1
|
Fellows A, John B, Wolf M, Thämer M. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. J Phys Chem Lett 2024; 15:10849-10857. [PMID: 39436358 PMCID: PMC11533227 DOI: 10.1021/acs.jpclett.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ultrathin molecular films are widespread in both natural and industrial settings, where details of the molecular structure such as density, out-of-plane tilt angles, and in-plane directionality determine their physicochemical properties. Many of these films possess important molecular-to-macroscopic heterogeneity in these structural parameters, which have traditionally been difficult to characterize. Here, we show how extending sum-frequency generation (SFG) microscopy measurements to higher dimensionality by azimuthal-scanning can extract the spatial variation in the three-dimensional molecular structure at an interface. We extend the commonly applied theoretical assumptions used to analyze SFG signals to the study of systems possessing in-plane anisotropy. This theoretical framework is then applied to a phase-separated mixed lipid monolayer to investigate the variation in molecular density and 3D orientation across the chirally packed lipid domains. The results show little variation in out-of-plane structure but a distinct micron-scale region at the domain boundaries with a reduction in both density and in-plane ordering.
Collapse
Affiliation(s)
- Alexander
P. Fellows
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Ben John
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
2
|
Shultz MJ, Bisson P, Wang J, Marmolejos J, Davies RG, Gubbins E, Xiong Z. High phase resolution: Probing interactions in complex interfaces with sum frequency generation. Biointerphases 2023; 18:058502. [PMID: 37902617 DOI: 10.1116/6.0002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.
Collapse
Affiliation(s)
- Mary Jane Shultz
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Patrick Bisson
- Cambridge Polymer Group, Inc., 100 Trade Center Drive, Suite 200, Woburn, Massachusetts 01801
| | - Jing Wang
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Joam Marmolejos
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Rebecca G Davies
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Emma Gubbins
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Ziqing Xiong
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| |
Collapse
|
3
|
Kumal RR, Wimalasiri PN, Servis MJ, Uysal A. Thiocyanate Ions Form Antiparallel Populations at the Concentrated Electrolyte/Charged Surfactant Interface. J Phys Chem Lett 2022; 13:5081-5087. [PMID: 35653184 DOI: 10.1021/acs.jpclett.2c00934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anions play significant roles in the separation of lanthanides and actinides. The molecular-scale details of how these anions behave at aqueous interfaces are not well understood, especially at high ionic strengths. Here, we describe the interfacial structure of thiocyanate anions at a soft charged interface up to 5 M bulk concentration with combined classical and phase-sensitive vibrational sum frequency generation (PS-VSFG) spectroscopy and molecular dynamics (MD) simulations. At low concentrations thiocyanate ions are mostly oriented with their sulfur end pointing toward the charged surfactants. The VSFG signal reaches a plateau at around 100 mM bulk concentration, followed by significant changes above 1 M. At high concentrations a new thiocyanate population emerges with their sulfur end pointing toward the bulk liquid. The -CN stretch frequency is different for up and down oriented SCN- ions, indicating different coordination environments. These results provide key molecular-level insights for the interfacial behavior of complex anions in highly concentrated solutions.
Collapse
Affiliation(s)
- Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Pubudu N Wimalasiri
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Lu T, Guo W, Datar PM, Xin Y, Marsh ENG, Chen Z. Probing protein aggregation at buried interfaces: distinguishing between adsorbed protein monomers, dimers, and a monomer-dimer mixture in situ. Chem Sci 2022; 13:975-984. [PMID: 35211262 PMCID: PMC8790787 DOI: 10.1039/d1sc04300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g., by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Wen Guo
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Prathamesh M Datar
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Yue Xin
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
5
|
Gera R, Moll CJ, Bhattacherjee A, Bakker HJ. Water-Induced Restructuring of the Surface of a Deep Eutectic Solvent. J Phys Chem Lett 2022; 13:634-641. [PMID: 35020401 PMCID: PMC8785180 DOI: 10.1021/acs.jpclett.1c03907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the molecular-scale structure of the surface of Reline, a DES made from urea and choline chloride, using heterodyne-detected vibrational sum frequency generation (HD-VSFG). Reline absorbs water when exposed to the ambient atmosphere, and following structure-specific changes at the Reline/air interface is crucial and difficult. For Reline (dry, 0 wt %, w/w, water) we observe vibrational signatures of both urea and choline ions at the surface. Upon increase of the water content, there is a gradual depletion of urea from the surface, an enhanced alignment, and an enrichment of the surface with choline cations, indicating surface speciation of ChCl. Above 40% w/w water content, choline cations abruptly deplete from the surface, as evidenced by the decrease of the vibrational signal of the -CH2- groups of choline and the rapid rise of a water signal. Above 60% w/w water content, the surface spectrum of aqueous Reline becomes indistinguishable from that of neat water.
