1
|
Sadan S, Svenum IH, Hanslin SØ, Akola J. Reaction modelling of hydrogen evolution on nickel phosphide catalysts: density functional investigation. Phys Chem Chem Phys 2024; 26:25957-25968. [PMID: 39365166 DOI: 10.1039/d4cp02760d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Nickel phosphides (NixPy), particularly Ni2P, are promising catalysts for the acidic hydrogen evolution reaction (HER). Using density functional theory (DFT), we model HER at the potential of zero charge (PZC), incorporating solvation effects via an explicit water cluster and implicit surrounding solvent. Comparing the Volmer, Tafel, and Heyrovsky steps under saturated hydrogen coverage on Ni2P(0001) terminations, we find that the Ni3P2 (pristine) surface termination prefers the Volmer-Volmer-Tafel (VVT) pathway with activation energy (Ea) of 0.57 eV. Conversely, the Ni3P2 + 4P (reconstructed) surface favors the Volmer-Heyrovsky (VH) pathway with Ea = 0.60 eV. For the pristine surface termination, the differential gas-phase hydrogen adsorption free energies (ΔGdiff) correlate with the Volmer and Tafel step reaction energies, and a linear Bell-Evans-Polanyi relationship for the calculated activation and reaction energies validates the usefulness of the ΔGdiff descriptor for the Volmer step under PZC conditions. Nickel atoms play a crucial role in H2 production on both pristine and reconstructed surfaces, suggesting that modifications of the Ni sites can be used for catalyst design. Our findings highlight the importance of considering surface reconstruction and solvation effects on the HER catalytic performance.
Collapse
Affiliation(s)
- Syam Sadan
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Ingeborg-Helene Svenum
- SINTEF Industry, Postboks 4760 Torgarden, NO-7465 Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sander Ø Hanslin
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
- Computational Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| |
Collapse
|
2
|
Karam L, Farès C, Weidenthaler C, Neumann CN. Expedited Synthesis of Metal Phosphides Maximizes Dispersion, Air Stability, and Catalytic Performance in Selective Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202404292. [PMID: 38860426 DOI: 10.1002/anie.202404292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Metal phosphides have been hailed as potential replacements for scarce noble metal catalysts in many aspects of the hydrogen economy from hydrogen evolution to selective hydrogenation reactions. But the need for dangerous and costly phosphorus precursors, limited support dispersion, and low stability of the metal phosphide surface toward oxidation substantially lower the appeal and performance of metal phosphides in catalysis. We show here that a 1-step procedure that relies on safe and cheap precursors can furnish an air-stable Ni2P/Al2O3 catalyst containing 3.2 nm nanoparticles. Ni2P/Al2O3 1-step is kinetically competitive with the palladium-based Lindlar catalyst in selective hydrogenation catalysis, and a loading corresponding to 4 ppm Ni was sufficient to convert 0.1 mol alkyne. The 1-step synthetic procedure alters the surface ligand speciation of Ni2P/Al2O3, which protects the nanoparticle surface from oxidation, and ensures that 85 % of the initial catalytic activity was retained after the catalyst was stored under air for 1.5 years. Preparation of Ni2P on a variety of supports (silica, TiO2, SBA-15, ZrO2, C and HAP) as well as Co2P/Al2O3, Co2P/TiO2 and bimetallic NiCoP/TiO2 demonstrates the generality with which supported metal phosphides can be accessed in a safe and straightforward fashion with small sizes and high dispersion.
Collapse
Affiliation(s)
- Leila Karam
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Christophe Farès
- Department of Nuclear Magnetic Resonance, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Claudia Weidenthaler
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Graves LS, Sarkar R, Baker J, Lao KU, Arachchige IU. Structure- and Morphology-Controlled Synthesis of Hexagonal Ni 2-x Zn x P Nanocrystals and Their Composition-Dependent Electrocatalytic Activity for Hydrogen Evolution Reaction. ACS APPLIED ENERGY MATERIALS 2024; 7:5679-5690. [PMID: 39055071 PMCID: PMC11267498 DOI: 10.1021/acsaem.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Nickel phosphides are an emerging class of earth-abundant catalysts for hydrogen generation through water electrolysis. However, the hydrogen evolution reaction (HER) activity of Ni2P is lower than that of benchmark Pt group catalysts. To address this limitation, an integrated theoretical and experimental study was performed to enhance the HER activity and stability of hexagonal Ni2P through doping with synergistic transition metals. Among the nine dopants computationally studied, zinc emerged as an ideal candidate due to its ability to modulate the hydrogen binding free energy (ΔG H) closer to a thermoneutral value. Consequently, phase pure hexagonal Ni2-x Zn x P nanocrystals (NCs) with a solid spherical morphology, variable compositions (x = 0-17.14%), and size in the range of 6.8 ± 1.1-9.1 ± 1.1 nm were colloidally synthesized to investigate the HER activity and stability in alkaline electrolytes. As predicted, the HER performance was observed to be composition-dependent with Zn compositions (x) of 0.03, 0.07, and 0.15 demonstrating superior activity with overpotentials (η-10) of 188.67, 170.01, and 135.35 mV, respectively at a current density of -10 mA/cm2, in comparison to Ni2P NCs (216.2 ± 4.4 mV). Conversely, Ni2-x Zn x P NCs with x = 0.01, 0.38, 0.44, and 0.50 compositions showed a notable decrease in HER activity, with corresponding η-10 of 225.3 ± 3.2, 269.9 ± 4.3, 276.4 ± 3.7 and 263.9 ± 4.9 mV, respectively. The highest HER active catalyst was determined to be Ni1.85Zn0.15P NCs, featuring a Zn concentration of 5.24%, consistent with composition-dependent ΔG H calculations. The highest performing Ni1.85Zn0.15P NCs displayed a Heyrovsky HER mechanism, enhanced kinetics and electrochemically active surface area (ECSA), and superior corrosion tolerance with a negligible increase of η-10 after 10 h of continuous HER. This study provides critical insights into enhancing the performance of metal phosphides through doping-induced electronic structure variation, paving the way for the design of high-efficiency and durable nanostructures for heterogeneous catalytic studies.
