1
|
O'Callaghan C, Greenacre VK, King RP, Grigg J, Herniman JM, McRobbie G, Reid G. Synthesis and properties of metal trifluoride complexes with amide-functionalised tacn macrocycles and radiofluorination of [GaF 3(L1)] by 18F/ 19F isotopic exchange. Dalton Trans 2024; 53:14897-14909. [PMID: 39189357 DOI: 10.1039/d4dt02074j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Three amide-functionalised tacn macrocyclic derivatives (tacn = 1,4,7-triazacyclononane) are reported, two tris-amide derivatives, L1 containing three -CH2C(O)NHPh pendant arms, L2 containing three -CH2CH2C(O)NHiPr pendant arms, and one mono-amide, L3, containing iPr groups on two of the tacn amine functions and a single -CH2C(O)NHPh function on the third. The reactions of these new ligands towards [MF3(dmso)(OH2)2] (M = Al, Ga) and towards FeF3·3H2O in alcoholic solution afford the complexes [MF3(L)] (L = L1-L3) in good yields as powdered solids. These complexes are characterised by IR and multinuclear NMR spectroscopy (diamagnetic species only) and mass spectrometry. [GaF3(L1)], [GaF3(L3)] and [FeF3(L3)] are also characterised by single crystal X-ray analysis. The corresponding reactions involving [InF3(dmso)(OH2)2] yield mixtures of products (along with F-), consistent with the M-F bond strengths decreasing as group 13 is descended. A few crystals of the target complex, [InF3(L2)], were also obtained from one such reaction. All of the complexes adopt fac-octahedral coordination via the amine N-donor atoms and retain the three fluoride ligands both in solution and in the solid state. Extensive intramolecular hydrogen-bonding involving the amide NH pendant groups and the MF3 moieties is evident in the crystal structures. In the isostructural [MF3(L3)] (M = Ga, Fe) complexes the head-to-tail C(O)NH⋯F H-bonded dimers observed in the solid state resemble those found frequently in organic compounds and that form the cornerstone of many supramolecular assemblies. This is consistent with the MF3 fragments being strong H-bond acceptors. Radiofluorination of [GaF3(L1)] by 18F/19F isotopic exchange in MeOH at 3 μmol mL-1 precursor concentration and using aqueous [18F]F- in target water (75% : 25%) with gentle heating (80 °C, 10 min) gave ca. 20% radiochemical yield of [Ga18FF2(L1)]. In contrast, no 18F incorporation occurs with [GaF3(L3)] under any of the conditions explored.
Collapse
Affiliation(s)
| | | | - Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Julian Grigg
- GE HealthCare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - Julie M Herniman
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Graeme McRobbie
- GE HealthCare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
2
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05043-w. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
3
|
Runacres D, Greenacre VK, Dyke JM, Grigg J, Herbert G, Levason W, McRobbie G, Reid G. Synthesis, Characterization, and Computational Studies on Gallium(III) and Iron(III) Complexes with a Pentadentate Macrocyclic bis-Phosphinate Chelator and Their Investigation As Molecular Scaffolds for 18F Binding. Inorg Chem 2023; 62:20844-20857. [PMID: 38055373 PMCID: PMC10731642 DOI: 10.1021/acs.inorgchem.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
With the aim of obtaining improved molecular scaffolds for 18F binding to use in PET imaging, gallium(III) and iron(III) complexes with a macrocyclic bis-phosphinate chelator have been synthesized and their properties, including their fluoride binding ability, investigated. Reaction of Bn-tacn (1-benzyl-1,4,7-triazacyclononane) with paraformaldehyde and PhP(OR)2 (R = Me or Et) in refluxing THF, followed by acid hydrolysis, yields the macrocyclic bis(phosphinic acid) derivative, H2(Bn-NODP) (1-benzyl-4,7-phenylphosphinic acid-1,4,7-triazacyclononane), which is isolated as its protonated form, H2(Bn-NODP)·2HCl·4H2O, at low pH (HClaq), its disodium salt, Na2(Bn-NODP)·5H2O at pH 12 (NaOHaq), or the neutral H2(Bn-NODP) under mildly basic conditions (Et3N). A crystal structure of H2(Bn-NODP)·2HCl·H2O confirmed the ligand's identity. The mononuclear [GaCl(Bn-NODP)] complex was prepared by treatment of either the HCl or sodium salt with Ga(NO3)3·9H2O or GaCl3, while treatment of H2(Bn-NODP)·2HCl·4H2O with FeCl3 in aqueous HCl gives [FeCl(Bn-NODP)]. The addition of 1 mol. equiv of aqueous KF to these chloro complexes readily forms the [MF(Bn-NODP)] analogues. Spectroscopic analysis on these complexes confirms pentadentate coordination of the doubly deprotonated (bis-phosphinate) macrocycle via its N3O2 donor set, with the halide ligand completing a distorted octahedral geometry; this is further confirmed through a crystal structure analysis on [GaF(Bn-NODP)]·4H2O. The complex adopts the geometric isomer in which the phosphinate arms are coordinated unsymmetrically (isomer 1) and with the stereochemistry of the three N atoms of the tacn ring in the RRS configuration, denoted (N)RRS, and the phosphinate groups in the RR stereochemistry, denoted (P)RR, (isomer 1/RR), together with its (N)SSR (P)SS enantiomer. The greater thermodynamic stability of isomer 1/RR over the other possible isomers is also indicated by density functional theory (DFT) calculations. Radiofluorination experiments on the [MCl(Bn-NODP)] complexes in partially aqueous MeCN/NaOAcaq (Ga) or EtOH (Ga or Fe; i.e. without buffer) with 18F- target water at 80 °C/10 min lead to high radiochemical incorporation (radiochemical yields 60-80% at 1 mg/mL, or ∼1.5 μM, concentration of the precursor). While the [Fe18F(n-NODP)] is unstable (loss of 18F-) in both H2O/EtOH and PBS/EtOH (PBS = phosphate buffered saline), the [Ga18F(Bn-NODP)] radioproduct shows excellent stability, RCP = 99% at t = 4 h (RCP = radiochemical purity) when formulated in 90%:10% H2O/EtOH and ca. 95% RCP over 4 h when formulated in 90%:10% PBS/EtOH. This indicates that the new "GaIII(Bn-NODP)" moiety is a considerably superior fluoride binding scaffold than the previously reported [Ga18F(Bn-NODA)] (Bn-NODA = 1-benzyl-4,7-dicarboxylate-1,4,7-triazacyclononane), which undergoes rapid and complete hydrolysis in PBS/EtOH (refer to Chem. Eur. J. 2015, 21, 4688-4694).
