1
|
Abd Muain MF, Hamzah ASA, Chia SL, Yusoff K, Lim HN, Shinya I, Tajudin AA. Voltammetric-based immunosensing of Newcastle disease virus on polyethylene glycol-containing self-assembled monolayer modified gold electrode. Anal Biochem 2024:115700. [PMID: 39461695 DOI: 10.1016/j.ab.2024.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
A voltammetric immunosensor for the detection of Newcastle disease virus (NDV) has been developed by employing polyclonal antibody targeting NDV (anti-NDV) as a bioreceptor. Anti-NDV was immobilized on polyethylene glycol (PEG)-containing self-assembled monolayer (SAM) which was activated with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimidehydrochloride (EDC) and N-hydroxy succinimide (NHS) coupling on screen-printed gold electrode (SPGE). The introduction of PEG-containing SAM on the SPGE allowed the bioreceptor to covalently bound to the electrode surface whilst still providing a hydrophilic layer on the electrode which is important to greatly reduce non-specific bindings. The bioreceptor functionalized electrode was then allowed to be incubated with NDV-spiked samples. The electrode surface modification with PEG-containing SAM, immobilization of anti-NDV as bioreceptor, up to the detection of NDV were characterized electrochemically through differential pulse voltammetry (DPV) analysis in [Fe(CN)6]3- as the redox probe. Decrement of anodic current peak (Ipa) of [Fe(CN)6]3- was seen as the concentration of NDV increased from 0.156 to 20 HA μL-1 with the limit of detection (LoD) of 1.50 HA μL-1 at 3σ m-1. The detection of NDV in HA μL-1 unit in this study would ease interlaboratory interpretation as it was the same unit used in hemagglutination (HA) assay of conventional NDV diagnosis. The specificity of anti-NDV used as bioreceptor towards NDV was confirmed through western blot analysis, whilst the selectivity of the bioreceptor-functionalized electrode has been tested with allantoic fluid as the negative control in which no apparent changes of anodic peak (Ipa) has been seen. This simple, fast, and less laborious electrochemical detection method could become an alternative to the conventional method for NDV detection.
Collapse
Affiliation(s)
- Mohamad Farid Abd Muain
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Amir Syahir Amir Hamzah
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ikeno Shinya
- Department of Biological Functions Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Assunção AS, Vidal M, Martins MJ, Girão AV, Loyez M, Caucheteur C, Mesquita-Bastos J, Costa FM, Pereira SO, Leitão C. Detection of NT-proBNP Using Optical Fiber Back-Reflection Plasmonic Biosensors. BIOSENSORS 2024; 14:173. [PMID: 38667166 PMCID: PMC11048293 DOI: 10.3390/bios14040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Heart failure (HF) is a clinical entity included in cardiovascular diseases affecting millions of people worldwide, being a leading cause of hospitalization of older adults, and therefore imposing a substantial economic burden on healthcare systems. HF is characterized by dyspnea, fatigue, and edema associated with elevated blood levels of natriuretic peptides, such as N Terminal pro-B-type Natriuretic Peptide (NT-proBNP), for which there is a high demand for point of care testing (POCT) devices. Optical fiber (OF) biosensors offer a promising solution, capable of real-time detection, quantification, and monitoring of NT-proBNP concentrations in serum, saliva, or urine. In this study, immunosensors based on plasmonic uncladded OF tips were developed using OF with different core diameters (200 and 600 µm). The tips were characterized to bulk refractive index (RI), anddetection tests were conducted with NT-proBNP concentrations varying from 0.01 to 100 ng/mL. The 200 µm sensors showed an average total variation of 3.6 ± 2.5 mRIU, an average sensitivity of 50.5 mRIU/ng·mL-1, and a limit of detection (LOD) of 0.15 ng/mL, while the 600 µm sensors had a response of 6.1 ± 4.2 mRIU, a sensitivity of 102.8 mRIU/ng·mL-1, and an LOD of 0.11 ng/mL. Control tests were performed using interferents such as uric acid, glucose, and creatinine. The results show the potential of these sensors for their use in biological fluids.
Collapse
Affiliation(s)
- Ana Sofia Assunção
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Miguel Vidal
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Maria João Martins
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Ana Violeta Girão
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - José Mesquita-Bastos
- Institute of Biomedicine—iBiMED, School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Florinda M. Costa
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| |
Collapse
|
3
|
Sarangi NK, Prabhakaran A, Roantree M, Keyes TE. Evaluation of the passive permeability of antidepressants through pore-suspended lipid bilayer. Colloids Surf B Biointerfaces 2024; 234:113688. [PMID: 38128360 DOI: 10.1016/j.colsurfb.2023.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
HYPOTHESIS The antidepressant drug imipramine, and its metabolite desipramine show different extents of interaction with, and passive permeation through, cellular membrane models, with the effects depending on the membrane composition. Through multimodal interrogation, we can observe that the drugs have a direct impact on the physicochemical properties of the membrane, that may play a role in their pharmacokinetics. EXPERIMENTS Microcavity pore-suspended lipid bilayers (MSLBs) of four different compositions, each with a different headgroup charge namely; zwitterionic dioleoylphosphatidylcholine (DOPC), mixed DOPC and negatively charged dioleoylphosphatidylglycerol (DOPG) (3:1), mixed DOPC and positively charged dioleoyltrimethylammoniumpropane (DOTAP) (3:1), and with increasing complex composition mimicking blood-brain-barrier (BBB) were prepared on gold and polydimethylsiloxane (PDMS) substrates using a Langmuir-Blodgett-vesicle fusion method. The molecular interaction and permeation of antidepressants, imipramine, and its metabolite desipramine with the lipid bilayers were evaluated using highly sensitive label-free electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). Drug-induced membrane packing/fluidity alterations were assessed using fluorescence lifetime imaging (FLIM) and fluorescence lifetime correlation spectroscopy (FLCS) of MSLB over microfluidic PDMS array. FINDINGS Using EIS to evaluate in real-time membrane admittance changes, we found that imipramine greatly increases the ion permeability of negatively charged DOPC:DOPG (3:1) membranes. The effect was observed also at neutral (DOPC) and to a lesser extent at positively charged DOPC:DOTAP(3:1) membranes. In contrast, desipramine had a much weaker impact on ion permeability across all bilayer compositions. Temporal capacitance data show that desipramine intercalates at negatively charged membrane thereby increasing the thickness of the membrane. The overall kinetics of the imipramine permeation is higher than that of desipramine. This was confirmed using SERS, which also provides an evaluation of drug passive permeation based on arrival time across the membrane. Using FLCS, we found that imipramine increases the lipid membrane fluidity, whereas desipramine lowers it, with the exception of the negatively charged membrane. A translocation rate pharmacokinetics model was established for the first time at the MSLB platform by real-time monitoring of the variation in membrane resistance of pristine DOPC and blood-brain-barrier (BBB) membrane.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mark Roantree
- Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
4
|
Pellas V, Sallem F, Blanchard J, Miche A, Concheso SM, Méthivier C, Salmain M, Boujday S. Silica-coated gold nanorods biofunctionalization for localized surface plasmon resonance (LSPR) biosensing. Talanta 2023; 255:124245. [PMID: 36610258 DOI: 10.1016/j.talanta.2022.124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
We introduce here the engineering of nanobiosensors designed from gold nanorods coated with an ultrathin layer of silica (AuNR@SiO2) and biofunctionalized with antibodies for the Localized Surface Plasmon Resonance (LSPR) biosensing of proteins. Despite the outstanding properties of AuNRs, their use for LSPR biosensing is limited due to the presence of the surfactant cetyltrimethylammonium bromide (CTAB) - mandatory for their synthesis - which forms a strongly-bounded and positively-charged bilayer at their surface and significantly complicates their bio-functionalization. When coated with a thin layer of silica, these nanomaterials exhibit an improved sensitivity to refractive index change which augurs for better analytical performances. Here, we undertook an in-depth investigation of the biofunctionalization of AuNR@SiO2via three different routes to design and test a label-free LSPR biosensor operating in solution. In the first route, we took advantage of the negatively charged external silica shell to immobilize anti-rabbit IgG antibody by electrostatic physisorption. In the second and third routes, the silica surface was reacted with thiol or aldehyde terminated silanes, subsequently utilized to covalently attach anti-rabbit IgG antibody to the surface. The resulting nanoprobes were characterized by a wide range of physical methods (TEM, XPS, DLS, ELS and UV-Visible spectroscopy) then tested for the biosensing of rabbit-IgG. The three nanobiosensors maintain an excellent colloidal stability after analyte recognition and exhibit extremely high analytical performances in terms of specificity and dynamic range, with an LoD down to 12 ng/mL.
Collapse
Affiliation(s)
- Vincent Pellas
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| | - Fadoua Sallem
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France
| | - Juliette Blanchard
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France
| | - Antoine Miche
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France
| | - Sara Martinez Concheso
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France
| | - Christophe Méthivier
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France.
| | - Souhir Boujday
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005, Paris, France.
| |
Collapse
|
5
|
Ahuja P, Ujjain SK, Kukobat R, Urita K, Moriguchi I, Furuse A, Hattori Y, Fujimoto K, Rao G, Ge X, Wright T, Kaneko K. Air-permeable redox mediated transcutaneous CO 2 sensor. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 457:141260. [PMID: 36620723 PMCID: PMC9804966 DOI: 10.1016/j.cej.2022.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO2 monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO2 sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO2 sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO2 monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO2 monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.
Collapse
Affiliation(s)
- Preety Ahuja
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Sanjeev Kumar Ujjain
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Radovan Kukobat
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka 78000, Bosnia and Herzegovina
| | - Koki Urita
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Ayumi Furuse
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| | - Yoshiyuki Hattori
- Division of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Keisaku Fujimoto
- Omachi Municipal General Hospital, Omachi 398-0002, Japan
- School of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Govind Rao
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Thelma Wright
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katsumi Kaneko
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| |
Collapse
|
6
|
Sarangi N, Prabhakaran A, Keyes TE. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6411-6424. [PMID: 35561255 PMCID: PMC9134496 DOI: 10.1021/acs.langmuir.2c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Indexed: 05/19/2023]
Abstract
Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Vidal M, Soares MS, Loyez M, Costa FM, Caucheteur C, Marques C, Pereira SO, Leitão C. Relevance of the Spectral Analysis Method of Tilted Fiber Bragg Grating-Based Biosensors: A Case-Study for Heart Failure Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2141. [PMID: 35336312 PMCID: PMC8954114 DOI: 10.3390/s22062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023]
Abstract
Optical fiber technology has rapidly progressed over the years, providing valuable benefits for biosensing purposes such as sensor miniaturization and the possibility for remote and real-time monitoring. In particular, tilted fiber Bragg gratings (TFBGs) are extremely sensitive to refractive index variations taking place on their surface. The present work comprises a case-study on the impact of different methods of analysis applied to decode spectral variations of bare and plasmonic TFBGs during the detection of N-terminal B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, namely by following the most sensitive mode, peaks of the spectral envelopes, and the envelopes' crossing point and area. Tracking the lower envelope resulted in the lowest limits of detection (LOD) for bare and plasmonic TFBGs, namely, 0.75 ng/mL and 0.19 ng/mL, respectively. This work demonstrates the importance of the analysis method on the outcome results, which is crucial to attain the most reliable and sensitive method with lower LOD sensors. Furthermore, it makes the scientific community aware to take careful attention when comparing the performance of different biosensors in which different analysis methods were used.
