1
|
Roth TFH, Kühl A, Spiekermann ML, Wegener HW, Seidensticker T. Biodiesel as a Sustainable Platform Chemical Enabled by Selective Partial Hydrogenation: Compounds Outplace Combustion?! CHEMSUSCHEM 2024; 17:e202400036. [PMID: 38376952 DOI: 10.1002/cssc.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
The hydrogenation of polyunsaturated fatty acids (PUFAs) in vegetable oils and their derivatives is essential for their use in many areas, such as biofuels and food chemistry. However, no attempts have been made to adapt this technology to the requirements of further chemical utilization of fatty acid methyl esters as molecular building blocks, especially for particularly promising double-bond reactions. In this work, we, therefore, use three homogeneous catalytic model reactions (hydroformylation, isomerizing methoxycarbonylation, and ethenolysis) to show, firstly, that it is already known from the literature that high PUFA contents have a negative impact on activity and selectivity. Subsequently, using the example of soybean and canola biodiesel, we demonstrate that these key figures can be drastically improved by a preceding selective partial hydrogenation. This makes it possible to first reduce the share of PUFAs to <1 w % without causing significant overhydrogenation and then to carry out hydroformylation, methoxycarbonylation, and ethenolysis with significantly increased activity (up to twentyfold) and selectivity (up to 80 % increase). With these findings, we hope to convince the scientific and industrial world of the potential of selective partial hydrogenation as a key technology for utilizing renewable raw materials and to encourage its effective use in future work.
Collapse
Affiliation(s)
- Thomas F H Roth
- Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44265, Dortmund, Germany
| | - Alexander Kühl
- Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44265, Dortmund, Germany
| | - Maximilian L Spiekermann
- Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44265, Dortmund, Germany
| | - Hannes W Wegener
- Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44265, Dortmund, Germany
| | - Thomas Seidensticker
- Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry, TU Dortmund University, Emil-Figge-Str. 66, 44265, Dortmund, Germany
| |
Collapse
|
2
|
Cheng C, Shi JX, Kang EH, Nelson TF, Sander M, McNeill K, Hartwig JF. Polymers from Plant Oils Linked by Siloxane Bonds for Programmed Depolymerization. J Am Chem Soc 2024; 146:12645-12655. [PMID: 38651821 DOI: 10.1021/jacs.4c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The increased production of plastics is leading to the accumulation of plastic waste and depletion of limited fossil fuel resources. In this context, we report a strategy to create polymers that can undergo controlled depolymerization by linking renewable feedstocks with siloxane bonds. α,ω-Diesters and α,ω-diols containing siloxane bonds were synthesized from an alkenoic ester derived from castor oil and then polymerized with varied monomers, including related biobased monomers. In addition, cyclic monomers derived from this alkenoic ester and hydrosiloxanes were prepared and cyclized to form a 26-membered macrolactone containing a siloxane unit. Sequential ring-opening polymerization of this macrolactone and lactide afforded an ABA triblock copolymer. This set of polymers containing siloxanes underwent programmed depolymerization into monomers in protic solvents or with hexamethyldisiloxane and an acid catalyst. Monomers afforded by the depolymerization of polyesters containing siloxane linkages were repolymerized to demonstrate circularity in select polymers. Evaluation of the environmental stability of these polymers toward enzymatic degradation showed that they undergo enzymatic hydrolysis by a fungal cutinase from Fusarium solani. Evaluation of soil microbial metabolism of monomers selectively labeled with 13C revealed differential metabolism of the main chain and side chain organic groups by soil microbes.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jake X Shi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eun-Hye Kang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taylor F Nelson
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Sander
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Otłowski T, Zalas M, Gierczyk B. Forensic analytical aspects of homemade explosives containing grocery powders and hydrogen peroxide. Sci Rep 2024; 14:750. [PMID: 38185692 PMCID: PMC10772094 DOI: 10.1038/s41598-024-51335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
Homemade explosives become a significant challenge for forensic scientists and investigators. In addition to well-known materials such as acetone peroxide trimer, black powder, or lead azides, perpetrators often produce more exotic and less recognized Homemade Explosives (HMEs). Mixtures of hydrogen peroxide with liquid fuels are widely acknowledged as powerful explosives. Interestingly, similar explosive properties are found in mixtures of numerous solid materials with H2O2. Notably, powdered groceries, such as coffee, tea, grounded spices, and flour, are particularly interesting to pyrotechnics enthusiasts due to their easy production using accessible precursors, which do not attract the attention of security agencies. H2O2-based HMEs may become a dangerous component of improvised explosive devices for terrorists and ordinary offenders. For the four most powerful mixtures-HMEs based on coffee, tea, paprika, and turmeric-molecular markers useful for identification using the GC-MS technique have been proposed. Furthermore, the observed time-dependent changes in mixtures of H2O2 with these food products were studied and evaluated as a potential method for assessing the age of the evidence and reconstructing timelines of crimes. The paper also discusses the usefulness of FT-IR spectroscopy for identifying H2O2-based HMEs.