Collapse
Affiliation(s)
- Danielle
E. Runacres
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Victoria K. Greenacre
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - John M. Dyke
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Julian Grigg
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - George Herbert
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - William Levason
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Graeme McRobbie
- GE
HealthCare, Pollards Wood, Nightingales Lane, Chalfont
St. Giles, Buckinghamshire HP8 4SP, United Kingdom
| | - Gillian Reid
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Mawick M, Jaworski C, Bittermann J, Iovkova L, Pu Y, Wängler C, Wängler B, Jurkschat K, Krause N, Schirrmacher R. CycloSiFA: The Next Generation of Silicon-Based Fluoride Acceptors for Positron Emission Tomography (PET). Angew Chem Int Ed Engl 2023; 62:e202309002. [PMID: 37850849 DOI: 10.1002/anie.202309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
The ring-opening Si-fluorination of a variety of azasilole derivatives cyclo-1-(iPr2 Si)-4-X-C6 H3 -2-CH2 NR (4: R=2,6-iPr2 C6 H3 , X=H; 4 a: R=2,4,6-Me3 C6 H2 , X=H; 9: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiO; 10: R=2,6-iPr2 C6 H3 , X=OH; 13: R=2,6-iPr2 C6 H3 , X=HCCCH2 O; 22: R=2,6-iPr2 C6 H3 , X=tBuMe2 SiCH2 O) with different 19 F-fluoride sources was studied, optimized and the experience gained was used in a translational approach to create a straightforward 18 F-labelling protocol for the azasilole derivatives [18 F]6 and [18 F]14. The latter constitutes a potential clickable CycloSiFA prosthetic group which might be used in PET tracer development using Cu-catalysed triazole formation. Based on our findings, CycloSiFA has the potential to become a new entry into non-canonical labelling methodologies for radioactive PET tracer development.
Collapse
Affiliation(s)
- Matthias Mawick
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jens Bittermann
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Ljuba Iovkova
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Yinglan Pu
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Carmen Wängler
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Björn Wängler
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Norbert Krause
- Fakultät für Chemie und Chemische Biologie, Lehrstuhl für Organische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
5
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Abstract
18F-Labeling methods for the preparation of 18F-labeled molecular probes can be classified into electrophilic fluorination, nucleophilic fluorination, metal-F coordination, and 18F/19F isotope exchange. Isotope exchange-based 18F-labeling methods demonstrate mild conditions featuring water resistance and facile high-performance liquid chromatography-free purification in direct 18F-labeling of substrates. This paper systematically reviews isotope exchange-based 18F-labeling methods sorted by the adjacent atom bonding with F, i.e., carbon and noncarbon atoms (Si, B, P, S, Ga, Fe, etc.). The respective isotope exchange mechanism, radiolabeling condition, radiochemical yield, molar activity, and stability of the 18F-product are mainly discussed for each isotope exchange-based 18F-labeling method as well as the cutting-edge application of the corresponding 18F-labeled molecular probes.
Collapse
Affiliation(s)
- Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengji Lv
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhaobiao Mou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenru Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Taotao Dong
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
King RP, Herniman JM, Levason W, Reid G. Structural Diversity in Divalent Group 14 Triflate Complexes Involving Endocyclic Thia-Macrocyclic Coordination. Inorg Chem 2023; 62:853-862. [PMID: 36602470 PMCID: PMC9846692 DOI: 10.1021/acs.inorgchem.2c03613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A highly unusual series of M(II) (M = Ge, Sn, Pb) complexes with endocyclic thioether macrocyclic coordination and with coordination numbers ranging from three to nine have been prepared by the reaction of [9]aneS3 (1,4,7-trithiacyclononane), [12]aneS4 (1,4,7,10-tetrathiacyclododecane), or [24]aneS8 (1,4,7,10,13,16,19,22-octathiacyclotetracosane) with M(OTf)2 (M = Sn and Pb; OTf = CF3SO3-) or with GeCl2·dioxane and 2 mol equiv of TMSOTf (Me3SiO3SCF3) in a mixture of anhydrous CH2Cl2 and MeCN. The isolated bulk products are characterized by 1H, 13C{1H}, 19F{1H}, and 119Sn{1H} NMR and IR spectroscopy, high-resolution ESI+ MS, and microanalytical data. Crystal structures are also reported for [M(L)][OTf]2 (M = Ge, Sn, Pb; L = [9]aneS3, [12]aneS4) and for [M([24]aneS8)][OTf]2 (M = Sn, Pb). In all cases, the ligand is bound in an endocyclic fashion, but the coordination environment and number are highly dependent on the group 14 ion, the macrocyclic ring size, and the number of S-donor atoms it presents. Solution NMR spectroscopic data suggest that the metal-macrocycle coordination is retained in solution but that the triflate anions are extensively dissociated on the NMR timescale. Density functional theory calculations on the [M([9]aneS3)]2+ and [M([12]aneS4)]2+ (M = Ge, Sn, Pb) dications reveal that the HOMO is centered on the group 14 atom as a directional "lone pair"; it also retains a significant amount of positive charge.
Collapse
|
8
|
Fluoro-Germanium (IV) Cations with Neutral Co-Ligands—Synthesis, Properties and Comparison with Neutral GeF4 Adducts. INORGANICS 2022. [DOI: 10.3390/inorganics10080107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The reaction of [GeF4L2], L = dmso (Me2SO), dmf (Me2NCHO), py (pyridine), pyNO (pyridine-N-oxide), OPPh3, OPMe3, with Me3SiO3SCF3 (TMSOTf) and monodentate ligands, L, in a 1:1:1 molar ratio in anhydrous CH2Cl2 formed the monocations [GeF3L3][OTf]. These rare trifluoro-germanium (IV) cations were characterised by microanalysis, IR, 1H, 19F{1H} and, where appropriate, 31P{1H} NMR spectroscopy. The 19F{1H} NMR data show that in CH3NO2 solution the complexes exist as a mixture of mer and fac isomers, with the mer isomer invariably having the higher abundance. The X-ray structure of mer-[GeF3(OPPh3)3][OTf] is also reported. The attempts to remove a second fluoride using a further equivalent of TMSOTf and L were mostly unsuccessful, although a mixture of [GeF2(OAsPh3)4][OTf]2 and [GeF3(OAsPh3)3][OTf] was obtained using excess TMSOTf and OAsPh3. The reaction of [GeF4(MeCN)2] with TMSOTf in CH2Cl2 solution, followed by the addition of 2,2′:6′,2”-terpyridine (terpy) formed mer-[GeF3(terpy)][OTf], whilst a similar reaction with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3-tacn) in MeCN solution produced fac-[GeF3(Me3-tacn)][OTf]. Dicationic complexes bearing the GeF22+ fragment were isolated using the tetra-aza macrocycles, 1,4,7,10-tetramethyl-1,4,7,10-tetra-azacyclododecane (Me4-cyclen) and 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane (Me4-cyclam), which reacted with [GeF4(MeCN)2] and two equivalents of TMSOTf to cleanly form the dicationic difluoride salts, cis-[GeF2(Me4-cyclen)][OTf]2 and trans-[GeF2(Me4-cyclam)][OTf]2. The 19F{1H} NMR spectroscopy shows that in CH3NO2 solution there are four stereoisomers present for trans-[GeF2(Me4-cyclam)][OTf]2, whereas the smaller ring-size of Me4-cyclen accounts for the formation of only cis-[GeF2(Me4-cyclen)][OTf], and is confirmed crystallographically. New spectroscopic data are also reported for [GeF4(L)2] (L = dmso, dmf and pyNO). Density functional theory calculations were used to probe the effect on the bonding as fluoride ligands were sequentially removed from the germanium centre in the OPMe3 complexes.