Collapse
Affiliation(s)
- Rahul Gera
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
6
|
Yamaguchi S, Otosu T. Progress in phase-sensitive sum frequency generation spectroscopy. Phys Chem Chem Phys 2021; 23:18253-18267. [PMID: 34195730 DOI: 10.1039/d1cp01994e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sum frequency generation (SFG) spectroscopy is a unique and powerful tool for investigating surfaces and interfaces at the molecular level. Phase-sensitive SFG (PS-SFG) is an upgraded technique that can overcome the inherent drawbacks of conventional SFG. Here we review several methods of PS-SFG developed and reported in 1990-2020. We introduce how and by which group each PS-SFG method was designed and built in terms of interferometer implementation for optical heterodyne detection, with one exception of a recent numerical method that does not rely on interferometry. We also discuss how PS-SFG solved some typical problems for aqueous interfaces that were once left open by conventional SFG. These problems and their solutions are good examples to demonstrate why PS-SFG is essential. In addition, we briefly note a few terminology issues related with PS-SFG to avoid confusion.
Collapse
Affiliation(s)
- Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | |
Collapse
|
7
|
Cimatu KLA, Premadasa UI, Ambagaspitiya TD, Adhikari NM, Jang JH. Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. J Colloid Interface Sci 2020; 580:645-659. [PMID: 32712471 DOI: 10.1016/j.jcis.2020.07.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Copolymers are developed to enhance the overall physical and chemical properties of polymers. The surface nature of a copolymer is relevant to creating efficient materials to improve adhesion and biocompatibility. We hypothesize that the improved adhesion, as a surface property, is due to phase separation, surface segregation, and the overall molecular organization of different polymer components at the copolymer surface. EXPERIMENTS The surface structure of a copolymer composed of 2-hydroxyethyl methacrylate (HEMA) monomer and 2-phenoxyethyl methacrylate (PhEMA) monomer was analyzed in comparison to the polyHEMA and polyPhEMA homopolymers using atomic force microscopy (AFM) and sum frequency generation (SFG) spectroscopy. FINDINGS The contrast in the phase images was due to the variance in the hydrophobic level provided by the hydroxyl and phenoxy modified monomers in the copolymer. The distribution of the adhesion values, supporting the presence of hydrophobic moieties, across the polymer surface defined the surface segregation of these two components. SFG spectra of the copolymer thin film showed combined spectral features of both polyHEMA and polyPhEMA thin films at the polymer surface. The tilt angles of the alpha-methyl group of homopolymers using the polarization intensity ratio analysis and the polarization mapping method were estimated to be in the range from 48° to 66°.
Collapse
Affiliation(s)
- Katherine Leslee A Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States.
| | - Uvinduni I Premadasa
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Narendra M Adhikari
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
8
|
Li B, Andre JS, Chen X, Walther B, Paradkar R, Feng C, Tucker C, Mohler C, Chen Z. Probing Molecular Behavior of Carbonyl Groups at Buried Nylon/Polyolefin Interfaces in Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11349-11357. [PMID: 32870007 DOI: 10.1021/acs.langmuir.0c02188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nylon and maleic anhydride (MAH)-grafted polyolefin-based thin co-extruded multilayer films are widely used in packaging applications encountered in daily life. The molecular structure of the nylon/MAH-grafted polyolefin buried interface and molecular bonding between these two chemically dissimilar layers are thought to play an important role in achieving packaging structures with good adhesion. Here, the molecular bonds present at a nylon/maleic anhydride (MAH)-grafted polyethylene buried interface were systematically examined in situ for the first time using sum frequency generation (SFG) vibrational spectroscopy. The carbonyl stretching frequency region of the SFG spectra of a nylon/MAH-grafted polyethylene buried interface showed the presence of hydrolyzed MAH groups grafted to the polyethylene chain and very low levels of unreacted MAH enriched at the buried interface. The ability of SFG to detect these molecular species at the buried interface yields important understanding of the interfacial molecular structure and provides the basis for subsequent in situ studies of the bonding reaction between the grafted MAH and nylon directly at the interface. This understanding may guide the design of multilayer films with improved properties such as enhanced adhesion between polymer layers. The approach used in this study is general and is applicable to study the molecular characteristics of other buried interfaces of significance, such as buried interfaces involving polymers in solar cells, polymer semiconductors, and batteries. Nylon impact modification is another area of interest where the interaction between the MAH-grafted elastomer and the continuous phase of nylon is important.