Collapse
Affiliation(s)
| | | | - Jordon Baker
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Indika U. Arachchige
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
4
|
Ahlstedt O, Akola J. Hydrogen evolution descriptors of 55-atom PtNi nanoclusters and interaction with graphite. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325001. [PMID: 38670082 DOI: 10.1088/1361-648x/ad4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Density functional simulations have been performed for PtnNi55-nclusters (n=0,12,20,28,42,55) to investigate their catalytic properties for the hydrogen evolution reaction (HER). Starting from the icosahedralPt12Ni43, hydrogen adsorption energetics and electronicd-band descriptors indicate HER activity comparable to that of purePt55(distorted reduced core structure). The PtNi clusters accommodate a large number of adsorbed hydrogen before reaching a saturated coverage, corresponding to 3-4 H atoms per icosahedron facet (in total ∼70-80). The differential adsorption free energies are well within the window of|ΔGH|<0.1 eV which is considered optimal for HER. The electronic descriptors show similarities with the platinumd-band, although the uncovered PtNi clusters are magnetic. Increasing hydrogen coverage suppresses magnetism and depletes electron density, resulting in expansion of the PtNi clusters. For a single H atom, the adsorption free energy varies between -0.32 (Pt12Ni43) and -0.59 eV (Pt55). The most stable adsorption site is Pt-Pt bridge for Pt-rich compositions and a hollow site surrounded by three Ni for Pt-poor compositions. A hydrogen molecule dissociates spontaneously on the Pt-rich clusters. The above HER activity predictions can be extended to PtNi on carbon support as the interaction with a graphite model structure (w/o vacancy defect) results in minor changes in the cluster properties only. The cluster-surface interaction is the strongest forPt55due to its large facing facet and associated van der Waals forces.
Collapse
Affiliation(s)
- Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, PO Box 692, FI-33014 Tampere, Finland
| | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, PO Box 692, FI-33014 Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
5
|
Liu Y, Ding M, Qin Y, Zhang B, Zhang Y, Huang J. Crystalline/Amorphous Mo-Ni(OH) 2/Fe xNi y(OH) 3x+2y hierarchical nanotubes as efficient electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 657:219-228. [PMID: 38039882 DOI: 10.1016/j.jcis.2023.11.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The development of efficient bifunctional catalysts for overall water splitting is highly desirable and essential for the advancement of hydrogen technology. In this work, Mo-Ni(OH)2/FexNiy(OH)3x+2y with hierarchical nanotube structure is constructed on flexible carbon cloth (CC) through simple electrochemical deposition and hydrothermal method. The hollow tube-structure is in favor of both exposing active sites and enhancing mass transfer capability. Moreover, the doping of Mo can enhance the electronic conductivity of heterostructures. The interfacial interaction between amorphous and crystal can enhance effectively the charge transfer kinetics across the interface. Therefore, Mo-Ni(OH)2/FexNiy(OH)3x+2y can achieve a low overpotential of 57 mV for hydrogen evolution reaction (HER) and 229 mV for oxygen evolution reaction (OER) at 10 mA·cm-2. In addition, Mo-Ni(OH)2/FexNiy(OH)3x+2y needs a potential of only 1.54 V at 10 mA·cm-2 for overall water splitting, and retains for a long period of time (60 h) reliable. The work will provide a valuable approach to the construction of highly efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Yutong Liu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Meng Ding
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China.
| | - Yuan Qin
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Baojie Zhang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Yafang Zhang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| | - Jinzhao Huang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, People's Republic of China
| |
Collapse
|
6
|
Liu ZZ, Yu N, Fan RY, Dong B, Yan ZF. Design and multilevel regulation of transition metal phosphides for efficient and industrial water electrolysis. NANOSCALE 2024; 16:1080-1101. [PMID: 38165428 DOI: 10.1039/d3nr04822e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Renewable energy electrolysis of water to produce hydrogen is an effective measure to break the energy dilemma. However, achieving activity and stability at a high current density is still a key problem in water electrolyzers. Transition metal phosphides (TMPs), with high activity and relative inexpensiveness, have become excellent candidates for the production of highly pure green hydrogen for industrial applications. In this mini-review, multilevel regulation strategies including nanoscale control, surface composition and interface structure design of high-performance TMPs for hydrogen evolution are systematically summarized. On this basis, in order to achieve large-scale hydrogen production in industry, the hydrogen evolution performance and stability of TMPs at a high current density are also discussed. Peculiarly, the practical application and requirements in proton exchange membrane (PEM) or anion exchange membrane (AEM) electrolyzers can guide the advanced design of regulatory strategies of TMPs for green hydrogen production from renewable energy. Finally, the challenges and prospects in the future development trend of TMPs for efficient and industrial water electrolysis are given.
Collapse
Affiliation(s)
- Zi-Zhang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Ning Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Ruo-Yao Fan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Zi-Feng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
7
|
A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Kuo DY, Nishiwaki E, Rivera-Maldonado RA, Cossairt BM. The Role of Hydrogen Adsorption Site Diversity in Catalysis on Transition-Metal Phosphide Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ding-Yuan Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily Nishiwaki
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Brandi M. Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Li X, Xing W, Hu T, Luo K, Wang J, Tang W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Yuan M, Luo J, Xu H, Wang C, Wang Y, Wang Y, Wang X, Du Y. Hydrogen evolution reaction catalysis on RuM (M = Ni, Co) porous nanorods by cation etching. J Colloid Interface Sci 2022; 624:279-286. [PMID: 35660897 DOI: 10.1016/j.jcis.2022.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The development of efficient and stable nanomaterial electrocatalysts for the hydrogen evolution reaction (HER) is of great significance for renewable energy conversion via water electrolysis. Herein, we have developed a novel class of bimetallic RuM (M = Ni, Co) hollow nanorods (HNRs) through a facile Fe3+ etching strategy, as electrocatalysts for enhancing the HER. Morphological physical characterization and electrochemical tests demonstrated that RuM (M = Ni, Co) HNRs with hollow structures can effectively enhance electrocatalytic activity due to their high specific surface areas. Impressively, the RuNi HNRs exhibited superior HER performance with an overpotential of merely 25.6 mV in 1 M KOH solution at 10 mA cm-2, which is significantly lower than that of commercial Pt/C (44.7 mV). Moreover, the as prepared RuNi HNRs showed excellent stability and could continuously work at a current density of 10 mA cm-2 for 40 h with a negligible increase in potential. The Ru-based HNRs also showed high HER activity in an acidic solution. This study paves a new way for the universal fabrication of bimetallic hollow structured nanomaterials as efficient electrocatalysts for boosting the HER.