Collapse
|
9
|
Wang Y, Lin Q, Shi H, Cheng D. Fluorine-18: Radiochemistry and Target-Specific PET Molecular Probes Design. Front Chem 2022; 10:884517. [PMID: 35844642 PMCID: PMC9277085 DOI: 10.3389/fchem.2022.884517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
The positron emission tomography (PET) molecular imaging technology has gained universal value as a critical tool for assessing biological and biochemical processes in living subjects. The favorable chemical, physical, and nuclear characteristics of fluorine-18 (97% β+ decay, 109.8 min half-life, 635 keV positron energy) make it an attractive nuclide for labeling and molecular imaging. It stands that 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is the most popular PET tracer. Besides that, a significantly abundant proportion of PET probes in clinical use or under development contain a fluorine or fluoroalkyl substituent group. For the reasons given above, 18F-labeled radiotracer design has become a hot topic in radiochemistry and radiopharmaceutics. Over the past decades, we have witnessed a rapid growth in 18F-labeling methods owing to the development of new reagents and catalysts. This review aims to provide an overview of strategies in radiosynthesis of [18F]fluorine-containing moieties with nucleophilic [18F]fluorides since 2015.
Collapse
Affiliation(s)
- Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
10
|
Gabbai FP, Karimi M. Hydrogen Bond‐Assisted Fluoride Binding by a Stiborane. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mohammadjavad Karimi
- Texas A&M University Chemistry Corner of Ross and Spence 77843 COLLEGE STATION UNITED STATES
| |
Collapse
|
11
|
Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Berger SM, Marder TB. Applications of triarylborane materials in cell imaging and sensing of bio-relevant molecules such as DNA, RNA, and proteins. MATERIALS HORIZONS 2022; 9:112-120. [PMID: 34842251 DOI: 10.1039/d1mh00696g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triarylboranes have been known for more than 100 years and have found potential applications in various fields such as anion sensors and optoelectronics, for example in organic light emitting diodes (OLEDs), field effect transistors (OFETs), and organic photovoltaic devices. However, biological applications, such as bioimaging agents and biomolecule sensors have evolved much more recently. This review summarises progress in this relatively young field and highlights the potential of triarylboranes in biological applications.
Collapse
Affiliation(s)
- Sarina M Berger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
13
|
Hu Y, Miao Y, Zhang J, Chen Y, Qiu L, Lin J, Ye D. Alkaline Phosphatase Enabled Fluorogenic Reaction and in situ Coassembly of Near-Infrared and Radioactive Nanoparticles for in vivo Imaging. NANO LETTERS 2021; 21:10377-10385. [PMID: 34898218 DOI: 10.1021/acs.nanolett.1c03683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probes have shown promise for preoperative and intraoperative imaging of tumors. In this paper, we report an enzyme-activatable probe (P-CyFF-68Ga) and its cold probe (P-CyFF-Ga) using an enzyme-induced fluorogenic reaction and in situ coassembly strategy and demonstrate the utility for NIR FL/PET bimodality imaging of enzymatic activity. P-CyFF-68Ga and P-CyFF-Ga can be converted into dephosphorylated CyFF-68Ga and CyFF-Ga in response to alkaline phosphatase (ALP) and subsequently coassemble into fluorescent and radioactive nanoparticles (NP-68Ga). The ALP-triggered in situ formed NP-68Ga is prone to anchoring on the ALP-positive HeLa cell membrane, permitting the concurrent enrichment of NIR FL and radioactivity. The enhancements in NIR FL and radioactivity enables high sensitivity and deep-tissue imaging of ALP activity, consequently facilitating the delineation of HeLa tumor foci from the normal tissues in vivo.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
14
|
Gonzalez VM, Park G, Yang M, Gabbaï FP. Fluoride anion complexation and transport using a stibonium cation stabilized by an intramolecular PO → Sb pnictogen bond. Dalton Trans 2021; 50:17897-17900. [PMID: 34816847 DOI: 10.1039/d1dt03370k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of [o-Ph2P(O)(C6H4)SbPh3]+ ([2]+), an intramolecularly base-stabilized stibonium Lewis acid which was obtained by reaction of [o-Ph2P(C6H4)SbPh3]+ with NOBF4. This cation reacts with fluoride anions to afford the corresponding fluorostiborane o-Ph2P(O)(C6H4)SbFPh3, the structure of which indicates a strengthening of the PO → Sb interaction. When deployed in fluoride-containing POPC unilamellar vesicles, [2]+ behaves as a potent fluoride anion transporter whose activity greatly exceeds that of [Ph4Sb]+.