Collapse
Affiliation(s)
- Tomasz Otłowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Str., 61-614, Poznań, Poland
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Str., 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Str., 61-614, Poznań, Poland.
| |
Collapse
|
4
|
da Silva RTP, Silva DO, de Oliveira PFM, Bellabarba R, Johnston P, Smit J, Holt J, Betham M, Rossi LM. Solvent-Free Aerobic Oxidative Cleavage of Methyl Oleate to Biobased Aldehydes over Mechanochemically Synthesized Supported AgAu Nanoparticles. Chempluschem 2023; 88:e202300268. [PMID: 37498229 DOI: 10.1002/cplu.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
The performance of mechanochemically synthesized supported bimetallic AgAu nanoalloy catalysts was evaluated in the oxidative cleavage of methyl oleate, a commonly available unsaturated bio-derived raw material. An extensive screening of supports (SiO2 , C, ZrO2 , Al2 O3 ), metallic ratios (Ag : Au), reaction times, temperatures, and use of solvents was carried out. The performance was optimized towards productivity and selectivity for the primary cleavage products (aldehydes and oxoesters). The optimal conditions were achieved in the absence of solvent, using Ag8 Au92 /SiO2 as catalyst, at 80 °C, reaction time of 1 h, substrate to catalyst=555 and 10 bar of molecular oxygen. A strong support effect was observed: the selectivity to aldehydes was best with silica as support, and to esters was best using zirconia. This shows not only that mechanochemical preparation of bimetallic catalysts is a powerful tool to generate useful catalyst compositions, but also that a safe, green, solventless synthesis of bio-derived products can be achieved by aerobic oxidative cleavage.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Dagoberto O Silva
- Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | | | | | - Joost Smit
- Johnson Matthey plc, Billingham, Cleveland TS23 4EA, UK
| | - Jarle Holt
- Johnson Matthey plc, Billingham, Cleveland TS23 4EA, UK
| | | | - Liane M Rossi
- Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Türck J, Schmitt F, Anthofer L, Türck R, Ruck W, Krahl J. Extension of Biodiesel Aging Mechanism-the Role and Influence of Methyl Oleate and the Contribution of Alcohols Through the Use of Solketal. CHEMSUSCHEM 2023; 16:e202300263. [PMID: 37220243 DOI: 10.1002/cssc.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The energy crisis and dependence on fossil fuels forces societies to develop alternative pathways to secure energy supplies. Therefore, non-fossil fuels such as biofuels and e-fuels can help counteract the resulting demand for existing combustion engines. However, biofuels, like biodiesel, have disadvantages in terms of oxidation stability. In general, aging of biodiesel is a complex mechanism due to interaction of various components. In order to develop an ideal fuel, the mechanism must be understood in full detail. In this work, an attempt is made to simplify the system by using methyl oleate as a biodiesel model component. In addition, other fuel components of interest such as alcohols and their respective acids help to clarify the aging mechanism. This work used isopropylidene glycerol (solketal) as the main alcohol, 1-octanol and octanoic acid. A holistic biodiesel aging scheme was developed by using generated data and evaluating the role of acids. They epoxidize unsaturated fatty acid via Prileschajev reactions. In addition, the role of epoxides in oligomerization reactions is confirmed. Moreover, the alcohols show that the suppression of oligomerization can be achieved by the reaction with methyl oleate. The alcohol-dependent aging products were determined by quadrupole time-of-flight (Q-TOF) mass spectrometry.
