribed to the deviation from bipolar dipole orientation within the AQP2's pores.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hooman Hadidi
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Reza Kamali
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
27
|
Song Y, Li K, Sun H, Chen B, Yang M. New Sights on derived behaviors of methane hydrate molecular structure in Na+/Cl- ions invading process. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Shakoori MA, He M, Shahzad A, Khan M. Diffusion coefficients of electrorheological complex (dusty) plasmas. J Mol Model 2022; 28:398. [DOI: 10.1007/s00894-022-05394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
|
29
|
Yang YJ, Li SX, Chen DL, Long ZW. Geometric Structure, Electronic, and Spectral Properties of Metal-free Phthalocyanine under the External Electric Fields. ACS OMEGA 2022; 7:41266-41274. [PMID: 36406576 PMCID: PMC9670904 DOI: 10.1021/acsomega.2c04941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Here, the ground-state structures, electronic structures, polarizability, and spectral properties of metal-free phthalocyanine (H2Pc) under different external electric fields (EEFs) are investigated. The results show that EEF has an ultrastrong regulation effect on various aspects of H2Pc; the geometric structures, electronic properties, polarizability, and spectral properties are strongly sensitive to the EEF. In particular, an EEF of 0.025 a.u. is an important control point: an EEF of 0.025 a.u. will bend the benzene ring subunits to the positive and negative x directions of the planar molecule. Flipping the EEF from positive (0.025 a.u.) to negative (-0.025 a.u.) flips also the bending direction of benzene ring subunits. The H2Pc shows different dipole moments projecting an opposite direction along the x direction (-84 and 84 Debye for EEFs of -0.025 and 0.025 a.u., respectively) under negative and positive EEF, revealing a significant dipole moment transformation. Furthermore, when the EEF is removed, the molecule can be restored to the planar structure. The transformation of the H2Pc structure can be induced by the EEF, which has potential applications in the molecular devices such as molecular switches or molecular forceps. EEF lowers total energy and reduces highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap; especially, an EEF of 0.025 a.u. can reduce the HOMO-LUMO gap from 2.1 eV (in the absence of EEF) to 0.37 eV, and thus, it can enhance the molecular conductivity. The first hyperpolarizability of H2Pc is 0 in the absence of EEF; remarkably, an EEF of 0.025 a.u. can enhance the first hyperpolarizability up to 15,578 a.u. Therefore, H2Pc under the EEF could be introduced as a promising innovative nonlinear optical (NLO) nanomaterial such as NLO switches. The strong EEF (0.025 a.u.) causes a large number of new absorption peaks in IR and Raman spectra and causes the redshift of electronic absorption spectra. The changes of EEF can be used to regulate the structure transformation and properties of H2Pc, which can promote the application of H2Pc in nanometer fields such as molecular devices.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College
of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Merekalov AS, Derikov YI, Ezhov AA, Kriksin YA, Erukhimovich IY, Kudryavtsev YV. Orientation control of the hexagonal and lamellar phases in thin block copolymers films using in-plane AC electric field. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Kuang Z, Luginsland J, Thomas RJ, Dennis PB, Kelley-Loughnane N, Roach WP, Naik RR. Molecular dynamics simulations explore effects of electric field orientations on spike proteins of SARS-CoV-2 virions. Sci Rep 2022; 12:12986. [PMID: 35906467 PMCID: PMC9334739 DOI: 10.1038/s41598-022-17009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its current worldwide spread have caused a pandemic of acute respiratory disease COVID-19. The virus can result in mild to severe, and even to fatal respiratory illness in humans, threatening human health and public safety. The spike (S) protein on the surface of viral membrane is responsible for viral entry into host cells. The discovery of methods to inactivate the entry of SARS-CoV-2 through disruption of the S protein binding to its cognate receptor on the host cell is an active research area. To explore other prevention strategies against the quick spread of the virus and its mutants, non-equilibrium molecular dynamics simulations have been employed to explore the possibility of manipulating the structure–activity of the SARS-CoV-2 spike glycoprotein by applying electric fields (EFs) in both the protein axial directions and in the direction perpendicular to the protein axis. We have found out the application of EFs perpendicular to the protein axis is most effective in denaturing the HR2 domain which plays critical role in viral-host membrane fusion. This finding suggests that varying irradiation angles may be an important consideration in developing EF based non-invasive technologies to inactivate the virus.