Collapse
Affiliation(s)
- Vanessa M Gonzalez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Gyeongjin Park
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Mengxi Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| |
Collapse
|
15
|
King RP, Levason W, Reid G. Neutral and cationic germanium(IV) fluoride complexes with phosphine coordination - synthesis, spectroscopy and structures. Dalton Trans 2021; 50:17751-17765. [PMID: 34812814 DOI: 10.1039/d1dt03339e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neutral complexes trans-[GeF4(PiPr3)2] and [GeF4(κ2-L)] (L = CH3C(CH2PPh2)3 or P(CH2CH2PPh2)3) are obtained from [GeF4(MeCN)2] and the ligand in CH2Cl2. Treatment of [GeF4(PMe3)2] with n equivalents of TMSOTf (Me3SiO3SCF3) leads to formation of the series [GeF4-n(PMe3)2(OTf)n] (n = 1, 2, 3), each of which contains six-coordinate Ge(IV) with trans PMe3 ligands and X-ray structural data confirm that the OTf groups interact with Ge(IV) to varying degrees. Unexpectedly, [GeF3(PMe3)2(OTf)] undergoes reductive defluorination in solution, forming the Ge(II) complex, [Ge(PMe3)3][OTf]2 (and [FPMe3]+). The bulkier PiPr3 leads to formation of the ionic [GeF3(iPr3P)2][OTf], containing a [GeF3(iPr3P)2]+ cation. [GeF4{o-C6H4(PMe2)2}], containing the cis-chelating diphosphine, also reacts with n equivalents of TMSOTf to generate [GeF4-n{o-C6H4(PMe2)2}(OTf)n] (n = 1, 2, 3). As for the PMe3 system, the trifluoride, [GeF3{o-C6H4(PMe2)2}(OTf)], is unstable to reductive defluorination in solution, producing the pyramidal Ge(II) complex [Ge{(o-C6H4(PMe2)2}(OTf)][OTf], whose crystal structure has been determined. The [GeF3{Ph2P(CH2)2PPh2}(OTf)] and [GeF2{Ph2P(CH2)2PPh2}(OTf)2], obtained similarly from the parent tetrafluoride complex, are poorly soluble, however their structures were confirmed crystallographically. The complexes in this work have been characterised via variable temperature 1H, 19F{1H} and 31P{1H} NMR studies in solution, IR spectroscopy and microanalysis and through single crystal X-ray analysis of representative examples across each series. Trends in the NMR and structural parameters are also discussed.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
16
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
King RP, Woodward MS, Grigg J, McRobbie G, Levason W, Reid G. Tin(IV) fluoride complexes with neutral phosphine coordination and comparisons with hard N- and O-donor ligands. Dalton Trans 2021; 50:14400-14410. [PMID: 34569574 DOI: 10.1039/d1dt02948g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of trans-[SnF4(PMe3)2] with one, two or three equivalents of Me3SiO3SCF3 (TMSOTF), respectively, in anhydrous CH2Cl2 form six-coordinate [SnF4-n(PMe3)2(OTf)n] (n = 1-3), which have been characterised by microanalysis, IR and multinuclear NMR (1H, 19F{1H}, 31P{1H} and 119Sn) spectroscopy. The crystal structure of [SnF3(PMe3)2(OTf)] reveals the three fluorines are in a mer-arrangement with mutually trans PMe3 ligands. The multinuclear NMR spectra confirm this structure is retained in solution, and show that [SnF2(PMe3)2(OTf)2] has trans-phosphines, while [SnF(PMe3)2(OTf)3] has trans PMe3 groups and hence mer-triflate ligands. The [SnF4-n(PMe3)2(OTf)n] are unstable in solution and the decomposition products include [Me3PF]+ and the tin(II) complexes [Sn(PMe3)2(OTf)2] and [Sn3F5(OTf)], both of the latter identified by their crystal structures. The reaction of trans-[SnF4(PiPr3)2] containing the bulkier phosphine, with one and two equivalents of TMSOTf produced unstable mono- and bis-triflates, which the NMR data also suggest contain weakly coordinated triflate, [SnF3(PiPr3)2(OTf)] and [SnF2(PiPr3)2(OTf)2], again with axial phosphines, although some OTf dissociation from the former to give [SnF3(PiPr3)2]+ may occur in solution at room temperature. The new phosphine complexes of SnF4, trans-[SnF4(PiPr3)2] and (cis) [SnF4(κ2-triphos)] (triphos = CH3C(CH2PPh2)3) have also been fully characterised, including the crystal structure of [SnF4(κ2-triphos)]. Attempts to promote P3-coordination by further treatment of this complex with TMSOTf were unsuccessful. The [SnF4(L)2] (L = dmso, py, pyNO, DMF, OPPh3) complexes, which exist as mixtures of cis and trans isomers, react with one equivalent of TMSOTf, followed by addition of one equivalent of L, to form the ionic [SnF3(L)3][OTf] complexes, which were characterised by microanalysis, IR and multinuclear NMR spectroscopy. In nitromethane solution they are a mixture of mer and fac isomers based upon multinuclear NMR data (1H, 19F{1H}, 119Sn). Reaction of [SnF4(OPPh3)2] with two equivalents of TMSOTf and further OPPh3 produced [SnF2(OPPh3)4][OTf]2, which is a mixture of cis and trans isomers in solution. The crystal structure of [SnF2(OPPh3)4][OTf]2 confirms the trans isomer in the solid state, with the triflate ionic. These complexes are rare examples of fluorotin(IV) cations with neutral monodentate ligands.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | | | - Julian Grigg
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - Graeme McRobbie
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
18
|
Sadek O, Galán LA, Gendron F, Baguenard B, Guy S, Bensalah-Ledoux A, Le Guennic B, Maury O, Perrin DM, Gras E. Chiral Benzothiazole Monofluoroborate Featuring Chiroptical and Oxygen-Sensitizing Properties: Synthesis and Photophysical Studies. J Org Chem 2021; 86:11482-11491. [PMID: 34324320 DOI: 10.1021/acs.joc.1c00995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in personalized medicine are prompting the development of multimodal agents, that is, molecules that combine properties promoting various diagnostic and therapeutic applications. General approaches exploit chemical conjugation of therapeutic agents with contrast agents or the design of multimodal nanoplatforms. Herein, we report the design of a single molecule that exhibits potential for different diagnostic modes as well as the ability to sensitize oxygen, thus offering potential for photodynamic therapy. Exceptionally, this work involves the synthesis and chiral resolution of an enantiomeric pair of chiral monofluoroborates that contain a stereogenic boron atom. Combining experimental and theoretical chiroptical studies allowed the unambiguous determination of their absolute configuration. Photophysical investigations established the ability of this compound to sensitize oxygen even in the absence of heavy atoms within its structure. The synthesis of a chiral benzothiazole monofluoroborate paves a way to multimodal diagnostic tools (fluorescence and nuclear imaging) while also featuring potential therapeutic applications owing to its ability to activate oxygen to its singlet state for use in photodynamic therapy.