Collapse
Affiliation(s)
- Julian Türck
- School of Sustainability, Leuphana University Lüneburg, Universitätsallee 1, C11.012, 21335, Lüneburg, Germany
- Tecosol GmbH, Jahnstraße 2, 97199, Ochsenfurt, Germany
| | | | | | - Ralf Türck
- Tecosol GmbH, Jahnstraße 2, 97199, Ochsenfurt, Germany
- Fuels Joint Research Group, Germany
| | - Wolfgang Ruck
- School of Sustainability, Leuphana University Lüneburg, Universitätsallee 1, C11.012, 21335, Lüneburg, Germany
| | - Jürgen Krahl
- Fuels Joint Research Group, Germany
- OWL University of Applied Sciences and Arts, Campusallee 12, 32657, Lemgo, Germany
| |
Collapse
|
6
|
Gámez S, Magerat A, de la Torre E, Gaigneaux EM. Functionalization of carbon black for Ru complexation towards the oxidative cleavage of oleic acid. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Gámez S, de la Torre E, Gaigneaux EM. Palm Oil Valorization through the Oxidative Cleavage of Unsaturated Fatty Acids with Ru-Carbon Catalysts. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Sebastián Gámez
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Pasteur 1, L4.01.09, 1348 Louvain-la-Neuve, Belgium
| | - Ernesto de la Torre
- Department of Extractive Metallurgy, Escuela Politécnica Nacional, Ladron de Guevera E11-253, Quito 170517, Ecuador
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Pasteur 1, L4.01.09, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Asressu KH, Zhang Q. Detection and Semi-quantification of Lipids on High-Performance Thin-Layer Chromatography Plate using Ceric Ammonium Molybdate Staining. EUR J LIPID SCI TECH 2023; 125:2200096. [PMID: 36818638 PMCID: PMC9937734 DOI: 10.1002/ejlt.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/05/2022]
Abstract
It is desirable to quickly check the composition of lipids in small size samples, but achieving this is challenging using the existing staining methods. Herein, we developed a highly sensitive and semi-quantitative method for analysis of lipid samples with ceric ammonium molybdate (CAM) staining. The CAM detection method was systematically evaluated with a wide range of lipid classes including phospholipids, sphingolipids, glycerolipids, fatty acids (FA) and sterols, demonstrating high sensitivity, stability, and overall efficiency. Additionally, CAM staining provides a clean yellow background in high performance thin-layer chromatography (HPTLC) which facilitates quantification of lipids using image processing software. Lipids can be stained with CAM reagent regardless of their head group types, position of the carbon-carbon double bonds, geometric isomerism and the variation in the length of FA chain, but staining is mostly affected by the degree of unsaturation of the FA backbone. The mechanism of the CAM staining of lipids was proposed on principles of the reduction-oxidation reaction, in which Mo(VI) oxidizes the unsaturated lipids into carbonyl compounds on the HPTLC plate upon heating, while itself being reduced to Mo(IV). This method was applied for the separation, identification, and quantification of lipid extracts from porcine brain.
Collapse
Affiliation(s)
- Kesatebrhan Haile Asressu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
9
|
Gámez S, de la Torre E, Gaigneaux EM. Carbon supports for the oxidative cleavage of oleic acid: Influence of textural properties. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Kirkpatrick KM, Zhou BH, Bunting PC, Rinehart JD. Size-Tunable Magnetite Nanoparticles from Well-Defined Iron Oleate Precursors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8043-8053. [PMID: 36117881 PMCID: PMC9477088 DOI: 10.1021/acs.chemmater.2c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of iron oxide nanoparticles with control over size and shape has long been an area of research, with iron oleate being arguably the most successful precursor. Issues with reproducibility and versatility in iron oleate-based syntheses remain, however, in large part due to the mutable nature of its structure and stoichiometry. In this work, we characterize two new forms of iron oleate precursor that can be isolated in large quantities, show long-term stability, and have well-defined stoichiometry, leading to reproducible and predictable reactivity. Synthesis with these precursors is shown to produce iron oxide nanoparticles in a tunable size range of 4-16 nm with low size dispersity and properties consistent with magnetite in the superparamagnetic size regime.