Collapse
Affiliation(s)
- Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jing Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaomei Wang
- Suzhou University Science and Technology, School of Chemical Biology and Materials Engineering, Suzhou 215009, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Meera MS, Sasidharan SK, Hossain A, Kiss J, Kónya Z, Elias L, Shibli SMA. Effect of Excess B in Ni 2P-Coated Boron Nitride on the Photocatalytic Hydrogen Evolution from Water Splitting. ACS APPLIED ENERGY MATERIALS 2022. [DOI: 10.1021/acsaem.1c04086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muraleedharan Sheela Meera
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sreekala Keerthi Sasidharan
- Department of Nanotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Aslam Hossain
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - János Kiss
- ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
| | - Zoltán Kónya
- ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. 1., H-6720 Szeged, Hungary
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
12
|
Zhang J, Zhou H, Liu Y, Zhang J, Cui Y, Li J, Lian J, Wang G, Jiang Q. Interface Engineering of CoP 3/Ni 2P for Boosting the Wide pH Range Water-Splitting Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52598-52609. [PMID: 34705420 DOI: 10.1021/acsami.1c14685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing electrocatalysts with low price, high energy efficiency, and universal pH value for hydrogen/oxygen evolution reaction (HER and OER) is very important for the wide application of electrochemical water splitting in hydrogen production. The results of density functional theory show that the interface region of CoP3/Ni2P heterostructures can significantly boost all of the catalytic performances. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to confirm the abundant structural defects and the corresponding adjustment of the electronic state, thus ameliorating the activation energy, conductivity, and active area of the catalyst. Benefiting from these, CoP3/Ni2P heterostructures exhibit superior performance of both HER and OER in a wide pH range. CoP3/Ni2P can also be used for water splitting (1.557 V at 10 mA cm-2) more than 40 h, superior to benchmark pairs of Pt/C and RuO2 on Ni foam.
Collapse
Affiliation(s)
- Junyu Zhang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Hongyu Zhou
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education) and State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, PR China
| | - Jiupeng Zhang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Yuhuan Cui
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Jianchen Li
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Jianshe Lian
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Guoyong Wang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, PR China
| |
Collapse
|
13
|
Bhuyan AA, Akbar Bhuiyan A, Memon AM, Zhang B, Alam J, He QG. The in vitro antiviral activity of Lacticaseibacillus casei MCJ protein-based metabolites on bovine viral diarrhea virus. Anim Biotechnol 2021; 34:340-349. [PMID: 34495814 DOI: 10.1080/10495398.2021.1967964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a ubiquitous immunosuppressive etiological agent which is economically important for a wide host range in the livestock industry. Lactobacillus spp. has widely been using in the field of management and treatment of gastro-enteric disease for both humans and animals. The ability of Lacticaseibacillus casei MCJ protein-based metabolized to suppress BVDV infection in Madin-Darby Bovine Kidney cell line was demonstrated in this study. The protein-based metabolites were extracted from the cultured L. casei to obtain the safest and beneficial form of the probiotic bacteria. It is revealed that LPM have no cytotoxic effect and the cell viability remain more than 80% even after the cells are treated with 3000 µg/mL of LPM. The results of the plaque formation assay showed that LPM can reduce the viral infection rate. To know the mechanism of LPM for anti-BVDV activity, MDBK cells were exposed to LPM before, after and co-incubation of virus infection. The co-treatment of LPM with BVDV revealed the best results. The results suggest that the LPM has a potential anti-BVDV activity which could be a prospective candidate for the prevention and control of BVDV infection in an animal.
Collapse
Affiliation(s)
- Anjuman Ara Bhuyan
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Institute of Biotechnology, Savar, Bangladesh
| | - Ali Akbar Bhuiyan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jahangir Alam
- National Institute of Biotechnology, Savar, Bangladesh
| | - Qi-Gai He
- State Key Laboratory of Agricultural Microbiology, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Wang Q, Zhang Z, Cai C, Wang M, Zhao ZL, Li M, Huang X, Han S, Zhou H, Feng Z, Li L, Li J, Xu H, Francisco JS, Gu M. Single Iridium Atom Doped Ni 2P Catalyst for Optimal Oxygen Evolution. J Am Chem Soc 2021; 143:13605-13615. [PMID: 34465098 DOI: 10.1021/jacs.1c04682] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-atom catalysts (SACs) with 100% active sites have excellent prospects for application in the oxygen evolution reaction (OER). However, further enhancement of the catalytic activity for OER is quite challenging, particularly for the development of stable SACs with overpotentials <180 mV. Here, we report an iridium single atom on Ni2P catalyst (IrSA-Ni2P) with a record low overpotential of 149 mV at a current density of 10 mA·cm-2 in 1.0 M KOH. The IrSA-Ni2P catalyst delivers a current density up to ∼28-fold higher than that of the widely used IrO2 at 1.53 V vs RHE. Both the experimental results and computational simulations indicate that Ir single atoms preferentially occupy Ni sites on the top surface. The reconstructed Ir-O-P/Ni-O-P bonding environment plays a vital role for optimal adsorption and desorption of the OER intermediate species, which leads to marked enhancement of the OER activity. Additionally, the dynamic "top-down" evolution of the specific structure of the Ni@Ir particles is responsible for the robust single-atom structure and, thus, the stability property. This IrSA-Ni2P catalyst offers novel prospects for simplifying decoration strategies and further enhancing OER performance.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhe Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Cai
- School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
| | - Maoyu Wang
- School of Chemical, Biological and Environment Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Zhi Liang Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaobo Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhenxing Feng
- School of Chemical, Biological and Environment Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Joseph S Francisco
- Department of Earth and Environmental, Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Yuan M, Wang C, Wang Y, Wang Y, Wang X, Du Y. General fabrication of RuM (M = Ni and Co) nanoclusters for boosting hydrogen evolution reaction electrocatalysis. NANOSCALE 2021; 13:13042-13047. [PMID: 34477787 DOI: 10.1039/d1nr02752b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design and fabrication of highly active electrocatalysts toward the hydrogen evolution reaction (HER) are of paramount significance in industrial hydrogen production via water electrolysis. Herein, by taking advantage of the high surface-to-volume ratio, maximized atom-utilization efficiency, and quantum size effect, we have successfully fabricated an innovative class of Ru-based alloy nanoclusters. Impressively, carbon fiber cloth (CFC) supported RuNi nanoclusters could exhibit outstanding electrocatalytic performance toward the HER, in which the optimal composition RuNi/CFC could achieve a current density of 10 mA cm-2 with an overpotential of merely 43.0 mV in 1 M KOH electrolyte, as well as a low Tafel slope of 30.4 mF dec-1. In addition to the high HER activity in alkaline media, such Ru-based alloy nanoclusters are also demonstrated to be highly active and stable in acidic solution. Mechanistic studies reveal that the alloying effect facilitates water dissociation and optimizes hydrogen adsorption and desorption, thereby contributing to the outstanding HER performance. This work paves a new way for the rational fabrication of advanced electrocatalysts for boosting the HER.