Collapse
Affiliation(s)
- Zhifeng Kuang
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA.
| | - John Luginsland
- Work Performed With Confluent Sciences, LLC, Albuquerque, NM, 87111, USA
| | - Robert J Thomas
- 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Patrick B Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA
| | - William P Roach
- Air Force Office of Scientific Research, Arlington, VA, 22203, USA
| | - Rajesh R Naik
- 711Th Human Performance Wing, Air Force Research Laboratory, WPAFB, Dayton, OH, 45433, USA.
| |
Collapse
|
33
|
Meng X, Kang X. Accelerating water unidirectional transport efficiency through carbon nanotubes. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Wu S, Yang X, Jing H, Chu Y, Yuan J, Zhu Z, Huang K. Effect of external electric fields on sulfur dioxide–water systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Marracino P, Paffi A, d'Inzeo G. A rationale for non-linear responses to strong electric fields in molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:11654-11661. [PMID: 35536147 DOI: 10.1039/d1cp04466d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many approaches for calculation of the field-dependent electric properties of water solutions rely on the Onsager and Kirkwood theories of polar dielectrics. Such basic theories implicitly consider the electric field intensity to fulfill the so-called 'weak field conditions', i.e. to produce a linear response in the system. In this work we made use of molecular dynamics simulations to investigate possible non-linear effects induced by high intensity electric fields, specifically continuous wave bursts with nanosecond duration, comparing them with the ones predicted by the theory. We found that field intensities above 0.15 V nm-1 produce remarkable nonlinear responses in the whole 100 MHz-100 GHz frequency window considered, with the onset of higher order polarization signals, which are the clear fingerprint of harmonic distorsions. That non-linear response turned out to depend on the considered frequency. We finally show that MD outcomes are consistent with a modelization based on an extended formulation of the Langevin function including a frequency-dependent parameter.
Collapse
Affiliation(s)
- Paolo Marracino
- Rise Technology S. R. L., L. Re Paolo Toscanelli 170, 00121 Rome, Italy.
| | - Alessandra Paffi
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| | - Guglielmo d'Inzeo
- University of Rome "La Sapienza", DIET, Rome, Italy.,Centre on the Interactions between Electromagnetic Fields and Biosystems (ICEmB), University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Guan Y, Clark R, Philippi F, Zhang X, Welton T. How do external forces related to mass and charge affect the structures and dynamics of an ionic liquid?. J Chem Phys 2022; 156:204312. [DOI: 10.1063/5.0091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ionic liquids (ILs) are novel promising materials widely used in various fields. Their structures and properties can be tuned by means of external perturbations, thus further broadening their applications. Herein, forces proportional to atomic mass (mass-related field) and atomic charge (electric field) are applied in molecular dynamics simulations to the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide to investigate the origin of the resulting changes in structures and dynamics. The results show that both electric and mass-related fields cause the ion cages to expand and deform, eventually leading to their breakdown to produce a transformation of IL from cage structure to channel-like structure, which results in faster self-diffusion of ions in the directions of the applied force and to a lesser extent other directions. Further comparison of electric and mass-related fields demonstrates that only the electric fields reorientate cations to produce a hydrodynamically favoured conformation in the force direction which shows faster diffusion. The cis isomer of the anion is preferred in the presence of the electric fields, whereas applying the forces proportional to mass does not change the anion conformer equilibrium significantly. The results presented in this work aid in the understanding of how ions adjust their structures to adapt to external perturbations and facilitates the application of ILs as electrolytes.
