1
|
De R, Hermesdorf M, Bera A, Phul R, Gawlik A, Plentz J, Oschatz M, Karadaş F, Dietzek-Ivanšić B. Cyanide Linkage Isomerization Induced by Cobalt Oxidation-State Changes at a Co-Fe Prussian-Blue Analogue/ZnO Interface. Chemistry 2024; 30:e202401708. [PMID: 39140426 DOI: 10.1002/chem.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Understanding the interfacial composition in heterostructures is crucial for tailoring heterogenous electrochemical and photoelectrochemical processes. This work aims to elucidate the structure of a series of Co-Fe Prussian blue analogue modified ZnO (PBA/ZnO) electrodes with interface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Our measurements revealed, for the first time, a cyanide linkage isomerism at the PBA/ZnO interface, when the composite is fabricated at elevated temperatures. In situ VSFG spectro-electrochemistry measurements correlate the CoII→CoIII oxidation with the flip of the bridging CN ligand from Co-NC-Fe coordination mode to a Co-CN-Fe one. Photoluminescence measurements and X-ray photoelectron spectroscopy reveal that this unprecedented linkage isomerism originates from surface defects, which act as oxidation sites for the PBA. The presence of such surface defects is correlated with the fabrication temperature for PBA/ZnO. Thus, this contribution identifies the interplay between the surface states of the ZnO substrates and the chemical composition of PBA at the ZnO surface, suggesting an easily accessible approach to control the chemical composition of the interface.
Collapse
Affiliation(s)
- Ratnadip De
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Marius Hermesdorf
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Anupam Bera
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ruby Phul
- Department of Chemistry, Main Campus, Bilkent University, 06800, Ankara, Turkey
| | - Annett Gawlik
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Jonathan Plentz
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Ferdi Karadaş
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department of Chemistry, Main Campus, Bilkent University, 06800, Ankara, Turkey
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Benjamin Dietzek-Ivanšić
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
2
|
Privault G, Hervé M, Godin N, Bertoni R, Akagi S, Kubicki J, Tokoro H, Ohkoshi S, Lorenc M, Collet E. From Ultrafast Photoinduced Small Polarons to Cooperative and Macroscopic Charge-Transfer Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202408284. [PMID: 38979690 DOI: 10.1002/anie.202408284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
We study by femtosecond infrared spectroscopy the ultrafast and persistent photoinduced phase transition of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 ⋅ 0.2H2O material, induced at room temperature by a single laser shot. This system exhibits a charge-transfer based phase transition with a 75 K wide thermal hysteresis, centred at room temperature, from the low temperature Mn3+-N-C-Fe2+ tetragonal phase to the high temperature Mn2+-N-C-Fe3+ cubic phase. At room temperature, the photoinduced phase transition is persistent. However, the out-of-equilibrium dynamics leading to this phase is multi-scale. Femtosecond infrared spectroscopy, particularly sensitive to local reorganizations through the evolution of the frequency of the N-C vibration modes with the different characteristic electronic states, reveals that at low laser fluence and on short time scale, the photoexcitation of the Mn3+-N-C-Fe2+ phase creates small charge-transfer polarons [Mn2+-N-C-Fe3+]* within ≃250 fs. The local trapping of photoinduced intermetallic charge-transfer is characterized by the appearance of a polaronic infrared band, due to the surrounding Mn2+-N-C-Fe2+ species. Above a threshold fluence, when a critical fraction of small CT-polarons is reached, the macroscopic phase transition to the persistent Mn2+-N-C-Fe3+ cubic phase occurs within ≃ 100 ps. This non-linear photo-response results from elastic cooperativity, intrinsic to a switchable lattice and reminiscent of a feedback mechanism.
Collapse
Affiliation(s)
- G Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - M Hervé
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - N Godin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - R Bertoni
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - S Akagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - J Kubicki
- Faculty of Physics, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - H Tokoro
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - S Ohkoshi
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - M Lorenc
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Institut universitaire de France (IUF), 75231, Paris, France
| |
Collapse
|
3
|
Kong XJ, He T, Bezrukov AA, Darwish S, Si GR, Zhang YZ, Wu W, Wang Y, Li X, Kumar N, Li JR, Zaworotko MJ. Reversible Co(II)-Co(III) Transformation in a Family of Metal-Dipyrazolate Frameworks. J Am Chem Soc 2024; 146. [PMID: 39376039 PMCID: PMC11487582 DOI: 10.1021/jacs.4c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Transformation between oxidation states is widespread in transition metal coordination chemistry and biochemistry, typically occurring in solution. However, air-induced oxidation in porous crystalline solids with retention of crystallinity is rare due to the dearth of materials with high structural stability that are inherently redox active. Herein, we report a new family of such materials, four isostructural cobalt-pyrazolate frameworks of face-centered cubic, fcu, topology, fcu-L-Co, that are sustained by Co8 molecular building blocks (MBBs) and dipyrazolate ligands, L. fcu-L-Co were observed to spontaneously transform from Co(II)8 to Co(III)8 MBBs in air with retention of crystallinity, marking the first such instance in metal-organic frameworks (MOFs). This transformation can also be achieved through water vapor sorption cycling, heating, or chemical oxidation. The reverse reactions were conducted by exposure of fcu-L-Co(III) to aqueous hydrazine. fcu-L-Co(II) exhibited high gravimetric water vapor uptakes of 0.55-0.68 g g-1 at 30% relative humidity (RH), while in fcu-L-Co(III) the inflection point shifted to lower RH and framework stability improved. Insight into the transformation between fcu-L-Co(II) and fcu-L-Co(III) was gained from single crystal X-ray diffraction and in situ spectroscopy. Overall, the crystal engineering approach we adopted has afforded a new family of MOFs that exhibit cobalt redox chemistry in a confined space coupled with high porosity.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tao He
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Andrey A. Bezrukov
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guang-Rui Si
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zheng Zhang
- Shandong
Provincial Key Laboratory of Monocrystalline Silicon Semiconductor
Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Wei Wu
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yingjie Wang
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xia Li
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Naveen Kumar
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jian-Rong Li
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Michael J. Zaworotko
- Bernal
Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Ikeda T, Huang YB, Wu SQ, Zheng W, Xu WH, Zhang X, Ji T, Uematsu M, Kanegawa S, Su SQ, Sato O. Four-step electron transfer coupled spin transition in a cyano-bridged [Fe 2Co 2] square complex. Dalton Trans 2024; 53:15465-15470. [PMID: 39239808 DOI: 10.1039/d4dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.