Collapse
Affiliation(s)
- Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P.R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. MICROMACHINES 2021; 12:mi12080867. [PMID: 34442489 PMCID: PMC8398671 DOI: 10.3390/mi12080867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
The unique properties of two-dimensional (2D) materials make them increasingly attractive in various fields, especially for energy harvesting, conversion, or storage. Simultaneously, numerous synthetic methods have been rapidly developed. Recently, topochemical strategies were demonstrated, and they show tremendous promising potential for synthesizing 2D materials due to their simplicity, scalability, and high efficiency. Considering the suitability of material structures and their synthesis methods, as well as the relationship between material properties and applications, it is necessary for researchers to comprehensively review and determine the prospects of 2D materials based on topological chemical synthesis methods and their related applications. Therefore, in this review, we systematically summarize and analyze the representative topochemical strategies for synthesizing 2D materials, including salt-templating methods for non-layered 2D materials, molten Lewis acid etching strategy for novel MXenes, and the chalcogen vapors etching and substituting strategy for phase-controlled 2D materials and so on, with the application of these 2D materials in energy-related fields including batteries, supercapacitors, and electrocatalysis. At the end of the paper, the corresponding perspective was also illustrated, and we expect that this could provide a reference for the future research in the field.
Collapse
|
17
|
Crystal and electronic facet analysis of ultrafine Ni 2P particles by solid-state NMR nanocrystallography. Nat Commun 2021; 12:4334. [PMID: 34267194 PMCID: PMC8282690 DOI: 10.1038/s41467-021-24589-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Structural and morphological control of crystalline nanoparticles is crucial in the field of heterogeneous catalysis and the development of “reaction specific” catalysts. To achieve this, colloidal chemistry methods are combined with ab initio calculations in order to define the reaction parameters, which drive chemical reactions to the desired crystal nucleation and growth path. Key in this procedure is the experimental verification of the predicted crystal facets and their corresponding electronic structure, which in case of nanostructured materials becomes extremely difficult. Here, by employing 31P solid-state nuclear magnetic resonance aided by advanced density functional theory calculations to obtain and assign the Knight shifts, we succeed in determining the crystal and electronic structure of the terminating surfaces of ultrafine Ni2P nanoparticles at atomic scale resolution. Our work highlights the potential of ssNMR nanocrystallography as a unique tool in the emerging field of facet-engineered nanocatalysts. Structural and morphological control of crystalline nanoparticles is crucial in heterogeneous catalysis. Applying DFT-assisted solid-state NMR spectroscopy, we determine the surface crystal and electronic structure of Ni2P nanoparticles, unveiling NMR nanocrystallography as an emerging tool in facet-engineered nanocatalysts.
Collapse
|
18
|
Abstract
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein, we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111), (110), (001), and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces, along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110), with calculated surface energies of 2.10, 2.27, 2.37, and 2.38 Jm−2, respectively. Water adsorption was found to be exothermic at all surfaces, and most favourable on the (111) surface, with Eads = −0.79 eV, followed closely by the (100), (110), and (001) surfaces at −0.66, −0.65, and −0.56 eV, respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER, which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100), which were 0.17, 0.73, 1.11, and 1.60 eV, respectively, overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER, evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
Collapse
|
19
|
Wu X, Wang Z, Chen K, Li Z, Hu B, Wang L, Wu M. Unravelling the Role of Strong Metal-Support Interactions in Boosting the Activity toward Hydrogen Evolution Reaction on Ir Nanoparticle/N-Doped Carbon Nanosheet Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22448-22456. [PMID: 33950664 DOI: 10.1021/acsami.1c03350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pt-based catalysts are commercial electrocatalysts for the hydrogen evolution reaction (HER), but their shortcomings of expensive and imperfect efficiency hinder their large-scale application. Here, we report an Ir-based HER catalyst supported by N-doped carbon nanosheets (Ir-NCNSs). The NCNSs, with a high surface area and unique atomic composition, enable Ir nanoparticles (NPs) to disperse at 2-3 nm and strongly coordinate to the Ir through Ir-N bonds, which exposes many active sites and strengthens their durability. The catalyst displays a low overpotential and a small Tafel slope of 46.3 mV at 10 mA cm-2 and 52 mV dec-1 in 0.5 M H2SO4, respectively. When used in 1.0 M KOH, Ir-NCNSs also show excellent electrocatalytic activity with a low overpotential of 125 mV at 10 mA cm-2. The calculated results further suggest that Ir NPs and NCNSs have excellent selectivity for strong metal-support interactions, corresponding to a significant and stable HER characteristic. Our findings provide insight into the design of high-efficiency Ir-based HER catalysts.
Collapse
Affiliation(s)
- Xiuzhen Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Keng Chen
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2600 Clifton Ave, Cincinnati, Ohio 45221, United States
| | - Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Minghong Wu
- Shanghai Institute of Applied Radiation, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| |
Collapse
|
20
|
Partanen L, Alberti S, Laasonen K. Hydrogen adsorption trends on two metal-doped Ni 2P surfaces for optimal catalyst design. Phys Chem Chem Phys 2021; 23:11538-11547. [PMID: 33969865 DOI: 10.1039/d1cp00684c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we looked at the hydrogen evolution reaction on the doubly doped Ni3P2 terminated Ni2P surface. Two Ni atoms in the first three layers of the Ni2P surface model were exchanged with two transition metal atoms. We limited our investigation to combinations of Al, Co, and Fe based on their individual effectiveness as Ni2P dopants in our previous computational studies. The DFT calculated hydrogen adsorption free energy was employed as a predictor of the materials' catalytic HER activity. Our results indicate that the combination of Co and Fe dopants most improves the catalytic activity of the surface through the creation of multiple novel and active catalytic sites.