Collapse
Affiliation(s)
- Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Brian Walther
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77541, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77541, United States
| | - Chuang Feng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Schabes BK, Richmond GL. Helping Strands: Polyelectrolyte Assists in Surfactant Assembly below Critical Micelle Concentration. J Phys Chem B 2020; 124:234-239. [PMID: 31804084 DOI: 10.1021/acs.jpcb.9b08692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strongly adsorbing polymer/surfactant (P/S) combinations have been proposed for long-term applications such as emulsion stabilization. However, P/S systems are known to exhibit nonequilibrium behavior despite steady-state surface characteristics. This work examines the coadsorption of dodecyltrimethylammonium bromide and sodium poly(styrene sulfonate) (PSS) using oil/water tensiometry, UV absorption, and vibrational sum frequency spectroscopy. To determine which features do not represent true equilibrium, the molecular details of PSS adsorption are compared for fresh and aged samples. At surfactant concentrations concurrent with bulk precipitation, significant differences between fresh and aged samples indicate that the strong initial coadsorption within this system is a nonequilibrium feature. We conclude that the long equilibration timescales arise from the slow assembly of non-adsorbing polyelectrolyte/micelle complexes below the critical micelle concentration. This study resolves a recent debate regarding system equilibria of surface-active P/S combinations at a water surface.
Collapse
Affiliation(s)
- Brandon K Schabes
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
10
|
Watanabe S, Pilkington GA, Oleshkevych A, Pedraz P, Radiom M, Welbourn R, Glavatskih S, Rutland MW. Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. Phys Chem Chem Phys 2020; 22:8450-8460. [DOI: 10.1039/d0cp00360c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields.
Collapse
Affiliation(s)
- Seiya Watanabe
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Georgia A. Pilkington
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Anna Oleshkevych
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Patricia Pedraz
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Milad Radiom
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Rebecca Welbourn
- ISIS Neutron & Muon Source
- Rutherford Appleton Laboratory
- STFC
- Didcot
- UK
| | - Sergei Glavatskih
- System and Component Design
- Department of Machine Design
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mark W. Rutland
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| |
Collapse
|
11
|
Adhikari NM, Premadasa UI, Rudy ZJ, Cimatu KLA. Orientational Analysis of Monolayers at Low Surface Concentrations Due to an Increased Signal-to-Noise Ratio (S/N) Using Broadband Sum Frequency Generation Vibrational Spectroscopy. APPLIED SPECTROSCOPY 2019; 73:1146-1159. [PMID: 31131613 DOI: 10.1177/0003702819857139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sum frequency generation (SFG) * Equal contributors. spectroscopy was used to deduce the orientation of the terminal methyl (CH3) group of self-assembled monolayers (SAMs) at the air-solid and air-liquid interfaces at surface concentrations as low as 1% protonated molecules in the presence of 99% deuterated molecules. The SFG spectra of octadecanethiol (ODT) and deuterated octadecanethiol (d37 ODT) SAMs on gold were used for analysis at the air-solid interface. However, the eicosanoic acid (EA) and deuterated EA (d39 EA) SAMs on the water were analyzed at the air-liquid interface. The tilt angle of the terminal CH3 group was estimated to be ∼39 ° for a SAM of 1% ODT : 99% d37 ODT, whereas the tilt angle of the terminal CH3 group of the 1% EA : 99% d39 EA monolayer was estimated to be ∼32 °. The reliability of the orientational analysis at low concentrations was validated by testing the sensitivity of the SFG spectroscopy. A signal-to-noise (S/N) ratio of ∼60 and ∼45 was obtained for the CH3 symmetric stretch (SS) of 1% ODT : 99% d37 ODT and 1% EA : 99% d39 EA, respectively. The estimated increase in S/N ratio values, as a measure of the sensitivity of the SFG spectroscopy, verified the capacity to acquire the SFG spectra at low concentrations of interfacial molecules under ambient conditions. Overall, the orientational analysis of CH3 SS vibrational mode was feasible at low concentrations of protonated molecules due to increased S/N ratio. In support, the improved S/N ratio on varying incident power density of the visible beam was also experimentally demonstrated.