Collapse
Affiliation(s)
- Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Fukushima R, Sekine Y, Zhang Z, Hayami S. Assembling Smallest Prussian Blue Analogs Using Chiral Hydrogen Bond-Donating Unit toward Complete Phase Transition. J Am Chem Soc 2024; 146:24238-24243. [PMID: 39038202 DOI: 10.1021/jacs.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exploring methods for assembling functional materials at the molecular level may yield functional expressions derived from the assembly method. This study developed novel switchable molecular assemblies characterized by abrupt, complete phase transitions promoted via hydrogen bonding with a chiral carboxylic acid. These assemblies were prepared by aggregating discrete molecules that are unresponsive to external stimuli. Furthermore, enantiopure hydrogen-bond donor (HBD) molecules provide switchable compounds with cooperative and abrupt phase transitions, whereas the racemic mixture of the HBD provides a hydrogen-bonded one-dimensional compound with a broad and incomplete phase transition when structural disordering is observed. This study presents a novel strategy for observing metal-to-metal electron-transfer-coupled spin transitions via hydrogen-bond formation.
Collapse
Affiliation(s)
- Riku Fukushima
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
7
|
Shi J, Yang ZX, Wan H, Li B, Nie J, Huang T, Li L, Huang GF, Leng C, Si Y, Huang WQ. Rapid Construction of Double Crystalline Prussian Blue Analogue Hetero-Superstructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311267. [PMID: 38534041 DOI: 10.1002/smll.202311267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Indexed: 03/28/2024]
Abstract
The controllable construction of complex metal-organic coordination polymers (CPs) merits untold scientific and technological potential, yet remains a grand challenge of one-step construction and modulating simultaneously valence states of metals and topological morphology. Here, a thiocyanuric acid (TCA)-triggered strategy is presented to one-step rapid synthesis a double-crystalline Prussian blue analogue hetero-superstructure (PBA-hs) that comprises a Co3[Fe(CN)6]2 cube overcoated with a KCo[Fe(CN)6] shell, followed by eight self-assembled small cubes on vertices. Unlike common directing surfactants, TCA not only acts as a trigger for the fast growth of KCo[Fe(CN)6] on the Co3[Fe(CN)6]2 phase resulting in a PBA-on-PBA hetero-superstructure, but also serves as a flange-like bridge between them. By combining experiments with simulations, a deprotonation-induced electron transfer (DIET) mechanism is proposed for formation of second phase in PBA-hs, differing from thermally and photo-induced electron transfer processes. To prove utility, the calcined PBA-hs exhibits enhanced oxygen evolution reaction performance. This work provides a new method to design of novel CPs for enriching chemistry and material science. This work offers a practical approach to design novel CPs for enriching chemistry and material science.
Collapse
Affiliation(s)
- Jinghui Shi
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Zi-Xuan Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Hui Wan
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jianhang Nie
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Tao Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Lei Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Can Leng
- College of Intelligent Manufacture, Hunan First Normal University, Changsha, 410205, P. R. China
- National Supercomputing Center in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
8
|
Chen Z, Xie K, Cheng Y, Deng Y, Zhang Y. Hierarchically Assembled Gigantic Fe/Co Cyanometallate Clusters Exhibiting Electron Transfer Behavior Above Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402884. [PMID: 38874086 PMCID: PMC11321628 DOI: 10.1002/advs.202402884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
The construction of large and complex supramolecular architectures through self-assembly is at the forefront of contemporary coordination chemistry. Notwithstanding great success in various systems using anionic bridges (e.g., O2- or S2-) or organic ligands (e.g., pyridine or carboxylate ligands), the assembly of large cyanide-bridged clusters with increasing nuclearity remains a formidable synthetic challenge. In this study, it is achieved in preparing two heterometallic cyanometallate clusters with unprecedented complexity, [Fe20Co20] (1) and [Fe12Co15] (2), by creating the "flexibility" through a versatile ligand of bis((1H-imidazol-4-yl)methylene)hydrazine (H2L) and low-coordinate cobalt. Complex 1 features a super-square array of four cyanide-bridged [Fe4Co4] cube subunits as the corners that are interconnected by four additional [FeCo] units, resulting in a torus-shaped architecture. Complex 2 contains a lantern-like core-shell cluster with a triple-helix kernel of [Co3L3] enveloped by a [Fe12Co12] shell. The combined structure analysis and mass spectrometry study reveal a hierarchical assembly mechanism, which sheds new light on constructing cyanometallate nanoclusters with atomic precision. Moreover, complex 1 undergoes a thermally induced electron-transfer-coupled spin transition (ETCST) between the diamagnetic {FeII LS(µ-CN)CoIII LS} and paramagnetic {FeIII LS(µ-CN)CoII HS} configurations (LS = low spin, HS = high spin) above room temperature, representing the largest molecule displaying electron transfer and spin transition characteristic.
Collapse
Affiliation(s)
- Zi‐Yi Chen
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Kai‐Ping Xie
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
- School of Chemistry and Materials EngineeringHuizhou UniversityHuizhou516007China
| | - Yue Cheng
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yi‐Fei Deng
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yuan‐Zhu Zhang
- Department of ChemistrySouthern University of Science and Technology (SUSTech)Shenzhen518055China
| |
Collapse
|
9
|
Wang YH, Gao ZN, Liang S, Jie Li, Wei WJ, Han SD, Zhang YQ, Hu JX, Wang GM. Synergism of Light-Induced [4 + 4] Cycloaddition and Electron Transfer Toward Switchable Photoluminescence and Single-Molecule Magnet Behavior in a Dy 4 Cubane. RESEARCH (WASHINGTON, D.C.) 2024; 7:0411. [PMID: 38974011 PMCID: PMC11223772 DOI: 10.34133/research.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.
Collapse
Affiliation(s)
- Yu-Han Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Zhen-Ni Gao
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Shuai Liang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Jie Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Wu-Ji Wei
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,
Nanjing Normal University, Nanjing 210023, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Yadav J, Nandi M, Kharel R, Mukherjee M, Konar S. Thermal and protonation-induced electron transfer coupled spin transition in a discrete [Fe 2Co 3] Prussian blue analogue. Dalton Trans 2024; 53:8910-8914. [PMID: 38757790 DOI: 10.1039/d4dt00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Multi-stimuli responsive switchable molecules have garnered interest for their potential applications in the field of magnetic materials. However, the persistent challenge lies in isolating these properties within the same material. Herein, we report a discrete [Fe2Co3] pentanuclear cyanide bridged complex, [Co(L)2]3[Fe(CN)6]2·20H2O, (1) (L = (Z)-N'-(4-(trifluoromethyl)phenyl)picolinimidamide) which undergoes electron transfer coupled spin transition (ETCST) from [FeII2CoIIHSCoIII2] to [FeIII2CoII3] configurations through thermal activation and upon protonation.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Moubani Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| |
Collapse
|
11
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Lyu BH, Xie KP, Cui W, Chen YC, Chen GX, Wu SG, Tong ML. Cyanometallic charge engineering in spin crossover metal-organic frameworks. Chem Commun (Camb) 2024; 60:4318-4321. [PMID: 38534062 DOI: 10.1039/d4cc00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, we successfully synthesize cationic/neutral/anionic inverse-Hofmann-type spin crossover (SCO) frameworks with 1,1,2,2-tetrakis(4-(pyridine-4-yl)phenyl)-ethene ligand by means of cyanometallic charge engineering strategy. The cationic and neutral frameworks exhibit single-step thermally induced spin transition behaviors, while the SCO capability of anionic framework can be aroused by partial desolvation. This strategy provides a new idea to construct ionic SCO frameworks and extends the toolkit for SCO materials.