Collapse
Affiliation(s)
- Lauri Partanen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Simon Alberti
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
21
|
Yang D, Su Z, Chen Y, Srinivas K, Gao J, Zhang W, Wang Z, Lin H. Electronic Modulation of Hierarchical Spongy Nanosheets toward Efficient and Stable Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006881. [PMID: 33373091 DOI: 10.1002/smll.202006881] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/29/2020] [Indexed: 05/28/2023]
Abstract
The energy conversion efficiency of water electrolysis is determined by the activity of selected catalysts. Ideal catalysts should possess not only porous architecture for high-density assembly of active sites but also a subtle electronic configuration for the optimized activity at each site. In this context, the development of stable porous hosting materials that allow the incorporation of various metal elements is highly desirable for both experimental optimization and theoretical comparison/prediction. Herein, MOF-derived spongy nanosheet arrays constructed by assembly of carbon encapsulated hetero-metal doped Ni2 P nanoparticles is presented as a superior bifunctional electrocatalyst for water splitting. This hierarchical structure can be stably retained when secondary metal dopants are introduced, providing a flexible platform for electronic modulation. The catalytic origin of activity enhancement via metal (Fe, Cr, and Mn) doping is deciphered through experimental and theoretical investigations. Combining the advantages in both morphological and electronic structures, the optimized catalyst NiMn-P exhibits remarkable activity in both hydrogen and oxygen evolution in the alkaline media, with an ultrasmall cell voltage of 1.49 V (at 10 mA cm-2 ) and high durability for at least 240 h.
Collapse
Affiliation(s)
- Dongxu Yang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhe Su
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- School of Science, and Institute of Oxygen Supply, Tibet University, Lhasa, 850000, China
| | - Katam Srinivas
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Wanli Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Zhang B, Fu X, Song L, Wu X. Surface selectivity of Ni 3S 2 toward hydrogen evolution reaction: a first-principles study. Phys Chem Chem Phys 2020; 22:25685-25694. [PMID: 33146168 DOI: 10.1039/d0cp03845h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploring materials with high catalytic performance toward hydrogen evolution reaction (HER) is of importance for the development of clean hydrogen energy, and their surface structure is essential for this function. In this study, using density functional theory (DFT), we reported a comprehensive study on the phase stability, surface structures, electronic properties and HER catalytic properties of the low-index surfaces of Ni3S2, including the (0001), (101[combining macron]0), (101[combining macron]1), (112[combining macron]0) and (112[combining macron]1) planes with different terminations. Our calculated results demonstrate that S-rich surfaces and several stoichiometric surfaces of Ni3S2 are thermodynamically stable, including (0001)A, (101[combining macron]0)A, (112[combining macron]0)C, (101[combining macron]0)C, (101[combining macron]0)B and (112[combining macron]1)A surfaces. Among the six stable surface structures, the (0001)A, (101[combining macron]0)B and (101[combining macron]0)C surfaces of Ni3S2 are indispensable for high HER performance because of their high catalytic activity, suitable potential and high thermodynamic stability. The calculated changes of Gibbs free energy (ΔGH*) of the Top S2 site on (0001)A, Hollow Ni2S3S4 site on (101[combining macron]0)C, and Bridge Ni1Ni3 site and Hollow Ni2S1S2 site on (101[combining macron]0)B are -0.143, 0.122, 0.012, and -0.112 eV, respectively, comparable with or even better than those of Pt(111) (-0.07 eV). In addition, the possible Volmer-Heyrovsky and Volmer-Tafel processes on the considered surfaces are also investigated. When the overpotential is in the range of 0 to 300 mV, the density of active sites on the (101[combining macron]0)B surface of Ni3S2 is found to be the highest. This work provides significant insights on the surface selectivity of Ni3S2 toward HER and provides a route to optimize the performance of Ni3S2 with exposed surfaces.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.
| | | | | | | |
Collapse
|
23
|
Wei XK, Xiong D, Liu L, Dunin-Borkowski RE. Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21616-21622. [PMID: 32301601 DOI: 10.1021/acsami.0c03154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface atomic, compositional, and electronic structures play decisive roles in governing the performance of catalysts during electrochemical reactions. Nevertheless, for efficient and cheap transition-metal phosphides used for water splitting, such atomic-scale structural information is largely missing. Despite much effort being made so far, there is still a long way to go for establishing a precise structure-activity relationship. Here, in combination with electron-beam bombardment and compositional analysis, our atomic-scale transmission electron microscopy study on Ni5P4 nanosheets, with a preferential (001) orientation, directly reveals the coverage of a self-epitaxial Ni2P nanolayer on the phosphide surface. Apart from the presence of nickel vacancies in the Ni5P4 phase, our quantum-mechanical image simulations also suggest the existence of an additional NiPx (0 < x < 0.5) nanolayer, characteristic of complex surface atom reconstruction, on the outermost surface of the phosphides. The surface chemical gradient and the core-shell scenario, probably responsible for the passivated catalytic activity, provide a novel insight to understand the catalytic performance of transition-metal catalysts used for electrochemical energy conversion.
Collapse
Affiliation(s)
- Xian-Kui Wei
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Dehua Xiong
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| |
Collapse
|
24
|
Aleksovska A, Lönnecke P, Addicoat MA, Gläser R, Hey‐Hawkins E. Catalytic Activity Towards Hydrogen Evolution Dependent of the Degree of Conjugation and Absorption of Six Organic Chromophores. ChemistryOpen 2020; 9:405-408. [PMID: 32257749 PMCID: PMC7110142 DOI: 10.1002/open.202000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Indexed: 11/12/2022] Open
Abstract
Conjugated materials can, in many cases, absorb visible light because of their delocalized π electron system. Such materials have been widely used as a photoactive layers in organic photovoltaic devices and as photosensitizers in dye-sensitized solar cells. Additionally, these materials have been reported for applications in solar fuel production, working as photocatalysts for the hydrogen evolution reaction (HER). The synthesis of three flexible vinyl groups-containing chromophores is reported. The catalytic activity towards hydrogen evolution of these chromophores has been investigated and compared to their non-vinyl-containing analogues. The catalytic effect was confirmed using two different approaches: electrochemical, using the chromophores to modify a working electrode, and photocatalytic, using the chromophores combined with platinum nanoparticles. A relationship between the degree of conjugation and the catalytic activity of the chromophores has been observed with the electrochemical method, while a relationship between the UV absorption in the solid state and the photocatalytic effect with platinum nanoparticles was observed.