Collapse
Affiliation(s)
| | | | - Zachary J Rudy
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA
| | | |
Collapse
|
12
|
Schabes BK, Hopkins EJ, Richmond GL. Molecular Interactions Leading to the Coadsorption of Surfactant Dodecyltrimethylammonium Bromide and Poly(styrenesulfonate) at the Oil/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7268-7276. [PMID: 31083894 DOI: 10.1021/acs.langmuir.9b00873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The strong synergistic adsorption of mixed polymer/surfactant (P/S) systems at the oil/water interface shows promise for applications such as oil remediation and emulsion stabilization, especially with respect to the formation of tunable mesoscopic multilayers. There is some evidence that a combination of dodecyltrimethylammonium bromide (DTAB) and sodium poly(styrenesulfonate) (PSS) exhibits the adsorption of a secondary P/S layer, though the structure of this layer has long eluded researchers. The focus of this study is to determine whether the DTAB-assisted adsorption of PSS at the oil/water interface occurs as a single layer or with subsequent multilayers. The study presented uses vibrational sum-frequency spectroscopy and interfacial tensiometry to determine the degree of PSS adsorption and orientation of its charged groups relative to the interface at three representative concentrations of DTAB. At low and intermediate DTAB concentrations, a single mixed DTAB/PSS monolayer adsorbs at the oil/water interface. No PSS adsorbs above the system critical micelle concentration. The interfacial charge is found to be similar to that of P/S complexes solvated in the aqueous solution. The surface adsorbate and P/S complexes in the bulk both exhibit a charge inversion at around the same DTAB concentration. This study demonstrates the importance of techniques which can differentiate between coadsorbing species and calls into question current models of P/S adsorption at an oil/water interface.
Collapse
Affiliation(s)
- Brandon K Schabes
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Emma J Hopkins
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
13
|
Urashima SH, Myalitsin A, Nihonyanagi S, Tahara T. The Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2018; 9:4109-4114. [PMID: 29975846 DOI: 10.1021/acs.jpclett.8b01650] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite recent significant advances in interface-selective nonlinear spectroscopy, the topmost water structure at a charged silica surface is still not clearly understood. This is because, for charged interfaces, not only interfacial molecules at the topmost layer but also a large number of molecules in the electric double layer are probed even with second-order nonlinear spectroscopy. In the present study, we studied water structure at the negatively charged silica/aqueous interface at pH 12 using heterodyne-detected vibrational sum frequency generation spectroscopy, and demonstrated that the spectral component of the topmost water can be extracted by examining the ionic strength dependence of the Imχ(2) spectrum. The obtained Imχ(2) spectrum indicates that the dominant water species in the topmost layer is hydrogen-bonded to the negatively charged silanolate at the silica surface with one OH group. There also exists minor water species that weakly interacts with the oxygen atom of a siloxane bridge or the remaining silanol at the silica surface, using one OH group. The ionic strength dependence of the Imχ(2) spectrum indicates that this water structure of the topmost layer is unchanged in a wide ionic strength range from 0.01 to 2 M.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Anton Myalitsin
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
14
|
Adsorption of organic carbonate solvents on a carbon surface probed by sum frequency generation (SFG) vibrational spectroscopy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Wang J, Bisson PJ, Marmolejos JM, Shultz MJ. Nonlinear interferometer: Design, implementation, and phase-sensitive sum frequency measurement. J Chem Phys 2017; 147:064201. [PMID: 28810790 DOI: 10.1063/1.4997736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jing Wang
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Patrick J. Bisson
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Joam M. Marmolejos
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Mary Jane Shultz
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
16
|
Adhikari NM, Premadasa UI, Cimatu KLA. Sum frequency generation vibrational spectroscopy of methacrylate-based functional monomers at the hydrophilic solid–liquid interface. Phys Chem Chem Phys 2017; 19:21818-21828. [DOI: 10.1039/c7cp03113k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An SFGVS study showed H-bonding interactions between the carbonyl groups of methacrylate liquid monomers and surface silanol groups of amorphous quartz.
Collapse
|
17
|
Saito K, Peng Q, Qiao L, Wang L, Joutsuka T, Ishiyama T, Ye S, Morita A. Theoretical and experimental examination of SFG polarization analysis at acetonitrile–water solution surfaces. Phys Chem Chem Phys 2017; 19:8941-8961. [DOI: 10.1039/c6cp08856b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polarization analysis of SFG spectroscopy is thoroughly examined in collaboration of SFG measurements and MD simulations.