Collapse
Affiliation(s)
- Yongji Guan
- School of Information Science and Engineering, Lanzhou University, China
| | - Ryan Clark
- Imperial College Department of Chemistry, United Kingdom
| | | | - Xiaoping Zhang
- School of Information Science and Engineering, Lanzhou University, China
| | - Thomas Welton
- Department of Chemistry, Imperial College London, United Kingdom
| |
Collapse
|
37
|
Gou D, Huang K, Liu Y, Shi H, Wu Z. Investigation of Spatial Orientation and Kinetic Energy of Reactive Site Collision between Benzyl Chloride and Piperidine: Novel Insight into the Microwave Nonthermal Effect. J Phys Chem A 2022; 126:2690-2705. [PMID: 35447029 DOI: 10.1021/acs.jpca.2c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microwave nonthermal effect in chemical reactions is still an uncertain problem. In this work, we have studied the spatial orientation and kinetic energy of reactive site collision between benzyl chloride and piperidine molecules in substitution reaction under microwave irradiation using the molecular dynamics simulation. Our results showed that microwave polarization can change the spatial orientation of reactive site collision. Collision probability between the Cl atom of the C-Cl group of benzyl chloride and the H atom of the N-H group of piperidine increased by up to 33.5% at an effective spatial solid angle (θ, φ) of (100∼110°, 170∼190°) under microwave irradiation. Also, collision probability between the C atom of the C-Cl group of benzyl chloride and the N atom of the N-H group of piperidine also increased by up to 25.6% at an effective spatial solid angle (θ, φ) of (85∼95°, 170∼190°). Moreover, the kinetic energy of collision under microwave irradiation was also changed, that is, for the collision between the Cl atom of the C-Cl group and the H atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J increased by 45.9 times under microwave irradiation, and for the collision between the C atom of the C-Cl group and the N atom of the N-H group, the fraction of high-energy collision greater than 6.39 × 10-19 J also increased by 29.2 times. Through simulation, the reaction rate increased by 34.4∼50.3 times under microwave irradiation, which is close to the experimental increase of 46.3 times. In the end, spatial orientation and kinetic energy of molecular collision changed by microwave polarization are summarized as the microwave postpolarization effect. This effect provides a new insight into the physical mechanism of the microwave nonthermal effect.
Collapse
Affiliation(s)
- Dezhi Gou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Liu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxiao Shi
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyan Wu
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
38
|
Self-Diffusion of Individual Adsorbed Water Molecules at Rutile (110) and Anatase (101) TiO2 Interfaces from Molecular Dynamics. CRYSTALS 2022. [DOI: 10.3390/cryst12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of individual water molecules’ self-diffusivities in adsorbed layers at TiO2 surfaces anatase (101) and rutile (110) have been determined at 300 K for inner and outer adsorbed layers, via classical molecular-dynamics methods. The layered-water structure has been identified and classified in layers making use of local order parameters, which proved to be an equally valid method of “self-ordering” molecules in layers. Significant distinctness was observed between anatase and rutile in disturbing these molecular distributions, more specifically in the adsorbed outer layer. Anatase (101) presented significantly higher values of self-diffusivity, presumably due to its “corrugated” structure that allows more hydrogen bonding interaction with adsorbed molecules beyond the first hydration layer. On the contrary, rutile (110) has adsorbed water molecules more securely “trapped” in the region between Ob atoms, resulting in less mobile adsorbed layers.
Collapse
|
39
|
Noble BB, Todorova N, Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys Chem Chem Phys 2022; 24:6327-6348. [PMID: 35245928 DOI: 10.1039/d1cp05510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electromagnetic bioeffects remain an enigma from both the experimental and theoretical perspectives despite the ubiquitous presence of related technologies in contemporary life. Multiscale computational modelling can provide valuable insights into biochemical systems and predict how they will be perturbed by external stimuli. At a microscopic level, it can be used to determine what (sub)molecular scale reactions various stimuli might induce; at a macroscopic level, it can be used to examine how these changes affect dynamic behaviour of essential molecules within the crowded biomolecular milieu in living tissues. In this review, we summarise and evaluate recent computational studies that examined the impact of externally applied electric and electromagnetic fields on biologically relevant molecular systems. First, we briefly outline the various methodological approaches that have been employed to study static and oscillating field effects across different time and length scales. The practical value of such modelling is then illustrated through representative case-studies that showcase the diverse effects of electric and electromagnetic field on the main physiological solvent - water, and the essential biomolecules - DNA, proteins, lipids, as well as some novel biomedically relevant nanomaterials. The implications and relevance of the theoretical multiscale modelling to practical applications in therapeutic medicine are also discussed. Finally, we summarise ongoing challenges and potential opportunities for theoretical modelling to advance the current understanding of electromagnetic bioeffects for their modulation and/or beneficial exploitation in biomedicine and industry.