Collapse
Affiliation(s)
- Omar Sadek
- LCC, CNRS UPR 8241, Université de Toulouse, UPS, INPT, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France.,Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Laura Abad Galán
- Université Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Frédéric Gendron
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France
| | - Bruno Baguenard
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Stephan Guy
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Amina Bensalah-Ledoux
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France
| | - Olivier Maury
- Université Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Emmanuel Gras
- LCC, CNRS UPR 8241, Université de Toulouse, UPS, INPT, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France.,ITAV, CNRS USR 3505, Université de Toulouse, UPS, 1 place Pierre Potier, 31106, Toulouse, Cedex 1, France
| |
Collapse
|
19
|
King RP, Greenacre VK, Levason W, Dyke JM, Reid G. Pyramidal Dicationic Ge(II) Complexes with Homoleptic Neutral Pnictine Coordination: A Combined Experimental and Density Functional Theory Study. Inorg Chem 2021; 60:12100-12108. [PMID: 34319096 DOI: 10.1021/acs.inorgchem.1c01308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unusual series of Ge(II) dicationic species with homoleptic phosphine and arsine coordination, [Ge(L)][OTf]2, L = 3 × PMe3, triphos (MeC(CH2PPh2)3), triars (MeC(CH2AsMe2)3), or κ3-tetraphos (P(CH2CH2PPh2)3) (OTf- = O3SCF3-) have been prepared by reaction of [GeCl2(dioxane)] with L and 2 mol equiv of Me3SiOTf in anhydrous CH2Cl2 (or MeCN for L = triars, triphos). X-ray crystal structures are reported for [Ge(PMe3)3][OTf]2, [Ge(triars)][OTf]2, and [Ge(κ3-tetraphos)][OTf]2, confirming homoleptic P3- or As3-coordination at Ge(II) in each case and with the discrete OTf- anions providing a charge balance. The Ge-P/As bond lengths are significantly shorter than those in neutral germanium(II) dihalide complexes with diphosphine or diarsine coordination. Solution NMR spectroscopic data indicate that the complexes are labile in solution. Using excess AsMe3 and [GeCl2(dioxane)] gives only the neutral product, [Ge(AsMe2)2(OTf)2], the crystal structure of which shows four coordination at Ge(II), via two As donor atoms and an O atom from two κ1-OTf- ligands; further weak, long-range intermolecular interactions give a chain polymer. The electronic structure of the [Ge(PMe3)3]2+ dication has been investigated using density functional theory (DFT) calculations. The computed geometrical parameters for this dication are in good agreement with the experimental X-ray crystallographic values in [Ge(PMe3)3][OTf]2. The results also indicate that the pyramidal arrangement of the [Ge(PMe3)3]2+ (computed P-Ge-P angle 96.8° at the B3LYP-D3 level) arises from a balance between electronic energy (Eelec) contributions, which favor a lower P-Ge-P angle, and nuclear-nuclear contributions (Enn), which favor a higher P-Ge-P angle, to the total energy (ETOT). An Atoms in Molecules (AIM) analysis reveals that one reason why Eelec decreases as the P-Ge-P angle decreases is because of C···H and H···H interactions between atoms on different CH3 groups. The stability of the [Ge(PMe3)3]2+ dication is enhanced by the distribution of a significant part of the positive charge on Ge2+ to the atomic centers of the PMe3 ligands. Similar results were obtained for [Ge(AsMe3)3][OTf]2, showing the tris-AsMe3 complex to be less stable compared to the PMe3 analogue. Related calculations were also performed for the neutral [Ge(PMe3)2(OTf)2] and [Ge(AsMe3)2(OTf)2] complexes.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - John M Dyke
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
20
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
21
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Tong X, Luo SS, Shen H, Zhang S, Cao T, Luo YP, Huang LL, Ma XT, Liu XW. Nickel-catalyzed defluorinative alkylation of C(sp 2)–F bonds. Org Chem Front 2021. [DOI: 10.1039/d1qo00549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nickel-catalyzed defluorinative alkylation of unactivated C(sp2)–F electrophiles using commercially available trialkylaluminum reagents, thus forming the C(sp2)–C(sp3) bonds is reported.
Collapse
Affiliation(s)
- Xue Tong
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Si-Si Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Hua Shen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Shu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tian Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yi-Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Long-Ling Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Xi-Tao Ma
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610072
- China
| | - Xiang-Wei Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
23
|
Munch M, Rotstein BH, Ulrich G. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020; 25:E6042. [PMID: 33371284 PMCID: PMC7766373 DOI: 10.3390/molecules25246042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Recent progress realized in the development of optical imaging (OPI) probes and devices has made this technique more and more affordable for imaging studies and fluorescence-guided surgery procedures. However, this imaging modality still suffers from a low depth of penetration, thus limiting its use to shallow tissues or endoscopy-based procedures. In contrast, positron emission tomography (PET) presents a high depth of penetration and the resulting signal is less attenuated, allowing for imaging in-depth tissues. Thus, association of these imaging techniques has the potential to push back the limits of each single modality. Recently, several research groups have been involved in the development of radiolabeled fluorophores with the aim of affording dual-mode PET/OPI probes used in preclinical imaging studies of diverse pathological conditions such as cancer, Alzheimer's disease, or cardiovascular diseases. Among all the available PET-active radionuclides, 18F stands out as the most widely used for clinical imaging thanks to its advantageous characteristics (t1/2 = 109.77 min; 97% β+ emitter). This review focuses on the recent efforts in the synthesis and radiofluorination of fluorescent scaffolds such as 4,4-difluoro-4-bora-diazaindacenes (BODIPYs), cyanines, and xanthene derivatives and their use in preclinical imaging studies using both PET and OPI technologies.
Collapse
Affiliation(s)
- Maxime Munch
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, École Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, CEDEX 02, 67087 Strasbourg, France;
| |
Collapse
|
24
|
Lindner S, Wängler C, Bailey JJ, Jurkschat K, Bartenstein P, Wängler B, Schirrmacher R. Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nat Protoc 2020; 15:3827-3843. [DOI: 10.1038/s41596-020-00407-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
25
|
An F, Nurili F, Sayman H, Ozer Z, Cakiroglu H, Aras O, Ting R. One-Step, Rapid, 18F- 19F Isotopic Exchange Radiolabeling of Difluoro-dioxaborinins: Substituent Effect on Stability and In Vivo Applications. J Med Chem 2020; 63:12693-12706. [PMID: 32787084 PMCID: PMC8399557 DOI: 10.1021/acs.jmedchem.0c00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The β-diketone moiety is commonly present in many anticancer drugs, antibiotics, and natural products. We describe a general method for radiolabeling β-diketone-bearing molecules with fluoride-18. Radiolabeling was carried out via 18F-19F isotopic exchange on nonradioactive difluoro-dioxaborinins, which were generated by minimally modifying the β-diketone as a difluoroborate. Radiochemistry was one-step, rapid (<10 min), and high-yielding (>80%) and proceeded at room temperature to accommodate the half-life of F-18 (t1/2 = 110 min). High molar activities (7.4 Ci/μmol) were achieved with relatively low starting activities (16.4 mCi). It was found that substituents affected both the solvolytic stability and fluorescence properties of difluoro-dioxaborinins. An F-18 radiolabeled difluoro-dioxaborinin probe that was simultaneously fluorescent showed sufficient stability for in vivo positron emission tomography (PET)/fluorescence imaging in mice, rabbits, and patients. These findings will guide the design of probes with specific PET/fluorescence properties; the development of new PET/fluorescence dual-modality reporters; and accurate in vivo tracking of β-diketone molecules.
Collapse
Affiliation(s)
- Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi’an, Shaanxi 710061, P. R. China
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| | - Fuad Nurili
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Haluk Sayman
- Department of Nuclear Medicine, Istanbul University, Cerrahpasa Medical Faculty, Fatih, Istanbul, 34303, Turkey
| | - Zahide Ozer
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| | - Huseyin Cakiroglu
- Medical and Experimental Research Center, Sakarya University Medical Faculty, Adapazari/Sakarya, 54290, Turkey
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| |
Collapse
|
26
|
Brown SJ, Drummond CJ, Marchand J, Marcuccio SM, Stockton KP, Greaves TL. Physicochemical characterisation of novel tetrabutylammonium aryltrifluoroborate ionic liquids. Phys Chem Chem Phys 2020; 22:23374-23384. [PMID: 33047742 DOI: 10.1039/d0cp03994b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While there have been many studies on the physicochemical characterisation of ILs, little work has previously been reported on the properties unique to the trifluoroborate anion. Here we have characterised the thermal properties, viscosity, liquid nanostructure and intramolecular interactions of 15 novel aryltrifluoroborate ILs. These ILs all contained a tetrabutylammonium cation paired with either meta- or para-substituted aryltrifluoroborate anions, or di-anionic substituted aryltrifluroborate anions. It was found that of the 15 samples analysed, 4 would technically be considered molten salts as they have melting points greater than 100 °C. Overall the structure-property relationship trends of these samples are similar to those previously reported for alkyl and perfluoroalkyltrifluoroborate ILs which contained K+ or Cs+ cations, with the big difference being the ILs in this study having considerably lower melting points.