Collapse
Affiliation(s)
- Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Wen Cui
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Guan-Xi Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
13
|
Zhang WD, Zou Y, Zhao H, Chen M, Zhou L, Xie XR, Yan X, Pang H, Gu ZG. Double-Shelled Open Hollow Metal-Organic Frameworks for Efficient Aqueous Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307809. [PMID: 37988684 DOI: 10.1002/smll.202307809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.
Collapse
Affiliation(s)
- Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yizhong Zou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Ming Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lang Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xue-Rui Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
14
|
Cheng Y, Chen ZY, Deng YF, Zhang YZ. 3 nm-wide Cyanometallate Fe-Co Tape Exhibiting Single-Chain Magnet Behavior. Inorg Chem 2024; 63:4063-4071. [PMID: 38364201 DOI: 10.1021/acs.inorgchem.3c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
15
|
Hou L, Xu X, Zhong Z, Tian F, Wang L, Xu Y. Bimetallic MOF-Based Sensor for Highly Sensitive Detection of Ammonia Gases. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415401 DOI: 10.1021/acsami.3c16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The demand for the detection of ultralow concentrations of ammonia gas is growing. A bimetallic metal-organic framework (MOF) comprising Prussian blue analogs (PBAs) was used to achieve highly sensitive and stable detection of ammonia gas at room temperature in this study. First, PB was enriched by using ammonia for improved gas sensing properties. Second, a sensitive membrane with more vacancies was formed by partially replacing Fe3+ with Cu2+ through a cation-exchange strategy. Finally, a capacitive sensor was developed for ultralow-concentration ammonia detection using a Cu-Fe PBA sensitive membrane and interdigitated electrodes (IDEs). To investigate the adsorption efficiency of the designed composite sensitive film for ammonia, PBAs nanoparticles were deposited on a quartz microcrystal balance (QCM) via cyclic voltammetry and a hydrothermal method. Approximately 10 ppm of ammonia was adsorbed under 1 atm by the Cu-Fe PBA film prepared using a reaction time of 36 h, and the adsorption efficiency was measured to be 2.2 mmol g-1 using the QCM frequency response. The Cu-Fe PBAs were also tested using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller theory. The introduction of Cu2+ ions significantly increased the specific surface area of Cu-Fe PBAs MOF, and the number of adsorption sites for ammonia also increased; however, its skeleton structure remained similar to that of PB. Then, the capacitive sensor based on Cu-Fe PBA sensitive membrane and IDE was fabricated and the gas sensing detection device was established for ammonia detection. Overall, the developed capacitive sensor exhibits a linear response of 75-1000 ppb and a detection limit of 3.8 ppb for ultralow ammonia concentrations, which makes it superior to traditional detection methods and thus allows excellent application prospects.
Collapse
Affiliation(s)
- Liwei Hou
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xinyue Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Zhoujun Zhong
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Fengchun Tian
- College of Microelectronic and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
16
|
Jia S, Shang M, Jin S, Zhu X, Cai Y, Li D. Electron transfer coupled spin transition in cyano-bridged mixed-valence {FeIII2FeII2} molecular squares. Dalton Trans 2024; 53:2807-2814. [PMID: 38230412 DOI: 10.1039/d3dt03208f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The research on electron transfer coupled spin transition regulating the valence state and spin state transition of metal ions is promising and challenging. Herein, we report a cyano-bridged {FeIII2FeII2} molecular square complex, {[Fe(Tp)(CN)3]2 [Fe(bnbpen)]2}(ClO4)2·8CH3OH (1·8CH3OH, bnbpen = N,N'-bis-(2-naphthylmethyl)-N,N'-bis(2-picolayl)-ethylenediamine), and its free of solvents form (1). Combined single-crystal X-ray diffraction, temperature-dependent infrared (IR) spectra, magnetic measurements, and Mössbauer spectra reveal that 1·8CH3OH and 1 exhibit reversible one-step and two-step electron transfer coupled spin transition (ETCST) with temperature change, between the low-temperature state {FeII,LS(μ-CN)FeIII,LS}2 (LS = low spin, HS = high spin) and the high-temperature state {FeIII,LS(μ-CN)FeII,HS}2, respectively.
Collapse
Affiliation(s)
- Shuwen Jia
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Mengjia Shang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Sai Jin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Xinrui Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Yuanyuan Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Dongfeng Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| |
Collapse
|
17
|
Hervé M, Privault G, Trzop E, Akagi S, Watier Y, Zerdane S, Chaban I, Torres Ramírez RG, Mariette C, Volte A, Cammarata M, Levantino M, Tokoro H, Ohkoshi SI, Collet E. Ultrafast and persistent photoinduced phase transition at room temperature monitored by streaming powder diffraction. Nat Commun 2024; 15:267. [PMID: 38267429 PMCID: PMC10808240 DOI: 10.1038/s41467-023-44440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.
Collapse
Affiliation(s)
- Marius Hervé
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Gaël Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Shintaro Akagi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yves Watier
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Serhane Zerdane
- SwissFEL, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Ievgeniia Chaban
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Ricardo G Torres Ramírez
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Celine Mariette
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Alix Volte
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Marco Cammarata
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, Grenoble, France
| | - Hiroko Tokoro
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Shin-Ichi Ohkoshi
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Institut universitaire de France (IUF), Paris, France.
| |
Collapse
|
18
|
Cai LZ, Yu XQ, Wang MS, Guo GC. Photoinduced large magnetic change at room temperature and radical-quenched spin glass in a cyanide-bridged Mn II-Fe III compound. Dalton Trans 2023; 52:15677-15681. [PMID: 37888847 DOI: 10.1039/d3dt03080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
By the coordination assembly of a redox photoactive functional motif and a cyanide-bridged moiety, a cyanide-bridged MnII-FeIII compound with large photoinduced magnetic change at room-temperature due to photoinduced electron transfer was obtanied. This compound also shows unprecedented radical-quenched spin glass in molecule based magnets.