Collapse
Affiliation(s)
- Angela Aleksovska
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| | - Peter Lönnecke
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| |
Collapse
|
25
|
Xiao N, Li S, Li X, Ge L, Gao Y, Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63469-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
First-Principles Mechanistic Insights into the Hydrogen Evolution Reaction on Ni2P Electrocatalyst in Alkaline Medium. Catalysts 2020. [DOI: 10.3390/catal10030307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel phosphide (Ni2P) is a promising material for the electrocatalytic generation of hydrogen from water. Here, we present a chemical picture of the fundamental mechanism of Volmer–Tafel steps in hydrogen evolution reaction (HER) activity under alkaline conditions at the (0001) and (10 1 ¯ 0) surfaces of Ni2P using dispersion-corrected density functional theory calculations. Two terminations of each surface (Ni3P2- and Ni3P-terminated (0001); and Ni2P- and NiP-terminated (10 1 ¯ 0)), which have been shown to coexist in Ni2P samples depending on the experimental conditions, were studied. Water adsorption on the different terminations of the Ni2P (0001) and (10 1 ¯ 0) surfaces is shown to be exothermic (binding energy in the range of 0.33−0.68 eV) and characterized by negligible charge transfer to/from the catalyst surface (0.01−0.04 e−). High activation energy barriers (0.86−1.53 eV) were predicted for the dissociation of water on each termination of the Ni2P (0001) and (10 1 ¯ 0) surfaces, indicating sluggish kinetics for the initial Volmer step in the hydrogen evolution reaction over a Ni2P catalyst. Based on the predicted Gibbs free energy of hydrogen adsorption (ΔGH*) at different surface sites, we found that the presence of Ni3-hollow sites on the (0001) surface and bridge Ni-Ni sites on the (10 1 ¯ 0) surface bind the H atom too strongly. To achieve facile kinetics for both the Volmer and Heyrovsky–Tafel steps, modification of the surface structure and tuning of the electronic properties through transition metal doping is recommended as an important strategy.
Collapse
|
27
|
Abstract
The production of hydrogen through electrochemical water splitting driven by clean energy becomes a sustainable route for utilization of hydrogen energy, while an efficient hydrogen evolution reaction (HER) electrocatalyst is required to achieve a high energy conversion efficiency. Nickel phosphides have been widely explored for electrocatalytic HER due to their unique electronic properties, efficient electrocatalytic performance, and a superior anti-corrosion feature. However, the HER activities of nickel phosphide electrocatalysts are still low for practical applications in electrolyzers, and further studies are necessary. Therefore, at the current stage, a specific comprehensive review is necessary to focus on the progresses of the nickel phosphide electrocatalysts. This review focuses on the developments of preparation approaches of nickel phosphides for HER, including a mechanism of HER, properties of nickel phosphides, and preparation and electrocatalytic HER performances of nickel phosphides. The progresses of the preparation and HER activities of the nickel phosphide electrocatalysts are mainly discussed by classification of the preparation method. The comparative surveys of their HER activities are made in terms of experimental metrics of overpotential at a certain current density and Tafel slope together with the preparation method. The remaining challenges and perspectives of the future development of nickel phosphide electrocatalysts for HER are also proposed.
Collapse
|
28
|
Hong W, Lv C, Sun S, Chen G. Fabrication and study of the synergistic effect of Janus Ni 2P/Ni 5P 4 embedded in N-doped carbon as efficient electrocatalysts for hydrogen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01918a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ni2P/Ni5P4 with Janus nanostructure was fabricated via a controllable phosphidation approach and the interfacial effects were revealed by DFT theory.
Collapse
Affiliation(s)
- Weizhao Hong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Shanfu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
29
|
Scott SB, Engstfeld AK, Jusys Z, Hochfilzer D, Knøsgaard N, Trimarco DB, Vesborg PCK, Behm RJ, Chorkendorff I. Anodic molecular hydrogen formation on Ru and Cu electrodes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01213k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
On important electrocatalysts including ruthenium and copper, increasing the potential pushes adsorbed hydrogen off as H2, an unexpected uphill desorption.
Collapse
Affiliation(s)
- Soren B. Scott
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Albert K. Engstfeld
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Zenonas Jusys
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Degenhart Hochfilzer
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Nikolaj Knøsgaard
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | | | - Peter C. K. Vesborg
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Ib Chorkendorff
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
30
|
Li C, Gao H, Wan W, Mueller T. Mechanisms for hydrogen evolution on transition metal phosphide catalysts and a comparison to Pt(111). Phys Chem Chem Phys 2019; 21:24489-24498. [PMID: 31687692 DOI: 10.1039/c9cp05094a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Earth-abundant transition metal phosphides have been demonstrated to be promising alternative catalysts to replace Pt for hydrogen evolution reaction (HER). However, the mechanism for the hydrogen evolution reaction on transition metal phosphides remains unclear. Here, we explore the catalytically active sites and the reaction mechanisms on a variety of model transition metal phosphide surfaces by building cluster expansion models and running Monte Carlo simulations. We demonstrate that the effect of hydrogen coverage, interaction between hydrogen atoms and desorption kinetics all dictate the HER mechanisms and the active sites, and we propose mechanisms that are in good agreement with experimental studies. The present method provides a general and effective way to probe the active sites and study the mechanisms of catalytic reactions, which can facilitate the rational design of highly active electrocatalysts.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
31
|
Liu X, Wang R, He Y, Ni Z, Su N, Guo R, Zhao Y, You J, Yi T. Construction of alternating layered quasi-three-dimensional electrode Ag NWs/CoO for water splitting: A discussion of catalytic mechanism. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Joo J, Kim T, Lee J, Choi SI, Lee K. Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806682. [PMID: 30706578 DOI: 10.1002/adma.201806682] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/01/2018] [Indexed: 05/20/2023]
Abstract
Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth-abundant transition metals have emerged as promising candidates for efficient water-splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology-controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
Collapse
Affiliation(s)
- Jinwhan Joo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Taekyung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaeyoung Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
33
|
Transition Metal Phosphides for the Catalytic Hydrodeoxygenation of Waste Oils into Green Diesel. Catalysts 2019. [DOI: 10.3390/catal9030293] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recently, catalysts based on transition metal phosphides (TMPs) have attracted increasing interest for their use in hydrodeoxygenation (HDO) processes destined to synthesize biofuels (green or renewable diesel) from waste vegetable oils and fats (known as hydrotreated vegetable oils (HVO)), or from bio-oils. This fossil-free diesel product is produced completely from renewable raw materials with exceptional quality. These efficient HDO catalysts present electronic properties similar to noble metals, are cost-efficient, and are more stable and resistant to the presence of water than other classical catalytic formulations used for hydrotreatment reactions based on transition metal sulfides, but they do not require the continuous supply of a sulfide source. TMPs develop a bifunctional character (metallic and acidic) and present tunable catalytic properties related to the metal type, phosphorous-metal ratio, support nature, texture properties, and so on. Here, the recent progress in TMP-based catalysts for HDO of waste oils is reviewed. First, the use of TMPs in catalysis is addressed; then, the general aspects of green diesel (from bio-oils or from waste vegetable oils and fats) production by HDO of nonedible oil compounds are presented; and, finally, we attempt to describe the main advances in the development of catalysts based on TMPs for HDO, with an emphasis on the influence of the nature of active phases and effects of phosphorous, promoters, and preparation methods on reactivity.