Collapse
Affiliation(s)
- Kyle M. Kirkpatrick
- Department
of Chemistry and Biochemistry and Materials Science and Engineering
Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Benjamin H. Zhou
- Department
of Chemistry and Biochemistry and Materials Science and Engineering
Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Philip C. Bunting
- Department
of Chemistry and Biochemistry and Materials Science and Engineering
Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeffrey D. Rinehart
- Department
of Chemistry and Biochemistry and Materials Science and Engineering
Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Shin K, Kang S, Lee T, Kim T, Oh D. Pentadecanedioic acid production from 15‐hydroxypentadecanoic acid using an engineered biocatalyst with a co‐factor regeneration system. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyung‐Chul Shin
- Department of Integrative Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Su‐Hwan Kang
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Tae‐Eui Lee
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Tae‐Hun Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Integrative Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| |
Collapse
|
12
|
Behera A, Kar AK, Srivastava R. Oxygen Vacancy-Mediated Z-Scheme Charge Transfer in a 2D/1D B-Doped g-C 3N 4/rGO/TiO 2 Heterojunction Visible Light-Driven Photocatalyst for Simultaneous/Efficient Oxygen Reduction Reaction and Alcohol Oxidation. Inorg Chem 2022; 61:12781-12796. [PMID: 35913785 DOI: 10.1021/acs.inorgchem.2c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen peroxide (H2O2) is a powerful oxidant that directly or indirectly oxidizes many organic and inorganic contaminants. The photocatalytic generation of H2O2 is achieved by using a semiconductor photocatalyst in the presence of alcohol as a proton source. Herein, we have synthesized oxygen vacancy (Ov)-mediated TiO2/B-doped g-C3N4/rGO (TBCN@rGO) ternary heterostructures by a simple hydrothermal technique. Several characterization techniques were employed to explore the existence of oxygen vacancies in the crystal structure and investigate their impact on the optoelectronic properties of the catalyst. Oxygen vacancies offered additional sites for adsorbing molecular oxygen, activating alcohols, and facilitating electron migration from TBCN@rGO to the surface-adsorbed O2. The defect creation (oxygen vacancy) and Z-scheme mechanistic pathways create a suitable platform for generating H2O2 by two-electron reduction processes. The optimized catalyst showed the highest photocatalytic H2O2 evolution rate of 172 μmol/h, which is 1.9 and 2.5 times greater than that of TBCN and BCN, respectively. The photocatalytic oxidation of various lignocellulose-derived alcohols (such as furfural alcohol and vanillyl alcohol) and benzyl alcohol was also achieved. Photocatalytic activity data, physicochemical and optoelectronic features, and trapping experiments were conducted to elucidate the structure-activity relationships. The TBCN@rGO acts as a multifunctional Z-scheme photocatalyst having an oxygen vacancy, modulates surface acidity-basicity required for the adsorption and activation of the reactant molecules, and displays excellent photocatalytic performance due to the formation of a large number of active surface sites, increased electrical conductivity, improved charge transfer properties, outstanding photostability, and reusability. The present study establishes a unique strategy for improving H2O2 generation and alcohol oxidation activity and also provides insights into the significance of a surface vacancy in the semiconductor photocatalyst.