Collapse
Affiliation(s)
- Kengo Saito
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Qiling Peng
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
| | - Lin Qiao
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
| | - Lin Wang
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Tatsuya Joutsuka
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- University of Toyama
- Toyama 930-8555
- Japan
| | - Shen Ye
- Institute for Catalysis
- Hokkaido University
- Kita-ku
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Akihiro Morita
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Japan
| |
Collapse
|
18
|
Takeshita N, Okuno M, Ishibashi TA. Molecular conformation of DPPC phospholipid Langmuir and Langmuir–Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 2017; 19:2060-2066. [DOI: 10.1039/c6cp07800a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heterodyne-detected vibrational sum frequency generation spectroscopy was used to investigate molecular structures of DPPC monolayers on water (Langmuir monolayer) and monolayers on a fused silica substrate (Langmuir-Blodgett [LB] monolayer).
Collapse
Affiliation(s)
- Naoki Takeshita
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Masanari Okuno
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Taka-aki Ishibashi
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
19
|
Wang J, Bisson PJ, Marmolejos JM, Shultz MJ. Measuring Complex Sum Frequency Spectra with a Nonlinear Interferometer. J Phys Chem Lett 2016; 7:1945-9. [PMID: 27159338 DOI: 10.1021/acs.jpclett.6b00792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Currently, the only techniques capable of delivering molecular-level data on buried or soft interfaces are the nonlinear spectroscopic methods: sum frequency generation (SFG) and second harmonic generation (SHG). Deducing molecular information from spectra requires measuring the complex components-the amplitude and the phase-of the surface response. A new interferometer has been developed to determine these components with orders-of-magnitude improvement in uncertainty compared with current methods. Both the sample and reference spectra are generated within the interferometer, hence the label nonlinear interferometer. The interferometer configuration provides experimenters with wide latitude for both the sample enclosure and reference material choice and is thus widely applicable. The instrument is described and applied to the well-studied octadecyltrichlorosilane (OTS) film. The OTS spectra support the interpretation that variation in fabrication solvent water content and substrate preparation account for differences in OTS spectra reported in the literature.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University , Medford, Massachusetts 02155, United States
| | - Patrick J Bisson
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University , Medford, Massachusetts 02155, United States
| | - Joam M Marmolejos
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University , Medford, Massachusetts 02155, United States
| | - Mary Jane Shultz
- Laboratory for Water and Surface Studies, Chemistry Department, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Ge A, Matsusaki M, Qiao L, Akashi M, Ye S. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3803-3810. [PMID: 27045932 DOI: 10.1021/acs.langmuir.5b04765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.
Collapse
Affiliation(s)
- Aimin Ge
- Institute for Catalysis, Hokkaido University , Sapporo 001-0021, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Osaka 565-0871, Japan
| | - Lin Qiao
- Institute for Catalysis, Hokkaido University , Sapporo 001-0021, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Osaka 565-0871, Japan
| | - Shen Ye
- Institute for Catalysis, Hokkaido University , Sapporo 001-0021, Japan
| |
Collapse
|
21
|
Qiao L, Ge A, Liang Y, Ye S. Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC) in Low-Level Ozone. J Phys Chem B 2015; 119:14188-99. [DOI: 10.1021/acs.jpcb.5b08985] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Qiao
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Aimin Ge
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Yimin Liang
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Shen Ye
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
22
|
Ge A, Seo JH, Qiao L, Yui N, Ye S. Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22709-22718. [PMID: 26393413 DOI: 10.1021/acsami.5b07760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polyrotaxanes, such as supramolecular assemblies with methylated α-cyclodextrins (α-CDs) as host molecules noncovalently threaded on the linear polymer backbone, are promising materials for biomedical applications because they allow adsorbed proteins possessing a high surface flexibility as well as control of the cellular morphology and adhesion. To provide a general design principle for biomedical materials, we examined the surface reorganization behaviors and adsorption conformations of fibrinogen on the polyrotaxane surfaces with comparison to several random copolymers by sum frequency generation (SFG) vibrational spectroscopy. We showed that the polyrotaxane (OMe-PRX-PMB) with methylated α-CDs as the host molecule exhibited unique surface structures in an aqueous environment. The hydrophobic interaction between the methoxy groups of the methylated α-CD molecules and methyl groups of the n-butyl methacrylate (BMA) side chains may dominate the surface restructuring behavior of the OMe-PRX-PMB. The orientation analysis revealed that the orientation of the fibrinogen adsorbed on the OMe-PRX-PMB surface is close to a single distribution, which is different from the adsorption behaviors of fibrinogen on other polyrotaxane or random copolymer surfaces.
Collapse
Affiliation(s)
- Aimin Ge
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| | - Ji-Hun Seo
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo 101-0062, Japan
| | - Lin Qiao
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| | - Nobuhiko Yui
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Tokyo 101-0062, Japan
| | - Shen Ye
- Catalysis Research Center, Hokkaido University , Sapporo 001-0021, Japan
| |
Collapse
|