Collapse
Affiliation(s)
- Miguel Vidal
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Maria Simone Soares
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Florinda M. Costa
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Sónia O. Pereira
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Cátia Leitão
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| |
Collapse
|
8
|
Bondancia TJ, Soares AC, Popolin-Neto M, Gomes NO, Raymundo-Pereira PA, Barud HS, Machado SA, Ribeiro SJ, Melendez ME, Carvalho AL, Reis RM, Paulovich FV, Oliveira ON. Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112676. [DOI: 10.1016/j.msec.2022.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/29/2023]
|
9
|
Moncer F, Adhoum N, Catak D, Monser L. Electrochemical sensor based on MIP for highly sensitive detection of 5-hydroxyindole-3-acetic acid carcinoid cancer biomarker in human biological fluids. Anal Chim Acta 2021; 1181:338925. [PMID: 34556226 DOI: 10.1016/j.aca.2021.338925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022]
Abstract
An electrochemically synthetized nano-sensor based on molecularly imprinted polypyrrole (MIPPy) was successfully developed for the detection of 5-hydroxyindole-3-acetic acid (5-HIAA) in human biological fluids namely serum, urine, and plasma. The imprinted glassy carbon electrode was prepared by electropolymerisation of pyrrole via cyclic voltammetry (C.V). After completely leaching the imprinted molecules from the polymeric network, complementary cavities are created. The developed MIPPy sensor, under optimized conditions, shows a high sensitivity towards the target molecule (LOQ = 5 × 10-11 M). Moreover, it presents a wide linear response in the range of 5 × 10-11 - 5 × 10-5 M (R2 > 0.999) with a detection limit of 15 × 10-12 M. In order to evaluate the selectivity of the MIPPy film, several structural analogues and compounds forming the real matrices were tested. The obtained results show an excellent recovery rate (between 98.86 and 101.52%) proving the promising application of the proposed nano-sensor in the detection of 5-HIAA in human biological fluids without any significant interference recorded.
Collapse
Affiliation(s)
- Fatma Moncer
- EcoChimie Laboratory, Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology, Carthage University, Tunisia; Laboratory of Electrochemistry, Materials, and Environment, UR16ES02, Preparatory School for Engineering Studies, Kairouan University, Tunisia.
| | - Nafaâ Adhoum
- Laboratory of Electrochemistry, Materials, and Environment, UR16ES02, Preparatory School for Engineering Studies, Kairouan University, Tunisia
| | - Darmin Catak
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, Denmark
| | - Lotfi Monser
- EcoChimie Laboratory, Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology, Carthage University, Tunisia; Laboratory of Electrochemistry, Materials, and Environment, UR16ES02, Preparatory School for Engineering Studies, Kairouan University, Tunisia.
| |
Collapse
|
10
|
Liu D, Zhou L, Huang L, Zuo Z, Ho V, Jin L, Lu Y, Chen X, Zhao J, Qian D, Liu H, Mao H. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection. Analyst 2021; 146:5380-5388. [PMID: 34338259 DOI: 10.1039/d1an00464f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic chip has been integrated with a capacitive biosensor based on mass-producible three-dimensional (3D) interdigital electrode arrays. To achieve the monitoring of biosensor preparation and cardiac- and periodontitis-related biomarkers, all the processes were detected in a continuously on-site way. Fabrication steps for the microfluidic chip-bonded 3D interdigital capacitor biosensor include gold thiol modification, the activation of EDC/sulfo-NHS, and the bioconjugation of antibodies. Fluorescent characterization and X-ray photoelectron spectroscopy analysis were applied to assess the successful immobilization of the C-reactive protein (CRP) antibody. The experimental results indicate the good specificity and high sensitivity of the microfluidic integrated 3D capacitive biosensor. The limit of detection of the 3D capacitive biosensor for CRP label-free detection was about 1 pg mL-1. This 3D capacitive biosensor with integrated microfluidics is mass-producible and has achieved the on-site continuous detection of cardiac- and periodontitis-related biomarkers with high performance.
Collapse
Affiliation(s)
- Danyang Liu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zong Z, Chen D, Zhao C, Tang G, Ji Y, Zhang H, Lv Z, Dong W, Zhu X. Photocatalytic degradation performance of gaseous formaldehyde by Ce-Eu/TiO 2 hollow microspheres: from experimental evaluation to simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34762-34775. [PMID: 33660171 DOI: 10.1007/s11356-021-13112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Gaseous formaldehyde present indoors is often in low-medium concentration, as compared to that contained in manufactured products, but still poses great threat to human health. Thus, this work aims to fabricate Ce-Eu/TiO2 hollow microspheres, which showed excellent photocatalytic performance toward formaldehyde. Furthermore, photocatalytical degradation performance of Ce-Eu/TiO2 hollow microspheres toward formaldehyde was investigated. The kinetics of degradation mechanism of gaseous formaldehyde for different concentrations and different temperatures vs time were studied, and the simulation and experimental results were also compared. It was found that formaldehyde concentration had an effect on the degradation process, which was consistent with different kinetics reactions. At low concentration, the degradation rate was decided by the adsorption rate, and no accumulation of adsorbent occurred. This process was consistent with the first-order kinetics law, which was established by L-H dynamics theory and Arrhenius equation. At medium concentration, the degradation process of formaldehyde was controlled by both adsorption and photocatalysis, which was consistent with the power law model. The 3D model of formaldehyde degradation process by Ce-Eu/TiO2 hollow microspheres at different concentrations vs time was established, and the results showed that the simulation equations were in good agreement with the experimental results.