Collapse
|
34
|
Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Zhang Z, Zhang T, Lee JY. Electrochemical Performance of Borate‐Doped Nickel Sulfide: Enhancement of the Bifunctional Activity for Total Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201801617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhao Zhang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
| | - Tianran Zhang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
| | - Jim Yang Lee
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
| |
Collapse
|
36
|
Partanen L, Hakala M, Laasonen K. Hydrogen adsorption trends on various metal-doped Ni2P surfaces for optimal catalyst design. Phys Chem Chem Phys 2019; 21:184-191. [DOI: 10.1039/c8cp06143b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article shows that the presence of dopants, especially Fe and Co, can enhance the HER catalytic activity of Ni2P.
Collapse
Affiliation(s)
- Lauri Partanen
- Department of Chemistry and Materials Science, Aalto University
- FI-00076 Aalto
- Finland
| | - Mikko Hakala
- Department of Chemistry and Materials Science, Aalto University
- FI-00076 Aalto
- Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University
- FI-00076 Aalto
- Finland
| |
Collapse
|
37
|
Yang X, Zhao Z, Yu X, Feng L. Electrochemical hydrogen evolution reaction boosted by constructing Ru nanoparticles assembled as a shell over semimetal Te nanorod surfaces in acid electrolyte. Chem Commun (Camb) 2019; 55:1490-1493. [DOI: 10.1039/c8cc09993f] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to its interactions with semi-metallic Te nanorods, Ru nanoparticles assembled as a shell over Te nanorod surfaces (Te@Ru) formed an excellent catalyst for the hydrogen evolution reaction in an acid electrolyte solution.
Collapse
Affiliation(s)
- Xudong Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Zhixin Zhao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Xu Yu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
38
|
Buss JA, Hirahara M, Ueda Y, Agapie T. Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydride‐Proton Isomerism, and HER Reactivity. Angew Chem Int Ed Engl 2018; 57:16329-16333. [DOI: 10.1002/anie.201808307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/18/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Yohei Ueda
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
39
|
Buss JA, Hirahara M, Ueda Y, Agapie T. Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydride‐Proton Isomerism, and HER Reactivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Yohei Ueda
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
40
|
Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat Commun 2018; 9:4531. [PMID: 30382092 PMCID: PMC6208398 DOI: 10.1038/s41467-018-06728-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
Electrocatalysts of the hydrogen evolution and oxidation reactions (HER and HOR) are of critical importance for the realization of future hydrogen economy. In order to make electrocatalysts economically competitive for large-scale applications, increasing attention has been devoted to developing noble metal-free HER and HOR electrocatalysts especially for alkaline electrolytes due to the promise of emerging hydroxide exchange membrane fuel cells. Herein, we report that interface engineering of Ni3N and Ni results in a unique Ni3N/Ni electrocatalyst which exhibits exceptional HER/HOR activities in aqueous electrolytes. A systematic electrochemical study was carried out to investigate the superior hydrogen electrochemistry catalyzed by Ni3N/Ni, including nearly zero overpotential of catalytic onset, robust long-term durability, unity Faradaic efficiency, and excellent CO tolerance. Density functional theory computations were performed to aid the understanding of the electrochemical results and suggested that the real active sites are located at the interface between Ni3N and Ni.
Collapse
|
41
|
Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L, Zhang J. Recent Progresses in Electrocatalysts for Water Electrolysis. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0014-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The study of hydrogen evolution reaction and oxygen evolution reaction electrocatalysts for water electrolysis is a developing field in which noble metal-based materials are commonly used. However, the associated high cost and low abundance of noble metals limit their practical application. Non-noble metal catalysts, aside from being inexpensive, highly abundant and environmental friendly, can possess high electrical conductivity, good structural tunability and comparable electrocatalytic performances to state-of-the-art noble metals, particularly in alkaline media, making them desirable candidates to reduce or replace noble metals as promising electrocatalysts for water electrolysis. This article will review and provide an overview of the fundamental knowledge related to water electrolysis with a focus on the development and progress of non-noble metal-based electrocatalysts in alkaline, polymer exchange membrane and solid oxide electrolysis. A critical analysis of the various catalysts currently available is also provided with discussions on current challenges and future perspectives. In addition, to facilitate future research and development, several possible research directions to overcome these challenges are provided in this article.