Collapse
Affiliation(s)
- Stuart J Brown
- College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Rattanopas S, Chansaenpak K, Siwawannapong K, Ngamchuea K, Wet‐osot S, Treekoon J, Pewklang T, Jinaphon T, Sagarik K, Lai R, Cheng L, Kamkaew A. Synthesis and Characterization of Push‐Pull Aza‐BODIPY Dyes Towards Application in NIR‐II Photothermal Therapy. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sopita Rattanopas
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center National Science and Technology Development Agency Thailand Science Park Pathum Thani 12120 Thailand
| | - Kittipan Siwawannapong
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Sirawit Wet‐osot
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Jongjit Treekoon
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Thitima Pewklang
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Thanachit Jinaphon
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Kritsana Sagarik
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Rung‐Yi Lai
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou Jiangsu 215123 China
| | - Anyanee Kamkaew
- School of Chemistry Institute of Science Suranaree University of Technology 111 University Avenue, Muang Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
28
|
Fujiki K, Tanaka K. Exploration of the Fluoride Reactivity of Aryltrifluoroborate on Selective Cleavage of Diphenylmethylsilyl Groups. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katsumasa Fujiki
- Biofunctional Synthetic Chemistry Laboratory; Cluster for Pioneering Research; RIKEN; 2-1 Hirosawa 351-0198 Wako Saitama Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory; Cluster for Pioneering Research; RIKEN; 2-1 Hirosawa 351-0198 Wako Saitama Japan
- Biofunctional Chemistry Laboratory; A. Butlerov Institute of Chemistry; Kazan Federal University; 18 Kremlyovskaya street 420008 Kazan Russia
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| |
Collapse
|
29
|
Rajalakshmi AV, Palanisami N. Investigation on Y-shaped tri-fluoromethyl substituted quinoxalines: synthesis, optical and morphological studies. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01266-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Kwon YD, Jeon MH, Park NK, Seo JK, Son J, Ryu YH, Hong SY, Chun JH. Synthesis of 18F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination. Org Lett 2020; 22:5511-5516. [PMID: 32589035 DOI: 10.1021/acs.orglett.0c01868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfuryl fluoride gas is a key reagent for SO2F transfer. However, conventional SO2F transfer reactions have limited 18F-radiochemistry translation, due to the inaccessibility of gaseous [18F]SO2F2. Herein, we report the first SO2F2-free synthesis of aryl [18F]fluorosulfates from both phenolic and isolated aryl imidazylate precursors with cyclotron-produced 18F-. The radiochemical yields ranged from moderate to good with excellent functional group tolerance. The reliability of our approach was validated by the automated radiosynthesis of 4-acetamidophenyl [18F]fluorosulfate.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nam Kyu Park
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
31
|
Janes T, Diskin‐Posner Y, Milstein D. Synthesis and Reactivity of Cationic Boron Complexes Distorted by Pyridine‐based Pincer Ligands: Isolation of a Photochemical Hofmann–Martius‐type Intermediate. Angew Chem Int Ed Engl 2020; 59:4932-4936. [DOI: 10.1002/anie.202000406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Trevor Janes
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Yael Diskin‐Posner
- Chemical Research SupportWeizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
32
|
Janes T, Diskin‐Posner Y, Milstein D. Synthesis and Reactivity of Cationic Boron Complexes Distorted by Pyridine‐based Pincer Ligands: Isolation of a Photochemical Hofmann–Martius‐type Intermediate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Trevor Janes
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| | - Yael Diskin‐Posner
- Chemical Research SupportWeizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Organic ChemistryWeizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
33
|
Zhao QL, Xia PJ, Zheng L, Xie ZZ, Hu YZ, Chen GJ, Chen XQ, Xiang HY, Yang H. A BHT-regulated chemoselective access to monofluorinated chromones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, Kondratiuk M, Bohdan K, Ritter T. Site-Selective Late-Stage Aromatic [ 18 F]Fluorination via Aryl Sulfonium Salts. Angew Chem Int Ed Engl 2020; 59:1956-1960. [PMID: 31697427 PMCID: PMC7004179 DOI: 10.1002/anie.201912567] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 01/20/2023]
Abstract
Site-selective functionalization of C-H bonds in small complex molecules is a long-standing challenge in organic chemistry. Herein, we report a broadly applicable and site-selective aromatic C-H dibenzothiophenylation reaction. The conceptual advantage of this transformation is further demonstrated through the two-step C-H [18 F]fluorination of a series of marketed small-molecule drugs.
Collapse
Affiliation(s)
- Peng Xu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Da Zhao
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Florian Berger
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Aboubakr Hamad
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jens Rickmeier
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Roland Petzold
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Mykhailo Kondratiuk
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
35
|
Narayanam MK, Toutov AA, Murphy JM. Rapid One-Step 18F-Labeling of Peptides via Heteroaromatic Silicon-Fluoride Acceptors. Org Lett 2020; 22:804-808. [DOI: 10.1021/acs.orglett.9b04160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Anton A. Toutov
- Fuzionaire Diagnostics, Inc., 177 East Colorado Boulevard, Pasadena, California 91105, United States
| | - Jennifer M. Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Russelli L, Martinelli J, De Rose F, Reder S, Herz M, Schwaiger M, Weber W, Tei L, D'Alessandria C. Room Temperature Al 18 F Labeling of 2-Aminomethylpiperidine-Based Chelators for PET Imaging. ChemMedChem 2020; 15:284-292. [PMID: 31830368 DOI: 10.1002/cmdc.201900652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/02/2019] [Indexed: 01/14/2023]
Abstract
Positron emission tomography (PET) is a non-invasive molecular imaging technology that is constantly expanding, with a high demand for specific antibody-derived imaging probes. The use of tracers based on temperature-sensitive molecules (i. e. Fab, svFab, nanobodies) is increasing and has led us to design a class of chelators based on the structure of 2-aminomethylpiperidine (AMP) with acetic and/or hydroxybenzyl pendant arms (2-AMPTA, NHB-2-AMPDA, and 2-AMPDA-HB), which were investigated as such for {Al18 F}2+ -core chelation efficiency. All the compounds were characterized by HPLC-MS analysis and NMR spectroscopy. The AlF-18 labeling reactions were performed under various conditions (pH/temperature), and the radiolabeled chelates were purified and characterized by radio-TLC and radio-HPLC. The stability of labeled chelates was investigated up to 240 min in human serum (HS), EDTA 5 mM, PBS and 0.9 % NaCl solutions. The in vivo stability of [Al18 F(2-AMPDA-HB)]- was assessed in healthy nude mice (n=6). Radiochemical yields between 55 % and 81 % were obtained at pH 5 and room temperature. High stability in HS was measured for [Al18 F(2-AMPDA-HB)]- , with 90 % of F-18 complexed after 120 min. High stability in vivo, rapid hepatobiliary and renal excretion, with low accumulation of free F-18 in bones were measured. Thus, this new Al18 F-chelator may have a great impact on immuno-PET radiopharmacy, by facilitating the development of new fluorine-18-labeled heat-sensitive biomolecules.