Collapse
Affiliation(s)
- Zhifang Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
- Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Depeng Chen
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China.
| | - Chunxiao Zhao
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Yilong Ji
- Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Hao Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Zhong Lv
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Wei Dong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| | - Xiujuan Zhu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, Anhui, People's Republic of China
| |
Collapse
|
12
|
Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021; 191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
In this presented study, a new boron nitride nanosheets modified label-free electrochemical immunosensors were prepared for early detection of cancer antigen 125 (CA125). To aim for, boron nitride (BN) nanosheets were synthesized by conventional sonication-assisted method and then characterized. BN nanosheets were used for the surface modification of the working electrode of the screen-printed electrode (SPE). Anti CA125 antibody was then directly immobilized onto the electrode surface due to its natural affinity towards BN nanosheets. Modified electrodes were blocked with BSA and finally protected with Nafion. The newly synthesized label-free immunosensor demonstrated good detection properties to CA125 with a linear range of 5-100 U and a detection limit of 1.18 U/mL. The developed immunosensor also showed excellent reproducibility, selectivity, and stability profiles. Additionally, this immunosensor was successfully used for the detection of CA125 in artificial human serum samples along with the interfering agents. Also, it is expected that the prepared immunosensor should carry the good potential for point-of-care diagnosis in real cases.
Collapse
Affiliation(s)
- Baha Öndeş
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Sinem Evli
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Murat Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey.
| |
Collapse
|
13
|
Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3781. [PMID: 34072572 PMCID: PMC8198293 DOI: 10.3390/s21113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
The rapid progress in the development of surface plasmon resonance-based immunosensing platforms offers wide application possibilities in medical diagnostics as a label-free alternative to enzyme immunoassays. The early diagnosis of diseases or metabolic changes through the detection of biomarkers in body fluids requires methods characterized by a very good sensitivity and selectivity. In the case of the SPR technique, as well as other surface-sensitive detection strategies, the quality of the transducer-immunoreceptor interphase is crucial for maintaining the analytical reliability of an assay. In this work, an overview of general approaches to the design of functional SPR-immunoassays is presented. It covers both immunosensors, the design of which utilizes well-known and often commercially available substrates, as well as the latest solutions developed in-house. Various approaches employing chemical and passive binding, affinity-based antibody immobilization, and the introduction of nanomaterial-based surfaces are discussed. The essence of their influence on the improvement of the main analytical parameters of a given immunosensor is explained. Particular attention is paid to solutions compatible with the latest trends in the development of label-free immunosensors, such as platforms dedicated to real-time monitoring in a quasi-continuous mode, the use of in situ-generated receptor layers (elimination of the regeneration step), and biosensors using recombinant and labelled protein receptors.
Collapse
Affiliation(s)
- Marcin Drozd
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sylwia Karoń
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
14
|
Zong M, Song D, Zhang X, Huang X, Lu X, Rosso KM. Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:677-688. [PMID: 33351596 DOI: 10.1021/acs.est.0c05592] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The expression of specific crystal facets in different nanostructures is known to play a vital role in determining the sensitivity toward the photodegradation of organics, which can generally be ascribed to differences in surface structure and energy. Herein, we report the synthesis of hematite nanoplates with controlled relative exposure of basal (001) and edge (012) facets, enabling us to establish direct correlation between the surface structure and the photocatalytic degradation efficiency of methylene blue (MB) in the presence of hydrogen peroxide. MB adsorption experiments showed that the capacity on (001) is about three times larger than on (012). Density functional theory calculations suggest the adsorption energy on the (001) surface is 6.28 kcal/mol lower than that on the (012) surface. However, the MB photodegradation rate on the (001) surface is around 14.5 times faster than on the (012) surface. We attribute this to a higher availability of the photoelectron accepting surface Fe3+ sites on the (001) facet. This facilitates more efficient iron valence cycling and the heterogeneous photo-Fenton reaction yielding MB-oxidizing hydroxyl radicals at the surface. Our findings help establish a rational basis for the design and optimization of hematite nanostructures as photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Meirong Zong
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Duo Song
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiaopeng Huang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiancai Lu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Piccoli JP, Soares AC, Oliveira ON, Cilli EM. Nanostructured functional peptide films and their application in C-reactive protein immunosensors. Bioelectrochemistry 2020; 138:107692. [PMID: 33291002 DOI: 10.1016/j.bioelechem.2020.107692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Peptides with an active redox molecule are incorporated into nanostructured films for electrochemical biosensors with stable and controllable physicochemical properties. In this study, we synthesized three ferrocene (Fc)-containing peptides with the sequence Fc-Glu-(Ala)n-Cys-NH2, which could form self-assembled monolayers on gold and be attached to antibodies. The peptide with two alanines (n = 2) yielded the immunosensor with the highest performance in detecting C-reactive protein (CRP), a biomarker of inflammation. Using electrochemical impedance-derived capacitive spectroscopy, the limit of detection was 240 pM with a dynamic range that included clinically relevant CRP concentrations. With a combination of electrochemical methods and polarization-modulated infrared reflection-absorption spectroscopy, we identified the chemical groups involved in the antibody-CRP interaction, and were able to relate the highest performance for the peptide with n = 2 to chain length and efficient packing in the organized films. These strategies to design peptides and methods to fabricate the immunosensors are generic, and can be applied to other types of biosensors, including in low cost platforms for point-of-care diagnostics.
Collapse
Affiliation(s)
- Julia P Piccoli
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil
| | - Andrey C Soares
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos - SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil.
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University, 14800-060 Araraquara - SP, Brazil.
| |
Collapse
|
16
|
Ibáñez-Redín G, Joshi N, do Nascimento GF, Wilson D, Melendez ME, Carvalho AL, Reis RM, Gonçalves D, Oliveira ON. Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe 2O 4 nanoparticles. Mikrochim Acta 2020; 187:619. [PMID: 33083850 DOI: 10.1007/s00604-020-04594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
A disposable electrochemical immunosensors is presented suitable to detect cancer biomarker p53 using screen-printed carbon electrodes modified with a layer-by-layer (LbL) matrix of carboxylated NiFe2O4 nanoparticles and polyethyleneimine, onto which anti-p53 antibodies were adsorbed. Under optimized conditions, the immunosensors exhibited high surface coverage and high concentration of immobilized antibodies, which allowed for detection of p53 in a wide dynamic range from 1.0 to 10 × 103 pg mL-1, with a limit of detection of 5.0 fg mL-1 at a working potential of 100 mV vs. Ag/AgCl. The immunosensors also exhibited good selectivity with negligible interference upon incubation in complex matrices containing high concentrations of proteins (i.e., fetal bovine serum and cell lysate). The immunosensor performance is among the best reported in the literature for determination of p53, with the additional advantage of being disposable and operating with low-volume solutions.Graphical abstract Schematic representation of immunosensor fabrication depicting the immobilization of specific antibodies against p53 protein onto the surfaces of disposable printed electrodes modified with films of polyethyleneimine and different concentrations of carboxylated magnetic nanoparticles.