Collapse
Affiliation(s)
- Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiao-Qing Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
19
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
20
|
Wang JH, Javed MK, Li JX, Zhang YQ, Li ZY, Yamashita M. Ferromagnetically coupled single-chain magnets exhibiting a magnetic hysteresis of 0.42 Tesla in cyano-bridged FeIII2M II (M = Ni, Fe) coordination polymers. Dalton Trans 2023; 52:15510-15517. [PMID: 37581269 DOI: 10.1039/d3dt01043k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis, single-crystal structures and magnetic properties of two new double-zigzag-chain cyano-bridged heterobimetallic {[MII(Py-NOH)2][FeIII(Tp*)(CN)3]2}·H2O ([FeIII2MII]) (Py-NOH = 4-pyridinealdoxime, Tp* = tris(3,5-dimethylpyrazol-1-yl)borohydride, M = Ni (1), Fe (2)) compounds are reported. The crystal structures of both compounds were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isostructural, with the crystal structure comprising neutral double-zigzag (4,2-ribbon-like) bimetallic chains. The FeIII ion is coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp* anions. However, the MII ion is surrounded by four cyanide nitrogen atoms and two nitrogen atoms from two Py-NOH ligands. The crystal structures and magnetic studies demonstrate that both complexes behave as single-chain magnetics (SCMs) with intrachain ferromagnetic coupling. Furthermore, [FeIII2NiII] exhibits an excellent coercive field of 0.42 T at 1.8 K, among cyano-bridged 3d transition-metal-based SCMs reported thus far. Preliminary theoretical calculations provide a deep understanding of the magnetic properties of [FeIII2NiII].
Collapse
Affiliation(s)
- Jin-Hua Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, P. R. China
| | | | - Jia-Xin Li
- School of Physical Science and Technology, Nanjing Normal University, No.1 Wenyuan Road, Qixia District, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, No.1 Wenyuan Road, Qixia District, Nanjing 210023, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
21
|
Chalil Oglou R, Ulusoy Ghobadi TG, Hegner FS, Galán-Mascarós JR, López N, Ozbay E, Karadas F. Manipulating Intermetallic Charge Transfer for Switchable External Stimulus-Enhanced Water Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308647. [PMID: 37498680 DOI: 10.1002/anie.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Electrocatalytic processes involving the oxygen evolution reaction (OER) present a kinetic bottleneck due to the existence of linear-scaling relationships, which bind the energies of the different intermediates in the mechanism limiting optimization. Here, we offer a way to break these scaling relationships and enhance the electrocatalytic activity of a Co-Fe Prussian blue modified electrode in OER by applying external stimuli. Improvements of ≈11 % and ≈57 % were achieved under magnetic field (0.2 T) and light irradiation (100 mW cm-2 ), respectively, when working at fixed overpotential, η=0.6 V at pH 7. The observed enhancements strongly tie in with the intermetallic charge transfer (IMCT) intensity between Fe and Co sites. Density Functional Theory simulations suggest that tuning the IMCT can lead to a change of the OER mechanism to an external stimuli-sensitive spin crossover-based pathway, which opens the way for switchable electrocatalytic devices.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | | | | | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- ICREA, The Barcelona Institute of Science and Technology (BIST), 08010, Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
| | - Ekmel Ozbay
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
22
|
Jia S, Zhu X, Li D. Observation of protonation-induced intra-molecular metal-to-metal charge transfer in cyano-bridged [Fe-CN-Mn/Ni] dinuclear complexes. Dalton Trans 2023; 52:15009-15016. [PMID: 37811745 DOI: 10.1039/d3dt02200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A key challenge in the design of magnetic molecules with intramolecular charge transfer behavior is to obtain reversible magnetic bistability triggered by external stimuli. Here, we show that two dinuclear metal complexes, [(bbp)Fe(CN)3Mn(Py5Me2)]·2.5CH3OH (4) and [(bbp)Fe(CN)3Ni(Py5Me2)]·2.5CH3OH (5) (Py5Me2 = 2,6-bis(1,1-di(pyridine-2-yl)ethyl)pyridine, H2bbp = 2,6-bis(benzimidazole-2-yl)pyridine), were self-assembly synthesized by (Bu4N)2[(bbp)FeIII(CN)3] and [Mn(Py5Me2)(OH2)](ClO4)2 or [Ni(Py5Me2)(OH2)](ClO4)2, respectively. Complexes 4 and 5 exhibited intramolecular metal-to-metal charge transfer with the addition of acids or bases in solution by UV-visible spectrophotometric measurements and electrochemistry studies, and concomitant switching of the {FeIII(μ-CN)MnII/NiII} state to the {FeII(μ-CN)MnIII/NiIII} state.
Collapse
Affiliation(s)
- Shuwen Jia
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Xinrui Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| | - Dongfeng Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 430079 Wuhan, P. R. China.
| |
Collapse
|
23
|
Liu Q, Cheng Y, Liu S, Chen ZY, Zhang YZ. Anthryl-functionalized cyanide-bridged Fe/Co cubes. Dalton Trans 2023; 52:12878-12884. [PMID: 37641912 DOI: 10.1039/d3dt01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Two anthryl-functionalized cyanide-bridged [Fe4Co4] cube complexes, [(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]4·8MeCN·7Et2O (1) and [NEt4]3[(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]7·5MeCN·2Et2O (2) (pzTp- = tetrapyrazolylborate, TpEtOAn = 2,2,2-tris-(pyrazol-1-yl)ethoxy(9-methyl-anthracene)), were synthesized and characterized. The crystallographic study revealed that the [Fe4Co4] cubes are arranged into a linear supramolecular chain through significant anthryl-anthryl π-π stacking interactions in complex 1, whereas a zigzag supramolecular 1D assembly is observed in 2. The magnetic measurements showed that both compounds exhibited incomplete transitions from the paramagnetic {FeIIILS(μ-CN)CoIIHS} state to the diamagnetic {FeIILS(μ-CN)CoIIILS} state at about 200 K. The luminescence measurement of 1 in solution revealed an enhancement of the emission upon dilution or addition of perfluoronaphthalene (PFN) molecules, which could be attributed to the suppression of the aggregation-caused quenching (ACQ) effect, suggesting possible aggregation of the cube units in the solution.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yue Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
24
|
Bagchi S, Kamilya S, Mehta S, Mandal S, Bandyopadhyay A, Narayan A, Ghosh S, Mondal A. Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(III) complexes. Dalton Trans 2023; 52:11335-11348. [PMID: 37530419 DOI: 10.1039/d3dt01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of mononuclear manganese(III) complexes [Mn(X-sal2-323)](ReO4) (X = 5 Cl, 1; X = 5 Br, 2; X = 3,5 Cl, 3; X = 3,5 Br, 4; and X = 5 NO2, 5), containing hexadentate ligands prepared using the condensation of N,N'-bis(3-aminopropyl)ethylenediamine and 5- or 3,5-substituted salicylaldehyde, has been synthesized. Variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical analyses, and theoretical calculations have been used to explore the role of various ligand substituents in the spin-state switching behavior of the prepared manganese(III) complexes. All five complexes consist of an analogous distorted octahedral monocationic MnN4O2 surrounding offered by the flexible hexadentate ligand and ReO4- as the counter anion. However, a disordered water molecule was detected in complex 4. Complexes 1 (X = 5 Cl) and 5 (X = 5 NO2) show gradual and complete spin-state switching between the high-spin (HS) (S = 2) and the low-spin (LS) (S = 1) state with T1/2 values of 146 and 115 K respectively, while an abrupt and complete transition at 95 K was observed for complex 2 (X = 5 Br). Alternatively, complex 3 (X = 3, 5 Cl) exhibits an incomplete and sharp transition between the HS and LS states at 104 K, while complex 4 (X = 3, 5 Br) (desolvated) remains almost LS up to 300 K and then displays gradual and incomplete SCO at a higher temperature. The nature of the spin-state switch and transition temperature suggest that the structural effect (cooperativity) plays a more significant role in comparison with the electronic effect coming from various substituents (Cl, Br, and NO2), which is further supported by the detailed structural, electrochemical, and theoretical studies.