Collapse
Affiliation(s)
- Benjamin B Noble
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
40
|
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook. ENERGIES 2022. [DOI: 10.3390/en15041553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems, together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen, the ultimate clean fuel, from the Sun, and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting, but it is very inefficient; rather, we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields, and in how this can alter and boost PEC activity, drawing both on experiment and non-equilibrium molecular simulation.
Collapse
|
41
|
Ren HC, Ji LX, Chen TN, Liu YG, Liu RP, Wei DQ, Jia XZ, Ji GF. Revealing the Relationship between Electric Fields and the Conformation of Oxytocin Using Quasi-Static Amide-I Two-Dimensional Infrared Spectra. ACS OMEGA 2022; 7:3758-3767. [PMID: 35128284 PMCID: PMC8811763 DOI: 10.1021/acsomega.1c06600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
It is reported that the cis/trans conformation change of the peptide hormone oxytocin plays an important role in its receptors and activation and the cis conformation does not lead to antagonistic activity. Motivated by recent experiments and theories, the quasi-static amide-I 2D IR spectra of oxytocin are investigated using DFT/B3LYP (D3)/6-31G (d, p) in combination with the isotope labeling method under different electric fields. The theoretical amide-I IR spectra and bond length of the disulfide bond are consistent with the experimental values, which indicates that the theoretical modes are reasonable. Our theoretical results demonstrate that the oxytocin conformation is transformed from the cis conformation to the trans conformation with the change of the direction of the electric field, which is confirmed by the distance of the backbone carbonyl oxygen of Cys6 and Pro7, the Ramachandran plot of Cys6 and Pro7, the dihedral angle of Cβ-S-S-Cβ, and the rmsd of the oxytocin backbone. Moreover, the trans conformation as the result of the turn in the vicinity of Pro7 has a tighter secondary spatial structure than the cis conformation, including stronger hydrogen bonds, longer γ-turn geometry involving five amino acids, and a more stable disulfide bond. Our work provides new insights into the relationship between the conformation, the activation of the peptide hormone oxytocin, and the electric fields.
Collapse
Affiliation(s)
- Hai-Chao Ren
- Xi’an
Modern Chemistry Research Institute, Xi’an 710065, China
| | - Lin-Xiang Ji
- Department
of Physics and Engineering Physics, University
of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Tu-Nan Chen
- The
First Affiliated Hospital, Army Medical
University, Chongqing 400038, China
| | - Yong-Gang Liu
- State
Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621900, China
| | - Rui-Peng Liu
- Xi’an
Modern Chemistry Research Institute, Xi’an 710065, China
| | - Dong-Qing Wei
- College
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
- College of
Food Science and Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Xian-Zhen Jia
- Xi’an
Modern Chemistry Research Institute, Xi’an 710065, China
| | - Guang-Fu Ji
- National
Key Laboratory for Shock Wave and Detonation Physics Research, Institute
of Fluid Physics, Chinese Academy of Engineering
Physics, Mianyang 621900, China
| |
Collapse
|
42
|
Chatterjee S, Kumar I, Ghanta KC, Hens A, Biswas G. Insight into molecular rearrangement of a sessile ionic nanodroplet with applied electric field. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Zhang Q, Shao D, Xu P, Jiang Z. Effects of an Electric Field on the Conformational Transition of the Protein: Pulsed and Oscillating Electric Fields with Different Frequencies. Polymers (Basel) 2021; 14:polym14010123. [PMID: 35012145 PMCID: PMC8747415 DOI: 10.3390/polym14010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
The effect of pulsed and oscillating electric fields with different frequencies on the conformational properties of all-α proteins was investigated by molecular dynamics simulations. The root mean square deviation, the root mean square fluctuation, the dipole moment distribution, and the secondary structure analysis were used to assess the protein samples’ structural characteristics. In the simulation, we found that the higher frequency of the electric field influences the rapid response to the secondary structural transitions. However, the conformational changes measured by RMSD are diminished by applying the electrical field with a higher frequency. During the dipole moment analysis, we found that the magnitude and frequency of the dipole moment was directly related to the strength and frequency of the external