Collapse
Affiliation(s)
- Gisela Ibáñez-Redín
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| | | | - Deivy Wilson
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Matias E Melendez
- Pelé Little Prince Research Institute, Little Prince Complex, PR, 80250-060, Curitiba, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - André L Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, SP, 14784-400, Barretos, Brazil.,Life and eHealth Sciences Research Institute (ICVS), Medical School, University ofMinho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/ Guimarães, Portugal
| | - Débora Gonçalves
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, SP, 13560-970, São Carlos, Brazil.
| |
Collapse
|
17
|
Sarangi NK, Prabhakaran A, Keyes TE. Interaction of Miltefosine with Microcavity Supported Lipid Membrane: Biophysical Insights from Electrochemical Impedance Spectroscopy. ELECTROANAL 2020. [DOI: 10.1002/elan.202060424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| |
Collapse
|
18
|
Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111120. [DOI: 10.1016/j.msec.2020.111120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/22/2020] [Accepted: 05/24/2020] [Indexed: 01/28/2023]
|
19
|
Sarangi NK, Stalcup A, Keyes TE. The Impact of Membrane Composition and Co‐Drug Synergistic Effects on Vancomycin Association with Model Membranes from Electrochemical Impedance Spectroscopy. ChemElectroChem 2020. [DOI: 10.1002/celc.202000818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus D09 W6Y4 Dublin 9 Ireland
| | - Apryll Stalcup
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus D09 W6Y4 Dublin 9 Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus D09 W6Y4 Dublin 9 Ireland
| |
Collapse
|
20
|
Pino E, Calderón C, Castro P. TiO 2 Photocatalyzed Degradation of the Azo Dye Disperse Red 1 in Aqueous Micellar Environments †. Photochem Photobiol 2020; 97:40-46. [PMID: 32558934 DOI: 10.1111/php.13298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced degradation of the azo dye Disperse Red 1 was studied in a microheterogeneous system comprising titanium oxide (TiO2 ) and sodium dodecyl sulfate, exposed to UV light. Degussa P25, Anatase and TiO2 synthesized in acidic conditions were supported on raschig rings. The TiO2 photocatalyzed degradation is enhanced in the vicinity of the surfactant critical micelle value. Further increase on the surfactant concentration leads to a loss in photodegradation performance up to values equivalent to that observed without surfactant. Surfactant influence can be explained by two different phenomena taking place. The increasing concentration of surfactant leads to an increase in micellar concentration, inducing the incorporation of the dye to the hydrophobic moiety of the micelles, rendering the hydroxyl radical unable to interact with the dye. Similarly, the increased concentration of micelles at the photocatalyst/water interface might lead to a decrease in the number of active sites on the TiO2 surface able to either generate reactive species and/or interact with de dye molecules. Additives such as H2 O2 , NaCl, Na2 SO4, and Na2 CO3 are able to override the influence of the surfactant both positively and negatively, being the final outcome of the influence highly dependent on the crystalline form of the TiO2 photocatalyst.
Collapse
Affiliation(s)
- Eduardo Pino
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Cristian Calderón
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Piero Castro
- Departamento de ingeniería química, Universidad de Santiago de Chile, USACH, Santiago, Chile
| |
Collapse
|
21
|
Soares JC, Soares AC, Rodrigues VC, Melendez ME, Santos AC, Faria EF, Reis RM, Carvalho AL, Oliveira ON. Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46645-46650. [PMID: 31765118 DOI: 10.1021/acsami.9b19180] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diagnosis of prostate cancer via PCA3 biomarker detection is promising to be much more efficient than with the prostatic specific antigens currently used. In this study, we present the first electrochemical and impedance-based biosensors that are capable of detecting PCA3 down to 0.128 nmol/L. The biosensors were made with a layer of PCA3-complementary single-stranded DNA (ssDNA) probe, immobilized on a layer-by-layer (LbL) film of chitosan (CHT) and carbon nanotubes (MWCNT). They are highly selective to PCA3, which was confirmed in impedance measurements and with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Using information visualization methods, we could also distinguish between cell lines expressing the endogenous PCA3 long noncoding RNA (lncRNA) from cells that did not contain detectable levels of this biomarker. Since the methods involved in fabrication the biosensors are potentially low cost, one may hope to deploy PCA3 tests in any laboratory of clinical analyses and even for point-of-care diagnostics.