Collapse
Affiliation(s)
- Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Arka Bandyopadhyay
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
25
|
Prussian blue and its analogues: Reborn as emerging catalysts for a Fenton-like process in water purification. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
26
|
Kamilya S, Mehta S, Semwal M, Lescouëzec R, Li Y, Pechousek J, Reddy VR, Rivière E, Rouzières M, Mondal A. ON/OFF Photo(switching) along with Reversible Spin-State Change and Single-Crystal-to-Single-Crystal Transformation in a Mixed-Valence Fe(II)Fe(III) Molecular System. Inorg Chem 2023. [PMID: 36867089 DOI: 10.1021/acs.inorgchem.2c03972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A mixed-valence Fe(II)Fe(III) molecular system, {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2·4MeOH (1·4MeOH) (bik = bis-(1-methylimidazolyl)-2-methanone, pzTp = tetrakis(pyrazolyl)borate), exhibits single-crystal-to-single-crystal (SC-SC) transformation while increasing the temperature and is converted into {[Fe(pzTp)(CN)3]2[Fe(bik)2]2}·[Fe(pzTp)(CN)3]2 (1). Both complexes exhibit thermo-induced spin-state switching behavior along with reversible SC-SC transformation, where the low-temperature [FeIIILSFeIILS]2 phase transforms into a high-temperature [FeIIILSFeIIHS]2 phase. 1·4MeOH exhibits an abrupt spin-state switching with T1/2 at 355 K, whereas 1 undergoes a gradual and reversible spin-state switching with a lower T1/2 at 338 K. Astonishingly, 1 exhibits ON/OFF photo-induced spin-state switching with TLIESST = 67 K, whereas 1·4MeOH does not show such an effect.
Collapse
Affiliation(s)
- Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mohini Semwal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Rodrigue Lescouëzec
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, Paris 750005, France
| | - Yanling Li
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, Paris 750005, France
| | - Jiri Pechousek
- Department of Experimental Physics, Palacký University Olomouc, 17, listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Varimalla R Reddy
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, bât. 420, Université Paris-Sud, 11 rue George Clémenceau, 91405 Orsay Cedex, France
| | - Mathieu Rouzières
- Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 33600 Pessac, France
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
27
|
Li G, Stefanczyk O, Kumar K, Nakabayashi K, Ohkoshi SI. Nonlinear Optical and Magnetic Properties of Fe II-SCN-Hg II Isomers: Centrosymmetric Layers and Chiral Networks. Inorg Chem 2023; 62:3278-3287. [PMID: 36734995 DOI: 10.1021/acs.inorgchem.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research on isomers is highly desirable due to their prospective role in better understanding of physicochemical properties of similar systems and further development of multifunctional molecular materials. Iron(II) and tetra(thiocyanato)mercury(II) ions self-assembled in the presence of 2-acetylpyridine (2-acpy) excess to form two {[Fe(2-acpy)][Hg(μ-SCN)4]}n isomers: two-dimensional (2D) centrosymmetric layers with folded ring structural motifs (1) and three-dimensional (3D) chiral networks with right- or left-handed {···Fe-NCS-Hg-SCN···}∞ helixes (2). New methods of designing and synthesizing functional thiocyanate-bridged materials have been proposed. In addition, the similarity between 1 and 2 allowed for the description of subtle changes in IR and UV-visible spectra. Moreover, 2 shows spontaneous resolution, and it crystallizes in the noncentrosymmetric space group P21, leading to the occurrence of nonlinear optical activity in circular dichroism studies and second harmonic generation (SHG). At room temperature, the SH susceptibility for powder sample 2 reached 6.0 × 10-11 esu. Ab initio calculations indicated the electric polarization vector and the crystallographic twofold screw axis pass through the aromatic ring. Magnetic studies for 1 and 2 revealed high-spin iron(II) with zero-field splitting at low temperatures. Analysis of magnetic data gave |D| = 37.45 cm-1, |E/D| = 5.59 cm-1, and ⟨g⟩ = 2.15 for 1, |D| = 36.78 cm-1, |E/D| = 4.92 cm-1, and ⟨g⟩ = 2.18 for 2, and information about the orientation of magnetic anisotropy vectors for both compounds.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koji Nakabayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
28
|
Meng L, Deng YF, Holmes SM, Zhang YZ. Thermo- and photo-induced electron transfer in a series of [Fe 2Co 2] capsules. Dalton Trans 2023; 52:1616-1622. [PMID: 36648100 DOI: 10.1039/d2dt03328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a family of [Fe2Co2] molecular capsules that display tunable electron transfer-coupled spin transition (ETCST) behavior were reported via a smart approach through Schiff-base condensation of aldehyde-functionalized 2,2-bipyridines (bpyCHO) and 1,7-heptanediamine (H2N(CH2)7NH2). Here, three more capsule complexes {[(TpR)Fe(CN)3]2[Co(bpyCN(CH2)nNCbpy)]2[ClO4]2}·n(solvent) (1, TpR = Tp*, n = 5, sol = 8DMF; 2, TpR = TpMe, n = 9, sol = 5MeCN; and 3, TpR = Tp*, n = 11, sol = 5MeCN), where Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate and TpMe = hydridotris(3-methylpyrazol-1-yl)borate are reported, demonstrating a successful extension of such an approach with other alkyldiamines of different lengths. Combined X-ray crystallographic, infrared spectroscopic and magnetic studies reveal incomplete electron transfer with either changing temperature or upon light exposure.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St Louis, St Louis, Missouri 63121, USA.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
29
|
Crystal structure, photomagnetic and dielectric properties of a cyanido-bridged Cu-Mo assembly film. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
30
|