Collapse
Affiliation(s)
- Arjun Behera
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
13
|
Vondran J, Benninghoff T, Emminghaus A, Seidensticker T. Catalytic Synthesis of Methyl 9,10‐dihydroxystearate from Technical Feedstocks in Continuous Flow via Epoxidation and Hydrolysis. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johanna Vondran
- Laboratory for Industrial Chemistry Department of Biochemical and Chemical Engineering TU Dortmund University Emil‐Figge‐Straße 66 44227 Dortmund Germany
| | - Tobias Benninghoff
- Laboratory for Industrial Chemistry Department of Biochemical and Chemical Engineering TU Dortmund University Emil‐Figge‐Straße 66 44227 Dortmund Germany
| | - Anahita Emminghaus
- Laboratory for Industrial Chemistry Department of Biochemical and Chemical Engineering TU Dortmund University Emil‐Figge‐Straße 66 44227 Dortmund Germany
| | - Thomas Seidensticker
- Laboratory for Industrial Chemistry Department of Biochemical and Chemical Engineering TU Dortmund University Emil‐Figge‐Straße 66 44227 Dortmund Germany
| |
Collapse
|
14
|
Ramesh N, Chandra M, Arun K. Analytical characterization of erucamide degradants by mass spectrometry. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Xin S, Peng X, Zhang Y, Zheng A, Xia C, Lin M, Zhu B, Huang Z, Shu X. Spongy titanosilicate promotes the catalytic performance and reusability of WO 3 in oxidative cleavage of methyl oleate. RSC Adv 2022; 12:5135-5144. [PMID: 35425581 PMCID: PMC8981253 DOI: 10.1039/d1ra08501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
A tungsten containing catalyst catalyzed oxidative cleavage of methyl oleate (MO) by employing H2O2 as an oxidant and is known as an efficient approach for preparing high value-added chemicals, however, the tungsten leaching problem remains unresolved. In this work, a binary catalyst consisting of tungsten oxide (WO3) and spongy titanosilicate (STS) zeolite is proposed for MO oxidative cleavage. The function of STS in this catalyst is investigated. On the one hand, STS converts MO to 9,10-epoxystearate (MES), which further forms nonyl aldehyde (NA) and methyl azelaaldehydate (MAA) with the catalysis of WO3. In this way, MO oxidation and hydrolysis that generates unwanted diol product 9,10-dihydroxystearate (MDS) decreases obviously. On the other hand, STS decomposes peroxide and promotes the conversion of soluble peroxotungstate to insoluble polytungstate. Meanwhile, these tungsten species are allowed to precipitate on its surface instead of remaining in the liquid phase owing to its relative large specific area. Therefore, tungsten leaching can be reduced from 37.0% to 1.2%. Due to the cooperation of WO3 and STS, 94.4% MO conversion and oxidative cleavage product selectivity of 63.1% are achieved, and the WO3-STS binary catalyst maintains excellent catalytic performance for 8 recycling reactions.
Collapse
Affiliation(s)
- Shihao Xin
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Xinxin Peng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Yao Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Aiguo Zheng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Changjiu Xia
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Min Lin
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Bin Zhu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Zuoxin Huang
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Xingtian Shu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| |
Collapse
|
16
|
Khan SR, Saini S, Naresh K, Kumari A, Aniya V, Khatri PK, Ray A, Jain SL. CO 2 as oxidant: an unusual light-assisted catalyst free oxidation of aldehydes to acids under mild conditions. Chem Commun (Camb) 2022; 58:2208-2211. [PMID: 35072682 DOI: 10.1039/d1cc06057k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel visible light-driven catalyst-free oxidation of aldehydes using CO2 both in batch and flow photoreactors to get corresponding acids along with the formation of CO in the effluent gas is described.
Collapse
Affiliation(s)
- Shafiur Rehman Khan
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - K Naresh
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Alka Kumari
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Vineet Aniya
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Praveen K Khatri
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Anjan Ray
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Director, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248004, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| |
Collapse
|
17
|
Vondran J, Peters M, Schnettger A, Sichelschmidt C, Seidensticker T. From tandem to catalysis – organic solvent nanofiltration for catalyst separation in the homogeneously W-catalyzed oxidative cleavage of renewable methyl 9,10-dihydroxystearate. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphotungstic acid is applied as a homogeneous catalyst for oxidative cleavage of methyl 9,10-dihydroxystearate, allowing for retention of the catalyst via organic solvent nanofiltration.
Collapse
Affiliation(s)
- Johanna Vondran
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc Peters
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Alexander Schnettger
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Christian Sichelschmidt
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Thomas Seidensticker
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
19
|
Yun D, Zhang Z, Flaherty DW. Catalyst and reactor design considerations for selective production of acids by oxidative cleavage of alkenes and unsaturated fatty acids with H 2O 2. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic insight and measurements of apparent kinetics for productive and non-productive reaction pathways guide the development of semi-batch reactors and conditions for stable production of carboxylic acids and diacids over supported tungstate catalysts.