Collapse
Affiliation(s)
- Juliana Coatrini Soares
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
- National Laboratory of Nanotechnology for Agribusiness (LNNA) , Embrapa Instrumentation , 13560-970 São Carlos , Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
- National Laboratory of Nanotechnology for Agribusiness (LNNA) , Embrapa Instrumentation , 13560-970 São Carlos , Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Alexandre Cesar Santos
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Eliney Ferreira Faria
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Rui M Reis
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine , University of Minho , Braga , Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Andre Lopes Carvalho
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
| |
Collapse
|
22
|
Carr O, Raymundo-Pereira PA, Shimizu FM, Sorroche BP, Melendez ME, de Oliveira Pedro R, Miranda PB, Carvalho AL, Reis RM, Arantes LMRB, Oliveira ON. Genosensor made with a self-assembled monolayer matrix to detect MGMT gene methylation in head and neck cancer cell lines. Talanta 2019; 210:120609. [PMID: 31987176 DOI: 10.1016/j.talanta.2019.120609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022]
Abstract
DNA methylation is involved in the oncogenesis of head and neck squamous cell carcinoma and could be used for early detection of cancer to increase the chances of cure, but unfortunately diagnosis is usually made at late stages of the disease. In this work we developed genosensors to detect DNA methylation of the MGMT gene in head and neck cancer cell lines. The probe for MGMT promoter methylation was immobilized on gold electrodes modified with 11-mercaptoundecanoic acid (11-MUA) self-assembled monolayers (SAM). Detection was performed with electrochemical impedance spectroscopy, with clear distinction between methylated and non-methylated DNA from head and neck cell lines. The genosensor is sensitive with a low detection limit of 0.24 × 10-12 mol L-1. In addition, the cell lines FaDu, JHU28 and SCC25 for the MGMT gene, could be distinguished from the HN13 cell line which has a high degree of MGMT methylation (97%), thus confirming the selectivity. Samples with different percentages of MGMT DNA methylation could be separated in multidimensional projections using the visualization technique interactive document mapping (IDMAP). The genosensor matrix and the immobilization procedures are generic, and can be extended to other DNA methylation biomarkers.
Collapse
Affiliation(s)
- Olivia Carr
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | | | - Flávio M Shimizu
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, Brazil
| | | | - Paulo B Miranda
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lídia M R B Arantes
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784-400, Barretos, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil.
| |
Collapse
|
23
|
Proença CA, Freitas TA, Baldo TA, Materón EM, Shimizu FM, Ferreira GR, Soares FLF, Faria RC, Oliveira ON. Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2171-2181. [PMID: 31807403 PMCID: PMC6880837 DOI: 10.3762/bjnano.10.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 05/03/2023]
Abstract
Diagnosis of cancer using electroanalytical methods can be achieved at low cost and in rapid assays, but this may require the combination with data treatment for determining biomarkers in real samples. In this paper, we report an immunomagnetic nanoparticle-based microfluidic sensor (INμ-SPCE) for the amperometric detection of the prostate-specific antigen (PSA) biomarker, the data of which were treated with information visualization methods. The INμ-SPCE consists of eight working electrodes, reference and counter electrodes. On the working electrodes, magnetic nanoparticles with secondary antibodies with the enzyme horseradish peroxidase were immobilized for the indirect detection of PSA in a sandwich-type procedure. Under optimal conditions, the immunosensor could operate within a wide range from 12.5 to 1111 fg·L-1, with a low detection limit of 0.062 fg·L-1. Multidimensional projections combined with feature selection allowed for the distinction of cell lysates with different levels of PSA, in agreement with results from the traditional enzyme-linked immunosorbent assay. The approaches for immunoassays and data processing are generic, and therefore the strategies described here may provide a simple platform for clinical diagnosis of cancers and other types of diseases.
Collapse
Affiliation(s)
- Camila A Proença
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Tayane A Freitas
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Thaísa A Baldo
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Elsa M Materón
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Flávio M Shimizu
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Gabriella R Ferreira
- Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Frederico L F Soares
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- Chemistry Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
24
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
25
|
Camilo DE, Miyazaki CM, Shimizu FM, Ferreira M. Improving direct immunoassay response by layer-by-layer films of gold nanoparticles – Antibody conjugate towards label-free detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:315-323. [DOI: 10.1016/j.msec.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023]
|
26
|
Chen L, Yun J, Zhang H, Dai B. Association equilibrium model. I. Influence of pH and salt concentration on ion-exchanger. J Chromatogr A 2019; 1595:49-57. [PMID: 30853163 DOI: 10.1016/j.chroma.2019.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 01/21/2023]
Abstract
An association equilibrium model is presented in this work to illustrate the charged state of an ion-exchange adsorbent in electrolytic solution. This semi-empirical model considers the adsorption equilibrium of hydrogen ions and small-molecular salt ions with adsorbents, and it can be used to describe the effects of pH and salt concentration on the zeta potential, associated hydrogen ions and ionic capacity of adsorbents. The association equilibrium parameters of four commercial adsorbents were obtained by experimental data fitting. The model fitted the experimental data well, and their coefficients of determination (R2) of four adsorbents ranged from 0.924 to 0.994. The ratio coefficients of the association reaction with hydrogen ions ranged from 0.15 to 0.44 and those with salt counter-ions were all one. These data demonstrated that association reactions followed stoichiometric law, but that ionizable groups on ion-exchangers could not freely ionize as small molecule ions in solution. In this way, the performance of ion-exchange adsorbents can be characterized based on the zeta potential and dissociated hydrogen ions, and the results from this model were consistent with that from the manufacturer. Furthermore, this model could easily be expanded for multi-component systems.
Collapse
Affiliation(s)
- Liang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Changwang Road 18, Hangzhou 310032, China
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
27
|
Ramadurai S, Sarangi NK, Maher S, MacConnell N, Bond AM, McDaid D, Flynn D, Keyes TE. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8095-8109. [PMID: 31120755 DOI: 10.1021/acs.langmuir.9b01028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.