Eun S, Han YS, Kim H, Kim M, Ryu J, Park JH, Lim JM, Kim S. Photoinduced enhancement of 137Cs removal by NiFe Prussian blue analogue-alginate hydrogel. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Charytanowicz T, Sieklucka B, Chorazy S. Lanthanide Hexacyanidoruthenate Frameworks for Multicolor to White-Light Emission Realized by the Combination of d-d, d-f, and f-f Electronic Transitions. Inorg Chem 2023; 62:1611-1627. [PMID: 36656797 PMCID: PMC9890488 DOI: 10.1021/acs.inorgchem.2c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report an effective strategy toward tunable room-temperature multicolor to white-light emission realized by mixing three different lanthanide ions (Sm3+, Tb3+, and Ce3+) in three-dimensional (3D) coordination frameworks based on hexacyanidoruthenate(II) metalloligands. Mono-lanthanide compounds, K{LnIII(H2O)n[RuII(CN)6]}·mH2O (1, Ln = La, n = 3, m = 1.2; 2, Ln = Ce, n = 3, m = 1.3; 3, Ln = Sm, n = 2, m = 2.4; 4, Ln = Tb, n = 2, m = 2.4) are 3D cyanido-bridged networks based on the Ln-NC-Ru linkages, with cavities occupied by K+ ions and water molecules. They crystallize differently for larger (1, 2) and smaller (3, 4) lanthanides, in the hexagonal P63/m or the orthorhombic Cmcm space groups, respectively. All exhibit luminescence under the UV excitation, including weak blue emission in 1 due to the d-d 3T1g → 1A1g electronic transition of RuII, as well as much stronger blue emission in 2 related to the d-f 2D3/2 → 2F5/2,7/2 transitions of CeIII, red emission in 3 due to the f-f 4G5/2 → 6H5/2,7/2,9/2,11/2 transitions of SmIII, and green emission in 4 related to the f-f 5D4 → 7F6,5,4,3 transitions of TbIII. The lanthanide emissions, especially those of SmIII, take advantage of the RuII-to-LnIII energy transfer. The CeIII and TbIII emissions are also supported by the excitation of the d-f electronic states. Exploring emission features of the LnIII-RuII networks, two series of heterobi-lanthanide systems, K{SmxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.47, 0.88, 0.88, 0.99, 0.998; 5-9) and K{TbxCe1-x(H2O)n[Ru(CN)6]}·mH2O (x = 0.56, 0.65, 0.93, 0.99, 0.997; 10-14) were prepared. They exhibit the composition- and excitation-dependent tuning of emission from blue to red and blue to green, respectively. Finally, the heterotri-lanthanide system of the K{Sm0.4Tb0.599Ce0.001(H2O)2[Ru(CN)6]}·2.5H2O (15) composition shows the rich emission spectrum consisting of the peaks related to CeIII, TbIII, and SmIII centers, which gives the emission color tuning from blue to orange and white-light emission of the CIE 1931 xy parameters of 0.325, 0.333.
Collapse
|
32
|
Systematic effect of different external metals of hexacyanoferrates on cesium adsorption behavior and mechanism. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Frías-Ureña PM, Bárcena-Soto M, Orozco-Guareño E, Gutiérrez-Becerra A, Mota-Morales JD, Chavez K, Soto V, Rivera-Mayorga JA, Escalante-Vazquez JI, Gómez-Salazar S. Porous Structural Properties of K or Na-Co Hexacyanoferrates as Efficient Materials for CO 2 Capture. MATERIALS (BASEL, SWITZERLAND) 2023; 16:608. [PMID: 36676342 PMCID: PMC9863694 DOI: 10.3390/ma16020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The stoichiometry of the components of hexacyanoferrate materials affecting their final porosity properties and applications in CO2 capture is an issue that is rarely studied. In this work, the effect that stoichiometry of all element components and oxidation states of transition metals has on the structures of mesoporous K or Na-cobalt hexacyanoferrates (CoHCFs) and CO2 removal is reported. A series of CoHCFs model systems are synthesized using the co-precipitation method with varying amounts of Co ions. CoHCFs are characterized by N2 adsorption, TGA, FTIR-ATR, XRD, and XPS. N2 adsorption results reveal a more developed external surface area (72.69-172.18 m2/g) generated in samples containing mixtures of K+/Fe2+/Fe3+ ions (system III) compared to samples with Na+/Fe2+ ions (systems I, II). TGA results show that the porous structure of CoHCFs is affected by Fe and Co ions oxidation states, the number of water molecules, and alkali ions. The formation of two crystalline cells (FCC and triclinic) is confirmed by XRD results. Fe and Co oxidation states are authenticated by XPS and allow for the confirmation of charges involved in the stabilization of CoCHFs. CO2 removal capacities (3.04 mmol/g) are comparable with other materials reported. CO2 adsorption kinetics is fast (3-6 s), making CoHCFs attractive for continuous operations. Qst (24.3 kJ/mol) reveals a physical adsorption process. Regeneration effectiveness for adsorption/desorption cycles indicates ~1.6% loss and selectivity (~47) for gas mixtures (CO2:N2 = 15:85). The results of this study demonstrate that the CoHCFs have practical implications in the potential use of CO2 capture and flue gas separations.
Collapse
Affiliation(s)
- Paloma M. Frías-Ureña
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Maximiliano Bárcena-Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Eulogio Orozco-Guareño
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Alberto Gutiérrez-Becerra
- Departamento de Ciencias Básicas y Aplicadas, Universidad de Guadalajara (CUTonala), Avenue Nuevo Periférico 555, Tonalá 45425, Mexico
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Karina Chavez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Víctor Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
- Graduate Program in Materials Science, Departamento de Ingeniería de Proyectos, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José A. Rivera-Mayorga
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José I. Escalante-Vazquez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Sergio Gómez-Salazar
- Departamento de Ingeniería Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
34
|
|
35
|
Gallen A, Jover J, Ferrer M, Martínez M. Building a molecular PrussianBlueAnalogue FeII/CoIII cube around a Cs+ ion; a preferred, tight, robust, water soluble, and kinetically inert encapsulator. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. Radiation effects, zero thermal expansion, and pressure-induced phase transition in CsMnCo(CN) 6. Phys Chem Chem Phys 2022; 24:25072-25076. [PMID: 36227089 DOI: 10.1039/d2cp03754h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany.