electric field. In terms of the type of electric fields, we found that the average values of RMSD and RMSF of whole molecular protein are larger when the protein is exposed in the pulsed electric field. Concerning the typical sample 1BBL, the secondary structure analysis showed that two alpha-helix segments both transit to turns or random coils almost simultaneously when it is exposed in a pulsed electric field. Meanwhile, two segments present the different characteristic times when the transition occurs in the condition of an oscillating electric field. This study also demonstrated that the protein with fewer charged residues or more residues in forming α-helical structures display the higher conformational stability. These conclusions, achieved using MD simulations, provide a theoretical understanding of the effect of the frequency and expression form of external electric fields on the conformational changes of the all-α proteins with charged residues and the guidance for anticipative applications.
Collapse
|
44
|
Futera Z, English NJ. Dielectric properties of ice VII under the influence of time-alternating external electric fields. Phys Chem Chem Phys 2021; 24:56-62. [PMID: 34698743 DOI: 10.1039/d1cp04165g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high-pressure solid phase of water known as ice VII has recently attracted a lot of attention when its presence was detected in large exoplanets, their icy satellites, and even in Earth's mantle. Moreover, a transition of ice VII to the superionic phase can be triggered by external electric fields. Here, we investigate the dielectric responses of ice VII to applied oscillating electric fields of various frequencies employing non-equilibrium ab initio molecular dynamics. We focus on the dynamical properties of a dipole-ordered ice VII structure, for which we explored external-field-induced electronic polarisation and the vibrational spectral density of states (VDOS). These analyses are important for the understanding of collective motions in the ice-VII lattice and the electronic properties of this exotic water phase.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
45
|
Karna NK, Lidén A, Wohlert J, Theliander H. Electroassisted Filtration of Microfibrillated Cellulose: Insights Gained from Experimental and Simulation Studies. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nabin Kumar Karna
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, Linköping University, SE-100 44 Stockholm, Sweden
| | - Anna Lidén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, Linköping University, SE-100 44 Stockholm, Sweden
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Hans Theliander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, Linköping University, SE-100 44 Stockholm, Sweden
| |
Collapse
|
46
|
Cassone G, Sponer J, Saija F. Molecular dissociation and proton transfer in aqueous methane solution under an electric field. Phys Chem Chem Phys 2021; 23:25649-25657. [PMID: 34782902 DOI: 10.1039/d1cp04202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (∼50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V Å-1). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V Å-1) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm-1) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolska 135, 61265 Brno, Czech Republic
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy.
| |
Collapse
|
47
|
Yu H, Song YC, Bae BU, Li J, Jang SH. Electrostatic Fields Promote Methanogenesis More than Polarized Bioelectrodes in Anaerobic Reactors with Conductive Materials. ACS OMEGA 2021; 6:29703-29712. [PMID: 34778642 PMCID: PMC8582064 DOI: 10.1021/acsomega.1c04108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Direct interspecies electron transfer (DIET) is a breakthrough that can surpass the limitations of anaerobic digestion. Conductive materials and polarized bioelectrodes are known to induce DIET for methane production but are still challenging to apply at a field scale. Herein, compared to polarized bioelectrodes, electrostatic fields that promote DIET were investigated in an anaerobic reactor with conductive materials. As a conductive material, activated carbon enriched its surface with electroactive microorganisms to induce DIET (cDIET). cDIET improved the methane yield to 254.6 mL/g CODr, compared to the control. However, polarized bioelectrodes induced electrode-mediated DIET and biological DIET (bDIET), in addition to cDIET, improving the methane yield to 310.7 mL/g CODr. Electrostatic fields selectively promoted bDIET and cDIET for further methane production compared to the polarized bioelectrodes. As the contribution of DIET increased, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.