Collapse
Affiliation(s)
- Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Sean Maher
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nicola MacConnell
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Alan M Bond
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | | | | | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
28
|
Ibáñez-Redín G, Furuta RH, Wilson D, Shimizu FM, Materon EM, Arantes LMRB, Melendez ME, Carvalho AL, Reis RM, Chaur MN, Gonçalves D, Oliveira Jr ON. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1502-1508. [DOI: 10.1016/j.msec.2019.02.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
29
|
Hong X, Li Y, Gao C, Zhao Y, Tang K. Adsorption removing various basic nitrogen compounds from model diesel over allochroic silica gel. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418798101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adsorption removal of quinoline from model diesel by using alumina, diatomite, silica gel, and allochroic silica gel as adsorbents was investigated. The experiment results indicated that the adsorption denitrogenation performance of allochroic silica gel was more superior to other three adsorbents. The silica gel and allochroic silica gel were confirmed by characterization with X-ray diffraction, nitrogen adsorption–desorption, and ammonia temperature programmed desoption (NH3-TPD). X-ray diffraction results indicated that both the samples were amorphous structures. The average pore diameters of silica gel and allochroic silica gel were 18.46 and 1.80 nm, the Brunauer–Emmett–Teller surface areas were 437.86 and 623.39 m2/g, and the pore volumes were 0.9724 and 0.3442 cm3/g, respectively. The results of TPD showed that the acidity of allochroic silica gel was far stronger than that of silica gel which greatly enhanced its adsorption denitrogenation performance. The adsorption denitrogenation performance of allochroic silica gel for quinoline, aniline, and pyridine from model diesel was as follows: aniline, pyridine, and quinoline. Adsorption temperature, particle size, and arenes added in model diesel had little impact on the removal of aniline and pyridine except quinoline. The adsorbent-to-oil ratio had significant effects on adsorption denitrogenation, especially for quinoline. The N–Co bond between Co in allochroic silica gel and N atom in the basic nitrogen compounds molecule played a significant role. Furthermore, the allochroic silica gel could be easily regenerated by its adsorption denitrogenation performance for quinoline and pyridine by using calcination once or several times, except aniline. The adsorption isotherm results revealed that the adsorption of pyridine and aniline belonged to the Langmuir–Freundlich binding model, but the adsorption of quinoline belonged to Freundlich model.
Collapse
Affiliation(s)
- Xin Hong
- Liaoning University of Technology, China
| | - Yunhe Li
- Liaoning University of Technology, China
| | - Chang Gao
- Liaoning University of Technology, China
| | | | - Ke Tang
- Liaoning University of Technology, China
| |
Collapse
|
30
|
Rodrigues VC, Moraes ML, Soares JC, Soares AC, Sanfelice R, Deffune E, Oliveira ON. Immunosensors Made with Layer-by-Layer Films on Chitosan/Gold Nanoparticle Matrices to Detect D-Dimer as Biomarker for Venous Thromboembolism. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Valquiria C. Rodrigues
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil
| | - Marli L. Moraes
- Federal University of São Paulo, Unifesp, Campus São José dos Campos, SP, Brazil
| | - Juliana C. Soares
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil
| | - Andrey C. Soares
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil
| | - Rafaela Sanfelice
- Department of Chemical Engineering, Federal University of the Triângulo Mineiro, Uberaba-MG, Brazil
| | - Elenice Deffune
- Department of Urology, Medical School, UNESP, Botucatu-SP, Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil
| |
Collapse
|
31
|
Raymundo-Pereira PA, Baccarin M, Oliveira ON, Janegitz BC. Thin Films and Composites Based on Graphene for Electrochemical Detection of Biologically-relevant Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Paulo A. Raymundo-Pereira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Marina Baccarin
- São Carlos Institute of Chemistry; University of São Paulo; CP 380, CEP 13566-590 São Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education; Federal University of São Carlos; CEP 13600-970 Araras, SP Brazil
| |
Collapse
|
32
|
Soares AC, Soares JC, Shimizu FM, Rodrigues VDC, Awan IT, Melendez ME, Piazzetta MHO, Gobbi AL, Reis RM, Fregnani JHTG, Carvalho AL, Oliveira ON. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst 2018; 143:3302-3308. [DOI: 10.1039/c8an00430g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Film architecture for the immunosensor.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
- Department of Materials Engineering
| | | | - Flavio Makoto Shimizu
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory
| | | | - Iram Taj Awan
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
| | | | | | - Angelo Luiz Gobbi
- Brazilian Nanotechnology National Laboratory
- Brazilian Center for Research in Energy and Materials
- Campinas
- Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center
- Barretos Cancer Hospital
- Barretos
- Brazil
- Life and Health Sciences Research Institute (ICVS)
| | | | | | | |
Collapse
|
33
|
Soares J, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHG, Reis RM, Carvalho AL, Corrêa DS, Oliveira ON. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS OMEGA 2017; 2:6975-6983. [PMID: 30023536 PMCID: PMC6044935 DOI: 10.1021/acsomega.7b01029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 05/15/2023]
Abstract
We report the fabrication of immunosensors based on nanostructured mats of electrospun nanofibers of polyamide 6 and poly(allylamine hydrochloride) coated either with multiwalled carbon nanotubes (MWCNTs) or gold nanoparticles (AuNPs), whose three-dimensional structure was suitable for the immobilization of anti-CA19-9 antibodies to detect the pancreatic cancer biomarker CA19-9. Using impedance spectroscopy, the sensing platform was able to detect CA19-9 with a detection limit of 1.84 and 1.57 U mL-1 for the nanostructured architectures containing MWCNTs and AuNPs, respectively. The high sensitivity achieved can be attributed to the irreversible adsorption between antibodies and antigens, as confirmed with polarization-modulated infrared reflection absorption spectroscopy. The adsorption mechanism was typical Langmuir-Freundlich processes. The high sensitivity and selectivity of the immunosensors were also explored in tests with blood serum from patients with distinct concentrations of CA19-9, for which the impedance spectra data were processed with a multidimensional projection technique. The robustness of the immunosensors in dealing with patient samples without suffering interference from analytes present in biological fluids is promising for a simple, effective diagnosis of pancreatic cancer at early stages.