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
37
|
Ghosh S, Ghosh S, Kamilya S, Mandal S, Mehta S, Mondal A. Impact of Counteranion on Reversible Spin-State Switching in a Series of Cobalt(II) Complexes Containing a Redox-Active Ethylenedioxythiophene-Based Terpyridine Ligand. Inorg Chem 2022; 61:17080-17088. [PMID: 36264687 DOI: 10.1021/acs.inorgchem.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-assembly of a redox-active ethylenedioxythiophene (EDOT)-terpyridine-based tridentate ligand and cobalt(II) unit with different counteranions has led to a series of new cobalt(II) complexes [Co(L)2](X)2 (X = BF4 (1), ClO4 (2), and BPh4 (3)) (L = 4'-(3,4-ethylenedioxythiophene)-2,2':6',2″-terpyridine). The impact of various counteranions on stabilization and spin-state switching of the cobalt(II) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical studies. All three complexes 1-3 consisted of an isostructural dicationic distorted octahedral CoN6 coordination environment offered by the two L ligands in a bis-meridional fashion and BF4-, ClO4-, and BPh4- as a counteranion, respectively. Complex 2 with ClO4- counteranion showed a reversible, gradual, and nearly complete spin-state switching between low-spin (LS) (S = 1/2) and high-spin (HS) (S = 3/2) states, while an incomplete spin-state switching behavior was observed for complexes 1 (BF4-) and 3 (BPh4-) in the measured temperature range of 350-2 K. The non-covalent cation-anion interactions played a significant role in stabilizing the spin-state in 1-3. Additionally, complexes 1-3 also exhibited interesting redox-stimuli-based reversible paramagnetic HS cobalt(II) (S = 3/2) to diamagnetic LS cobalt(III) (S = 0) conversion, offering an alternate way to switch the magnetic properties.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Subhankar Mandal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India
| |
Collapse
|
38
|
Mudoi PP, Choudhury A, Medhi B, Gogoi N. Influence of the Capping Ligands on the Self‐Assembly of Cyanido‐Bridged Mn(II)‐Fe(III) Aggregates: Synthesis, Crystal Structures, Electrochemical and Magnetic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Anup Choudhury
- Department of Chemical Sciences Tezpur University, Napaam- 784028 Assam India
| | - Biman Medhi
- Department of Chemical Sciences Tezpur University, Napaam- 784028 Assam India
| | - Nayanmoni Gogoi
- Department of Chemical Sciences Tezpur University, Napaam- 784028 Assam India
| |
Collapse
|
39
|
Meng L, Deng YF, Liu J, Liu YJ, Zhang YZ. Tuning the electron transfer events in a series of cyanide-bridged [Fe 2Co 2] squares according to different electron donors. Dalton Trans 2022; 51:15669-15674. [PMID: 36172797 DOI: 10.1039/d2dt02416k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been recognized that both the ligand fields and intermolecular interactions may greatly impact the electron-transfer-coupled spin transition (ETCST) events in switchable magnetic materials; however, the engineering of these factors within a given system is still challenging. In this article, we chose the 4,4'-substituent 2,2'-bipyridine derivatives as chelating ligands according to their increasing electron-donating strength and incremental potential for forming hydrogen bonds (bpyCHO,CH3(L1) < bpyCH2OH,CH3 (L2) < bpyCH2OH,CH2OH (L3)), and prepared three new [Fe2Co2] complexes, {[(Tp*)Fe(CN)3Co(L)2]2[ClO4]2}·Sol (1, L = L1, Sol = 4MeCN·2H2O; 2, L = L2, Sol = 3MeCN; 3, L = L3, Sol = 4MeOH; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate). X-ray crystallography studies revealed that all the complexes share similar cyanide-bridged [Fe2Co2] square compositions except for the different substituted groups of L ligands, which led to the clearly evidenced intercluster hydrogen bonds between the neighbouring hydroxyl groups in 2 and 3. As a result, 1 remained in the paramagnetic [FeIII,LS2CoII,HS2] state over the whole temperature range, while 2 and 3 showed complete ETCST behaviour with the transition temperatures (T1/2) being 221 and 294 K, respectively.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
40
|
Al Shehimy S, Baydoun O, Denis-Quanquin S, Mulatier JC, Khrouz L, Frath D, Dumont É, Murugesu M, Chevallier F, Bucher C. Ni-Centered Coordination-Induced Spin-State Switching Triggered by Electrical Stimulation. J Am Chem Soc 2022; 144:17955-17965. [PMID: 36154166 DOI: 10.1021/jacs.2c07196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Orsola Baydoun
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | | | | | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Denis Frath
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Élise Dumont
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Floris Chevallier
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| | - Christophe Bucher
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69342 Lyon, France
| |
Collapse
|
41
|
Bordage A, N’Diaye A, Bleuzen A. Prussian Blue analogs and transition metal K-edge XMCD: a longstanding friendship. CR CHIM 2022. [DOI: 10.5802/crchim.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Vishnu B, Mathi S, Sriram S, Jayabharathi J. Greenly Reduced CoFe‐PBA/Nickel Foam: A Robust Dual Electrocatalyst for Solar‐Driven Alkaline Water Electrolysis with a Low Cell Voltage. ChemistrySelect 2022. [DOI: 10.1002/slct.202201682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bakthavachalam Vishnu
- Department of Chemistry Material Science Lab Annamalai University, Annamalainagar Tamilnadu 608002 India
| | - Selvam Mathi
- Department of Chemistry Material Science Lab Annamalai University, Annamalainagar Tamilnadu 608002 India
| | - Sundarraj Sriram
- Department of Chemistry Material Science Lab Annamalai University, Annamalainagar Tamilnadu 608002 India
| | - Jayaraman Jayabharathi
- Department of Chemistry Material Science Lab Annamalai University, Annamalainagar Tamilnadu 608002 India
| |
Collapse
|
43
|
Kobylarczyk J, Pakulski P, Potępa I, Podgajny R. Manipulation of the cyanido-bridged Fe2W2 rhombus in the crystalline state: Co-crystallization, desolvation and thermal treatment. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Mao Y, Chen X, Gu Z, Zhang Z, Song X, Gu N, Xiong R. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C−F⋅⋅⋅K Interactions. Angew Chem Int Ed Engl 2022; 61:e202204135. [DOI: 10.1002/anie.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Mao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Xiao‐Gang Chen
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Zhu‐Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Zhi‐Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Xian‐Jiang Song
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
45
|
Glatz J, Jiménez JR, Godeffroy L, von Bardeleben HJ, Fillaud L, Maisonhaute E, Li Y, Chamoreau LM, Lescouëzec R. Enlightening the Alkali Ion Role in the Photomagnetic Effect of FeCo Prussian Blue Analogues. J Am Chem Soc 2022; 144:10888-10901. [PMID: 35675503 DOI: 10.1021/jacs.2c03421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
FeCo Prussian blue analogues of general formula AxCoy[Fe(CN)6]z are responsive, non-stoichiometric materials whose magnetic and optical properties can be reversibly switched by light irradiation. However, elucidating the critical influence of the inserted alkali ion, A+, on the material's properties remains complicated due to their complex local structure. Here, by investigating soluble A ⊂ [Fe4-Co4] cyanido cubes (A = K, Rb, and Cs), both accurate structural and electronic information could be obtained. First, X-ray diffraction analyses reveal distinct interactions between the inserted A+ ions and the {Fe4-Co4} box, which impacts the structural distortion in the cubic framework. These distortions vanish, and a displacement of the small K+ ion from a corner toward the center is observed, as a cobalt corner CoIIHS is oxidized to CoIIILS. Second, cyclic voltammetry experiments performed at variable temperatures show distinct splitting of the CoIIHS ⇔ CoIIILS peak potentials for the different A+ cations, which can be qualitatively linked to different thermodynamic (standard potentials) and kinetic (energy barriers) parameters associated with the structural reorganization accompanying this redox-coupled spin state change. Moreover, for the first time, photomagnetism was investigated in frozen solution to avoid effects of intermolecular interactions. The results show that the metastable state is stabilized following the trend K > Rb > Cs. The outcome of these studies suggests that the interaction of the inserted alkali ions with the cyanide cage and the structural changes accompanying the electron transfer impact the stability of the photoinduced state and the relaxation temperature: the smaller the cation, the higher the structural reorganization and the associated energy barrier, and the more stable the metastable state.