Graphical Abstract
Collapse
|
42
|
Gieseking RLM, Ratner MA, Schatz GC. Benchmarking Semiempirical Methods To Compute Electrochemical Formal Potentials. J Phys Chem A 2018; 122:6809-6818. [DOI: 10.1021/acs.jpca.8b05143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca L. M. Gieseking
- Department of Chemistry, Northwestern University 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Larses P, Gomes AS, Ahlberg E, Busch M. Hydrogen evolution at mixed α-Fe1−xCrxOOH. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia BY, Feng G, Zhou J. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. NANOSCALE 2018; 10:6844-6849. [PMID: 29616268 DOI: 10.1039/c8nr01556b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transition-metal phosphides (TMPs) are considered as promising non-noble electrochemical catalysts for hydrogen evolution reaction (HER). Their highly active sites are located on certain facets, and single crystalline two-dimensional (2D) structures enable them to expose the most active facets for HER. However, the synthesis of single crystalline 2D TMPs is still a challenge owing to their intrinsically non-layered structures. Herein, we demonstrate the synthesis of various single crystalline 2D TMPs (Co2P, MoP2, Ni12P5 and WP2) by a salt-templating method. The as-synthesized 2D Co2P exhibited efficient electrocatalytic ability for HER with an overpotential of 41 mV at 10 mA cm-2 and a Tafel slope of 35 mV dec-1 in 0.5 M H2SO4 solution. We expect that the synthesis of 2D TMPs reported here will open the way to expand the family of 2D materials for electrocatalysis and beyond.
Collapse
Affiliation(s)
- Tianqi Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Laursen AB, Wexler RB, Whitaker MJ, Izett EJ, Calvinho KUD, Hwang S, Rucker R, Wang H, Li J, Garfunkel E, Greenblatt M, Rappe AM, Dismukes GC. Climbing the Volcano of Electrocatalytic Activity while Avoiding Catalyst Corrosion: Ni3P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04466] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anders B. Laursen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Robert B. Wexler
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marianna J. Whitaker
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Edward J. Izett
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karin U. D. Calvinho
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Shinjae Hwang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Ross Rucker
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway New Jersey 088544, United States
| | - Hao Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Eric Garfunkel
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Martha Greenblatt
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
| | - Andrew M. Rappe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway New Jersey 08854, United States
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey,190 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
46
|
Šarić M, Rossmeisl J, Moses PG. Modeling the active sites of Co-promoted MoS 2 particles by DFT. Phys Chem Chem Phys 2018; 19:2017-2024. [PMID: 28009026 DOI: 10.1039/c6cp06881b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atomic-scale structure of the Co-promoted MoS2 catalyst (CoMoS), used for hydrodesulfurization and as a potential replacement for platinum in the acidic hydrogen evolution reaction has been analyzed by modeling its sites using density functional theory and applying thermochemical corrections to account for different reaction conditions. The equilibrium structures of the edges, basal plane and corners have been found and used to obtain a picture of an ideal CoMoS nanoparticle under hydrodesulfurization and hydrogen evolution reaction conditions. Under hydrodesulfurization conditions small energy differences between structures having an additional or missing sulfur atom relative to the equilibrium structures have been observed for the edges and corners explaining their activity towards hydrodesulfurization at the atomic scale. The lack of these small energy differences at the basal plane explains why it is inert towards hydrodesulfurization. The adsorption free energy of hydrogen was calculated and used as a descriptor for qualifying each site in the context of hydrogen evolution, finding that the corner site should perform better than the edges.
Collapse
Affiliation(s)
- Manuel Šarić
- Center for Atomic Scale Materials Design (CAMd), Department of Physics, Technical University of Denmark, Fysikvej building 307, 2800 Kgs. Lyngby, Denmark.
| | - Jan Rossmeisl
- Department of Chemistry, Copenhagen University, Universitetsparken 5, 2100 København Ø, Denmark.
| | | |
Collapse
|
47
|
García-Muelas R, Li Q, López N. Initial Stages in the Formation of Nickel Phosphides. J Phys Chem B 2018; 122:672-678. [PMID: 28880556 DOI: 10.1021/acs.jpcb.7b06020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal phosphides have emerged as a new powerful class of materials that can be employed as heterogeneous catalysts in transformations mainly to generate new energy vectors and the valorization of renewables. Synthetic protocols based on wet techniques are available and are based on the decomposition of the organic layer decorating the nanoparticles. For nickel, the phosphine of choice is trioctylphosphine, and this leads to the formation of NiPx materials. However, the temperature at which the decomposition starts has been found to depend on the quality of the nickel surface. Density functional theory, DFT, holds the key to analyze the initial steps of the formation of these phosphide materials. We have found how clean nickel surfaces, either (111) or (100), readily breaks the ligand P-C bonds. This triggers the process that leads to the replacement of a surface nickel atom by P and concomintantly forms a Ni adatom on the surface surrounded by two methyl groups, thus starting the formation of the NiPx phase. The whole process requires low energies, in agreement with the low temperature found in the experiments, 150 °C. In contrast, if the surface is oxidized, the reaction does not proceed at low temperatures and oxygen vacancies need to be created first to start the P-C bond breaking on the Ni-clean patches. Our results show that the cleaner the surface is, the milder the reactions are required for the NiPx formation, and thus they pave the way for gentler synthetic protocols that can improve the control of these materials.
Collapse
Affiliation(s)
- Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology , Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Qiang Li
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology , Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology , Av. Països Catalans, 16, 43007 Tarragona, Spain
| |
Collapse
|
48
|
Hakala M, Laasonen K. Hydrogen adsorption trends on Al-doped Ni2P surfaces for optimal catalyst design. Phys Chem Chem Phys 2018; 20:13785-13791. [PMID: 29744495 DOI: 10.1039/c8cp00927a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles of nickel phosphide are promising materials to replace the currently used rare Pt-group metals at cathode-side electrodes in devices for electrochemical hydrogen production.
Collapse
Affiliation(s)
- Mikko Hakala
- Department of Chemistry and Materials Science
- Aalto University
- FI-00076 Aalto
- Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science
- Aalto University
- FI-00076 Aalto
- Finland
| |
Collapse
|
49
|
Wexler RB, Martirez JMP, Rappe AM. Active Role of Phosphorus in the Hydrogen Evolving Activity of Nickel Phosphide (0001) Surfaces. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02761] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert B. Wexler
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - John Mark P. Martirez
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew M. Rappe
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
50
|
Liang Q, Huang K, Wu X, Wang X, Ma W, Feng S. Composition-controlled synthesis of Ni2−xCoxP nanocrystals as bifunctional catalysts for water splitting. RSC Adv 2017. [DOI: 10.1039/c6ra26691f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NaBH4-assistant composition-controlled synthesis of Ni2−xCoxP nanocrystals with high catalytic activity.
Collapse
Affiliation(s)
- Qingshuang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiyang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wei Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|