Collapse
Affiliation(s)
- Lisa Russelli
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Jonathan Martinelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Francesco De Rose
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Sybille Reder
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Lorenzo Tei
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Calogero D'Alessandria
- Department of Nuclear Medicine, Klinikum rechts der Isar TU München, Ismaningerstraße 22, 81675, Munich, Germany
| |
Collapse
|
37
|
Hacaperková E, Jaroš A, Kotek J, Notni J, Straka M, Kubíček V, Hermann P. Al( iii)-NTA-fluoride: a simple model system for Al–F binding with interesting thermodynamics. Dalton Trans 2020; 49:13726-13736. [DOI: 10.1039/d0dt02644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unsaturated AlIII complex shows a fast exchange of water molecules, hydroxide and fluoride anions in the coordination sphere, highly pH-dependent fluoride binding and release of fluorides at high pH or at high phosphate anion concentrations.
Collapse
Affiliation(s)
- Eliška Hacaperková
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague
- Czech Republic
| | - Adam Jaroš
- Institute of Organic Chemistry and Biochemistry
- AS CR
- 166 10 Prague
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague
- Czech Republic
| | - Johannes Notni
- Institut für Pathologie und Pathologische Anatomie
- Technische Universität München
- 81675 München
- Germany
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry
- AS CR
- 166 10 Prague
- Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague
- Czech Republic
| |
Collapse
|
38
|
Mai BK, Himo F. Mechanisms of Metal-Catalyzed Electrophilic F/CF3/SCF3 Transfer Reactions from Quantum Chemical Calculations. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, Kondratiuk M, Bohdan K, Ritter T. Site‐Selective Late‐Stage Aromatic [
18
F]Fluorination via Aryl Sulfonium Salts. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peng Xu
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Da Zhao
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Aboubakr Hamad
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Roland Petzold
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mykhailo Kondratiuk
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
40
|
Levason W, Monzittu FM, Reid G. Coordination chemistry and applications of medium/high oxidation state metal and non-metal fluoride and oxide-fluoride complexes with neutral donor ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Venkatachalam TK, Stimson DHR, Bhalla R, Mardon K, Bernhardt PV, Reutens DC. Synthesis of 18 F-radiolabeled diphenyl gallium dithiosemicarbazone using a novel halogen exchange method and in vivo biodistribution. J Labelled Comp Radiopharm 2019; 62:321-331. [PMID: 31042810 DOI: 10.1002/jlcr.3746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
18 F-radiolabeled diphenyl gallium thiosemicarbazone was prepared by [18 F] fluoride exchange of a nitrato anion under mild conditions. The diphenyl gallium thiosemicarbazone chloride is easily prepared in gram quantities and can be used at room temperature in the presence of oxygen. The corresponding nitrate complex is prepared using silver nitrate in methanol solvent and can be stored under nitrogen for weeks before radiolabeling. The biodistribution of this new tracer was studied in mice using positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Damion H R Stimson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Blower PJ, Levason W, Luthra SK, McRobbie G, Monzittu FM, Mules TO, Reid G, Subhan MN. Exploring transition metal fluoride chelates - synthesis, properties and prospects towards potential PET probes. Dalton Trans 2019; 48:6767-6776. [PMID: 31017131 DOI: 10.1039/c8dt03696a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination chemistry of the first row transition metal trifluorides with terpy (2,2':6',2''-terpyridine) and Me3-tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) was explored to identify potential systems for 18F radiolabelling. The complexes [MF3(L)] (M = Cr, Mn, Fe, Co; L = Me3-tacn, terpy) were synthesised and fully characterised by UV-vis and IR spectroscopy, microanalysis, and, for the diamagnetic [CoF3(L)], using 1H, 19F{1H} and 59Co NMR spectroscopy. Single crystal X-ray analyses are reported for [MF3(Me3-tacn)] (M = Mn, Co), [FeF3(terpy)] and [FeF3(BnMe2-tacn)]. Stability tests on [MF3(Me3-tacn)] (M = Cr, Mn, Fe) and [M'F3(terpy)] (M' = Cr, Fe) were performed and Cl/19F halide exchange reactions on [CrCl3(Me3-tacn)] using [Me4N]F in anhydrous MeCN solution, and [FeCl3(Me3-tacn)] using [Me4N]F in anhydrous MeCN or KF in aqueous MeCN solution were also carried out. Halide exchange reactions proved to be successful in forming [FeF3(Me3-tacn)] in aqueous MeCN solution within 30 minutes. Based upon the clean Cl/F exchange and the good stability observed for [FeF3(Me3-tacn)] in a range of competitive media, this was identified as a possible candidate for radiolabelling. 18F/19F isotopic exchange was achieved by addition of [18F]F- in the cyclotron target water to a MeCN solution of the benzyl-substituted analogue, [FeF3(BnMe2-tacn)], at a range of concentrations down to 24 nM with heating to 80 °C for 10 min.; the resulting [Fe18F19F2(BnMe2-tacn)] shows radiochemical purity (RCP) ≥90% after 2 h in a range of formulations, including 10% EtOH/phosphate buffered saline (PBS) and 10% EtOH/human serum albumin (HSA). This is the first reported complex with a transition metal directly bonded to [18F]F-.
Collapse
Affiliation(s)
- Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Guerrero-Corella A, Asenjo-Pascual J, Pawar TJ, Díaz-Tendero S, Martín-Sómer A, Gómez CV, Belmonte-Vázquez JL, Ramírez-Ornelas DE, Peña-Cabrera E, Fraile A, Cruz DC, Alemán J. BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chem Sci 2019; 10:4346-4351. [PMID: 31057762 PMCID: PMC6472058 DOI: 10.1039/c9sc00959k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/29/2022] Open
Abstract
In this work we have found that a BODIPY can be used as an electron withdrawing group for the activation of double bonds in asymmetric catalysis. The synthesis of cyclohexyl derivatives containing a BODIPY unit can easily be achieved via trienamine catalysis. This allows a new different asymmetric synthesis of BODIPY derivatives and opens the door to future transformation of this useful fluorophore. In addition, the Quantum Chemistry calculations and mechanistic studies provide insights into the role of BODIPY as an EWG.