Collapse
Affiliation(s)
- Hanchao Yu
- Department
of Environmental Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department
of Environmental Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Byung-Uk Bae
- Department
of Environmental Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jun Li
- Institute
of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Seong-Ho Jang
- Department
of Bio-Environmental Energy, Pusan National
University, Miryang 50463, Republic of Korea
| |
Collapse
|
48
|
English NJ. Electric-field-promoted photo-electrochemical production of hydrogen from water splitting. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Kathmann SM. Electric fields and potentials in condensed phases. Phys Chem Chem Phys 2021; 23:23836-23849. [PMID: 34647950 DOI: 10.1039/d1cp03571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electric fields and potentials inside and at the interface of matter are relevant to many branches of physics, chemistry, and biology. Accurate quantification of these fields and/or potentials is essential to control and exploit chemical and physical transformations. Before we understand the response of matter to external fields, it is first important to understand the intrinsic interior and interfacial fields and potentials, both classically and quantum mechanically, as well as how they are probed experimentally. Here we compare and contrast, beginning with the hydrogen atom in vacuum and ending with concentrated aqueous NaCl electrolyte, both classical and quantum mechanical electric potentials and fields. We make contact with experimental vibrational Stark, electrochemical, X-ray, and electron spectroscopic probes of these potentials and fields, outline relevant conceptual difficulties, and underscore the advantage of electron holography as a basis to better understand electrostatics in matter.
Collapse
Affiliation(s)
- Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
50
|
Tharushi Perera PG, Todorova N, Vilagosh Z, Bazaka O, Nguyen THP, Bazaka K, Crawford RJ, Croft RJ, Yarovsky I, Ivanova EP. Translocation of silica nanospheres through giant unilamellar vesicles (GUVs) induced by a high frequency electromagnetic field. RSC Adv 2021; 11:31408-31420. [PMID: 35496859 PMCID: PMC9041541 DOI: 10.1039/d1ra05459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023] Open
Abstract
Membrane model systems capable of mimicking live cell membranes were used for the first time in studying the effects arising from electromagnetic fields (EMFs) of 18 GHz where membrane permeability was observed following exposure. A present lack of understanding of the mechanisms that drive such a rapid change in membrane permeabilization as well as any structural or dynamic changes imparted on biomolecules affected by high-frequency electromagnetic irradiation limits the use of 18 GHz EMFs in biomedical applications. A phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) labelled with a fluorescent marker 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (rhodamine-DOPE) was used in constructing the giant unilamellar vesicles (GUVs). After three cycles of exposure, enhanced membrane permeability was observed by the internalisation of hydrophilic silica nanospheres of 23.5 nm and their clusters. All-atom molecular dynamics simulations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes exposed to high frequency electric fields of different field strengths showed that within the simulation timeframe only extremely high strength fields were able to cause an increase in the interfacial water dynamics characterized by water dipole realignments. However, a lower strength, high frequency EMF induced changes of the water hydrogen bond network, which may contribute to the mechanisms that facilitate membrane permeabilization in a longer timeframe.
Collapse
Affiliation(s)
- Palalle G Tharushi Perera
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
- Faculty Science, Engineering and Technology, Swinburne University of Technology PO Box 218 Hawthorn VIC 3122 Australia
| | - Nevena Todorova
- School of Engineering, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Zoltan Vilagosh
- Faculty Science, Engineering and Technology, Swinburne University of Technology PO Box 218 Hawthorn VIC 3122 Australia
| | - Olha Bazaka
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | | | - Kateryna Bazaka
- School of Engineering, College of Engineering and Computer Science, The Australian National University Canberra ACT 2600 Australia
| | - Russell J Crawford
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Rodney J Croft
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong Wollongong NSW 2522 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, RMIT University PO Box 2476 Melbourne VIC 3001 Australia
| |
Collapse
|