Collapse
Affiliation(s)
- Jana Glatz
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Juan-Ramón Jiménez
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Louis Godeffroy
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Hans Jurgen von Bardeleben
- Institut des Nanosciences de Paris, CNRS UMR 7588, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Laure Fillaud
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Emmanuel Maisonhaute
- Laboratoire Interface et Systèmes Electrochimiques, CNRS UMR 8235, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Lise-Marie Chamoreau
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, F-75252 Paris cedex 5, France
| |
Collapse
|
46
|
Mao Y, Chen XG, Gu ZX, Zhang ZX, Song XJ, Gu N, Xiong RG. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C–F···K Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Mao
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Xiao-Gang Chen
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Zhu-Xiao Gu
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Zhi-Xu Zhang
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Xian-Jiang Song
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Ning Gu
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Ren-Gen Xiong
- Nanchang University Ordered Matter Science Research Center No. 999 Xuefu Avenue, Honggutan New District 330031 Nanchang CHINA
| |
Collapse
|
47
|
Stefanczyk O, Kumar K, Pai T, Li G, Ohkoshi SI. Integration of Trinuclear Triangle Copper(II) Secondary Building Units in Octacyanidometallates(IV)-Based Frameworks. Inorg Chem 2022; 61:8930-8939. [PMID: 35652381 DOI: 10.1021/acs.inorgchem.2c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and synthesis of high-dimensional materials based on secondary building blocks (SBUs) play a pivotal role in the further development of functional molecular materials. Herein, the self-assembly of Cu(II) ions, pyrazole (Hpz), and octacyanidometallate(IV) anions in the presence of water produced two new isostructural three-dimensional systems {[Cu3(μ3-OH)(μ-pz)3(H2O)3]2[M(CN)8]}·nH2O (M = W, 1, and Mo, 2). 1 and 2 consist of trinuclear triangle copper(II) (TTC) SBUs and octacyanidometallates(IV). At room temperature, both assemblies display strong antiferromagnetic interactions within the TTC entities with an average CuII···CuII isotropic magnetic coupling constant of about -145 cm-1. Moreover, a detailed analysis of magnetic data revealed the presence of spin frustration with antisymmetric magnetic exchange-coupling constants of around +32 and +46 cm-1 for 1 and 2, respectively. Finally, quantum chemical calculations explained their magnetic and optical properties.
Collapse
Affiliation(s)
- Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - TingYun Pai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Ghosh S, Kamilya S, Mehta S, Herchel R, Kiskin M, Veber S, Fedin M, Mondal A. Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT = 3,4-Ethylenedioxythiophene). Chem Asian J 2022; 17:e202200404. [PMID: 35617522 DOI: 10.1002/asia.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Four cobalt(II) complexes, [Co(L1)2(NCX)2(MeOH)2] (X = S (1), Se (2)) and {[Co(L2)2(NCX)2]}n (X = S (3), Se (4)) (L1 = 2,5dipyridyl-3,4,-ethylenedioxylthiophene and L2 = 2,5diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4O2 octahedral coordination geometry while 3 and 4 have a 2D [4 x 4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S = 3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46, Olomouc, Czech Republic
| | - Mikhail Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991, Moscow, Russia
| | - Sergey Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Matvey Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| |
Collapse
|
49
|
Ghosh S, Bagchi S, Kamilya S, Mehta S, Sarkar D, Herchel R, Mondal A. Impact of counter anions on spin-state switching of manganese(III) complexes containing an azobenzene ligand. Dalton Trans 2022; 51:7681-7694. [PMID: 35521740 DOI: 10.1039/d2dt00660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four mononuclear manganese(III) complexes coordinated with photo-active hexadentate azobenzene ligands, [Mn(5azo-sal2-323)](X) (X = Cl, 1; X = BF4, 2; X = ClO4, 3; X = PF6, 4), were prepared. The impact of various counter anions on the stabilization and switching of the spin state of the manganese(III) center was explored through detailed magneto-structural investigation using variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, and spectroelectrochemical studies, along with theoretical calculations. All four complexes consisted of an isostructural monocationic distorted octahedral MnN4O2 coordination environment offered by the hexadentate ligand and Cl-, BF4-, ClO4-, and PF6- as counter anions respectively. Complex 1 with a spherical Cl- counter anion showed a reversible and gradual spin-state switching between low-spin (LS) (S = 1) and high-spin (HS) (S = 2) states above 400 K, where non-covalent cation-anion interactions played a significant role in stabilizing the LS state. While, irrespective of the shape of the counter anion, complexes 2-4 remained in the HS state throughout the measured temperature range of 300-2 K, where strong π-π interaction between the azobenzene motifs among cationic units played a substantial role in stabilizing the HS state. Furthermore, magnetic data analyses revealed significantly large zero-field splitting in the S = 1 state for 1 (D = 19.4 cm-1, E/D = 0.008) in comparison with that in the S = 2 state for 2-4 (D = 3.99-4.97 cm-1, E/D = 0.002-0.195). Spectroelectrochemical investigations revealed the quasi-reversible reduction and oxidation of the manganese(III) center to manganese(II) and manganese(IV), respectively. A detailed theoretical calculation at the DFT and CASSCF level of theory was carried out to better understand the magneto-structural correlation.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sukanya Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Debopam Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
50
|
Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer. Nat Commun 2022; 13:2646. [PMID: 35551184 PMCID: PMC9098415 DOI: 10.1038/s41467-022-30425-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1–O2–C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism. Achieving magnetic bistability with large thermal hysteresis is still a challenge in material science. Here, the authors report a Mn(II) chain complex that enables light-induced magnetic bistability with a 177 K thermal hysteresis loop.
Collapse
|