Collapse
Affiliation(s)
- Andrea Guerrero-Corella
- Organic Chemistry Department, Módulo 1 , Universidad Autónoma de Madrid , Madrid-28049 , Spain . ; http://www.uam.es/jose.aleman
| | - Juan Asenjo-Pascual
- Organic Chemistry Department, Módulo 1 , Universidad Autónoma de Madrid , Madrid-28049 , Spain . ; http://www.uam.es/jose.aleman
| | - Tushar Janardan Pawar
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - Sergio Díaz-Tendero
- Chemistry Department , Universidad Autónoma de Madrid , Madrid-28049 , Spain
- Condensed Matter Physics Center , IFIMAC , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Ana Martín-Sómer
- Chemistry Department , Universidad Autónoma de Madrid , Madrid-28049 , Spain
| | - Clarisa Villegas Gómez
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - José L Belmonte-Vázquez
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - Diana E Ramírez-Ornelas
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - Eduardo Peña-Cabrera
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - Alberto Fraile
- Organic Chemistry Department, Módulo 1 , Universidad Autónoma de Madrid , Madrid-28049 , Spain . ; http://www.uam.es/jose.aleman
- Institute for Advanced Research in Chemical Sciences (IAdChem) , Universidad Autónoma de Madrid , Madrid-28049 , Spain
| | - David Cruz Cruz
- Chemistry Department , División de Ciencias Naturales y Exactas , Universidad de Guanajuato , Noria Alta S/N , 36050 Guanajuato , Gto , Mexico
| | - José Alemán
- Organic Chemistry Department, Módulo 1 , Universidad Autónoma de Madrid , Madrid-28049 , Spain . ; http://www.uam.es/jose.aleman
- Institute for Advanced Research in Chemical Sciences (IAdChem) , Universidad Autónoma de Madrid , Madrid-28049 , Spain
| |
Collapse
|
44
|
Zhao H, Kim Y, Park G, Gabbai FP. Controlling the fluoridophilicity of sulfonium boranes via chelation, Coulombic and hydrophobic effects. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in 11 C-, 18 F-, 13 N-, and 15 O-Labeling Reactions. Angew Chem Int Ed Engl 2019; 58:2580-2605. [PMID: 30054961 PMCID: PMC6405341 DOI: 10.1002/anie.201805501] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron-emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11 C, 18 F, 13 N, and 15 O.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Zhang
- Medicine Design, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
46
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemie der Positronenemissionstomographie: Aktuelle Fortschritte bei
11
C‐,
18
F‐,
13
N‐ und
15
O‐Markierungsreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lei Zhang
- Medicine DesignPfizer Inc. Cambridge MA 02139 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
47
|
Venkatachalam TK, Bernhardt PV, Pierens GK, Stimson DHR, Bhalla R, Reutens DC. Synthesis and Characterisation of Indium(III) Bis-Thiosemicarbazone Complexes: 18F Incorporation for PET Imaging. Aust J Chem 2019. [DOI: 10.1071/ch18559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several structurally related indium chlorido complexes of bis-thiosemicarbazones were prepared, starting from the appropriately substituted bis-thiosemicarbazones, using sodium methoxide in methanol. Detailed NMR studies were conducted to assign the structure including COSY, HSQC, and HMBC techniques. The structures of all indium complexes were solved using single crystal X-ray diffraction. The chlorido ligand was present at the apex of the square pyramidal coordination sphere in all indium complexes. In some complexes, an intermolecular hydrogen bond was present between the chlorine atom and an NH group. Three different indium chlorido complexes were converted into the corresponding fluorido-derivative by a simple halide exchange method using K18F. These novel complexes, containing the positron emitting isotope 18F, may have potential applications in positron emission tomography (PET).
Collapse
|
48
|
Huynh PT, Soni N, Pal R, Sarkar S, Jung JM, Lee W, Yoo J. Direct radiofluorination of a heat-sensitive antibody by Al–18F complexation. NEW J CHEM 2019. [DOI: 10.1039/c9nj00722a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A heat-sensitive antibody conjugated with the NODA chelator was successfully radiolabeled at 30 °C using Al–18F complexation without immunoreactivity loss.
Collapse
Affiliation(s)
- Phuong Tu Huynh
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Nisarg Soni
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Rammyani Pal
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Swarbhanu Sarkar
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Jung-Min Jung
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Woonghee Lee
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| | - Jeongsoo Yoo
- Department of Molecular Medicine
- BK21 Plus KNU Biomedical Convergence Program
- School of Medicine
- Kyungpook National University
- Daegu
| |
Collapse
|
49
|
Pewklang T, Chansaenpak K, Lai RY, Noisa P, Kamkaew A. Aza-BODIPY probe for selective visualization of cyclooxygenase-2 in cancer cells. RSC Adv 2019; 9:13372-13377. [PMID: 35519572 PMCID: PMC9063976 DOI: 10.1039/c9ra01948k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
AZB-IMC2 was developed as a COX-2 specific probe that exhibited a brighter fluorescence signal in cancer cells that overexpress COX-2 compared to normal cells. Oxidative stress agent-treated inflamed cell lines inducing high COX-2 levels revealed an enhanced fluorescence signal. Inhibitory studies showed a markedly reduced fluorescence intensity in cancer cells. The results suggested that AZB-IMC2 could be developed as a promising molecular tool for imaging guiding during surgery. A bivalent indomethacin/Aza-BODIPY conjugate can selectively visualize the COX-2 enzyme in cancer and inflamed cells confirming its potential as a COX-2-specific biomarker in clinical applications.![]()
Collapse
Affiliation(s)
- Thitima Pewklang
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| | - Kantapat Chansaenpak
- National Nanotechnology Center
- National Science and Technology Development Agency
- Thailand Science Park
- Thailand 12120
| | - Rung-Yi Lai
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations
- School of Biotechnology
- Institute of Agricultural Technology
- Suranaree University of Technology
- Nakhon Ratchasima
| | - Anyanee Kamkaew
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima
- Thailand 30000
| |
Collapse
|
50
|
Colella M, Musci P, Carlucci C, Lillini S, Tomassetti M, Aramini A, Degennaro L, Luisi R. 1,3-Dibromo-1,1-difluoro-2-propanone as a Useful Synthon for a Chemoselective Preparation of 4-Bromodifluoromethyl Thiazoles. ACS OMEGA 2018; 3:14841-14848. [PMID: 31458153 PMCID: PMC6644220 DOI: 10.1021/acsomega.8b02273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
We report herein a synthetic protocol for the preparation of 1,3-dibromo-1,1-difluoro-2-propanone, a new synthon used for the first time in a reaction with aromatic amines and sodium thiocyanate, leading to thiazoles which are useful candidates in drug discovery programs. The new synthon allows to introduce a bromodifluoromethyl group at the C4 of the thiazole, and it is amenable of further transformation such as the Br/F exchange useful in radiopharmaceutics. Application of the strategy to the preparation of a precursor of the biologically relevant DF2755Y is also reported.
Collapse
Affiliation(s)
- Marco Colella
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Pantaleo Musci
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Claudia Carlucci
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Samuele Lillini
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Mara Tomassetti
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Andrea Aramini
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Campo di
Pile, L’Aquila 67100, Italy
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Leonardo Degennaro
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Renzo Luisi
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|