Collapse
Affiliation(s)
- Juliana
C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| | - Leonardo E. O. Iwaki
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | - Andrey C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | | | - Matias E. Melendez
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | | | - Rui M. Reis
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
- ICVS/3B’s-PT
Government Associate Laboratory, Life and Health Sciences Research
Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Andre L. Carvalho
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | - Daniel S. Corrêa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| |
Collapse
|
34
|
Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, Fregnani JHTG, Carvalho AL, Oliveira ON. Carbon Nanotube Matrix for Highly Sensitive Biosensors To Detect Pancreatic Cancer Biomarker CA19-9. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25878-25886. [PMID: 28696659 DOI: 10.1021/acsami.7b07384] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biosensors fabricated with nanomaterials promise faster, cheaper, and more efficient alternatives to traditional, often bulky devices for early cancer diagnosis. In this study, we fabricated a thin film sensing unit on interdigitated gold electrodes combining polyethyleneimine and carbon nanotubes in a layer by layer fashion, onto which antibodies anti-CA19-9 were adsorbed with a supporting layer of N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide solution. By use of impedance spectroscopy, the pancreatic cancer biomarker CA19-9 was detected in a buffer with limit of detection of 0.35 U/mL. This high sensitivity allowed for distinction between samples of blood serum from patients with distinct probabilities to develop pancreatic cancer. The selectivity of the biosensor was confirmed in subsidiary experiments with HT-29 and SW-620 cell lines and possible interferents, e.g., p53 protein, ascorbic acid, and glucose, where significant changes in capacitance could only be measured with HT-29 that contained the CA19-9 biomarker. Chemisorption of CA19-9 molecules onto the layer of anti-CA19-9 antibodies was the mechanism responsible for sensing while electrostatic interactions drove the adsorption of carbon nanotubes, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The adsorption behavior was successfully described by the Langmuir-Freundlich isotherm.
Collapse
Affiliation(s)
- Anshu Thapa
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
- Department of Physics, University of Bath , Bath BA2 7AY, United Kingdom
| | | | | | - Iram Taj Awan
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| | - Diogo Volpati
- Department of Natural Sciences, Mittuniversitetet , Sundsvall 851 70, Sweden
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| |
Collapse
|
35
|
Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces. Colloids Surf B Biointerfaces 2017; 158:167-174. [PMID: 28689099 DOI: 10.1016/j.colsurfb.2017.06.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/07/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022]
Abstract
Antibody immobilization on polymeric substrates is a key manufacturing step for microfluidic devices that implement sample-to-answer automation of immunoassays. In this work, a simple and versatile method to bio-functionalize poly(methylmethacrylate) (PMMA), a common material of such "Lab-on-a-Chip" systems, is proposed; using the Layer-by-Layer (LbL) technique, we assemble nanostructured thin films of poly(ethylene imine) (PEI) and graphene oxide (GO). The wettability of PMMA surfaces was significantly augmented by the surface treatment with (PEI/GO)5 film, with an 81% reduction of the contact angle, while the surface roughness increased by 600%, thus clearly enhancing wettability and antibody binding capacity. When applied to enzyme-linked immunosorbent assays (ELISAs), the limit of detection of PMMA surface was notably improved from 340pgmL-1 on commercial grade polystyrene (PS) and 230pgmL-1 on plain PMMA surfaces to 130pgmL-1 on (PEI/GO)5 treated PMMA. Furthermore, the accelerated antibody adsorption kinetics on the LbL films of GO allowed to substantially shorten incubation times, e.g. for anti-rat IgG adsorption from 2h down to 15min on conventional and treated surfaces, respectively.
Collapse
|
36
|
|
37
|
Rodrigues VDC, Comin CH, Soares JC, Soares AC, Melendez ME, Fregnani JHTG, Carvalho AL, Costa LDF, Oliveira ON. Analysis of Scanning Electron Microscopy Images To Investigate Adsorption Processes Responsible for Detection of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5885-5890. [PMID: 28117964 DOI: 10.1021/acsami.6b16105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Adsorption processes are responsible for detection of cancer biomarkers in biosensors (and immunosensors), which can be captured with various principles of detection. In this study, we used a biosensor made with nanostructured films of polypyrrole and p53 antibodies, and image analysis of scanning electron microscopy data made it possible to correlate morphological changes of the biosensor with the concentration of cells containing the cancer biomarker p53. The selectivity of the biosensor was proven by distinguishing images obtained with exposure of the biosensor to cells containing the biomarker from those acquired with cells that did not contain it. Detection was confirmed with cyclic voltammetry measurements, while the adsorption of the p53 biomarker was probed with polarization-modulated infrared reflection absorption (PM-IRRAS) and a quartz crystal microbalance (QCM). Adsorption is described using the Langmuir-Freundlich model, with saturation taking place at a concentration of 100 Ucells/mL. Taken together, our results point to novel ways to detect biomarkers or any type of analyte for which detection is based on adsorption as is the case of the majority of biosensors.
Collapse
Affiliation(s)
| | - Cesar H Comin
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Juliana Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
- Departament of Materials Engineering, São Carlos School of Engineering, University of São Paulo , 13563-120 São Carlos, São Paulo, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , 14784-400 Barretos, São Paulo, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , 14784-400 Barretos, São Paulo, Brazil
| | - Luciano da F Costa
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
38
|
Delezuk JA, Pavinatto A, Moraes ML, Shimizu FM, Rodrigues VC, Campana-Filho SP, Ribeiro SJ, Oliveira ON. Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydr Polym 2017; 155:146-151. [DOI: 10.1016/j.carbpol.2016.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
|
39
|
Carbon nanotube-polymer composite for effervescent pipette tip solid phase microextraction of alkaloids and flavonoids from Epimedii herba in biological samples. Talanta 2017; 162:10-18. [DOI: 10.1016/j.talanta.2016.09.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
|
40
|
Zha R, Shi T, Zhang Z, Xu D, Jiang T, Zhang M. Quasi-reverse-emulsion-templated approach for a facile and sustainable environmental remediation for cadmium. RSC Adv 2017. [DOI: 10.1039/c6ra26949d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Highly efficient and sustainable decontamination of heavy metal ions is achieved by nanostructured hierarchical hollow α-Fe2O3 chestnut buds and nests.
Collapse
Affiliation(s)
- Ruhua Zha
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Tuo Shi
- Laboratory of Solid State Ionics
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Zongwen Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Dongli Xu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Tongwu Jiang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Min Zhang
- Henan Collaborative Innovation Center for Energy-Saving Building Materials
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| |
Collapse
|