Collapse
Affiliation(s)
- Danim Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - Zhongyao Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
20
|
Zhang X, Huang YM, Qin HL, Baoguo Z, Rakesh KP, Tang H. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS OMEGA 2021; 6:25972-25981. [PMID: 34660959 PMCID: PMC8515394 DOI: 10.1021/acsomega.1c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/06/2023]
Abstract
A CuO-promoted direct hydrocarboxylation of ethenesulfonyl fluoride (ESF) was developed using carboxylic acid as a nucleophile under mild conditions. A variety of molecules containing both ester group and aliphatic sulfonyl fluoride moiety exhibit great potential in medicinal chemistry and chemical biology. Furthermore, the modification of the known drugs Ibuprofen and Aspirin was also demonstrated.
Collapse
Affiliation(s)
- Xu Zhang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Mei Huang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhang Baoguo
- Lab
of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
| | - K. P. Rakesh
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
21
|
Slug flow as tool for selectivity control in the homogeneously catalysed solvent-free epoxidation of methyl oleate. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCatalytic oxidation of sustainable raw materials like unsaturated fats and oils, or fatty acids and their esters, lead to biobased, high-value products. Starting from technical grade methyl oleate, hydrogen peroxide as a green oxidant produces only water as by-product. A commercially available, cheap water-soluble tungsten catalyst is combined with Aliquat® 336 as a phase-transfer agent in solvent-free reaction conditions. In this study, we first report the transfer of this well-known batch system into continuous mode. The space–time yield is improved from 0.08 kg/L.h in batch to 1.29 kg/L.h in flow mode. The improved mass transfer and reduced back mixing of the biphasic liquid–liquid slug flow allows for selectivity control depending on physical parameters of slug flow namely volumetric phase ratio, volumetric flow rate, and slug length. Even though the product, methyl 9,10-epoxystearate is obtained at a maximum selectivity of only 58% in flow mode, higher space time yield combined with possible reactant recycling in flow mode offers a promising avenue of research. This work analyses the use of slug flow parameters as tools for controlling selectivity towards oxidation products of methyl oleate.
Collapse
|
22
|
A review of the tribological and thermophysical mechanisms of bio-lubricants based nanomaterials in automotive applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
24
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
25
|
Vassoi A, Tabanelli T, Sacchetti A, Di Gioia F, Capuzzi L, Cavani F. The Oxidative Cleavage of 9,10-Dihydroxystearic Triglyceride with Oxygen and Cu Oxide-based Heterogeneous Catalysts. CHEMSUSCHEM 2021; 14:2375-2382. [PMID: 33760369 PMCID: PMC8251944 DOI: 10.1002/cssc.202100322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with a new heterogeneous catalyst for the second step in the two-step oxidative cleavage of unsaturated fatty acids triglycerides derived from vegetable oil, a reaction aimed at the synthesis of azelaic and pelargonic acids. The former compound is a bio-monomer for the synthesis of polyesters; the latter, after esterification, is used in cosmetics and agrochemicals. The reaction studied offers an alternative to the currently used ozonization process, which has severe drawbacks in terms of safety and energy consumption. The cleavage was carried out with oxygen, starting from the glycol (dihydroxystearic acid triglyceride), the latter obtained by the dihydroxylation of oleic acid triglyceride. The catalysts used were based on Cu2+ , in the form of either an alumina-supported oxide or a mixed, spinel-type oxide. The CuO/Al2 O3 catalyst could be recovered, regenerated, and recycled, yielding promising results for further industrial exploitation.
Collapse
Affiliation(s)
- Andrea Vassoi
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | - Tommaso Tabanelli
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | - Annalisa Sacchetti
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | | | | | - Fabrizio Cavani
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| |
Collapse
|
26
|
Upadhyay R, Rana R, Sood A, Singh V, Kumar R, Srivastava VC, Maurya SK. Heterogeneous vanadium-catalyzed oxidative cleavage of olefins for sustainable synthesis of carboxylic acids. Chem Commun (Camb) 2021; 57:5430-5433. [PMID: 33949501 DOI: 10.1039/d1cc01742j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of green and sustainable processes to synthesize active pharmaceutical ingredients and key starting materials is a priority for the pharmaceutical industry. A green and sustainable protocol for the oxidative cleavage of olefins to produce pharmaceutically and biologically valuable carboxylic acids is achieved. The developed protocol involves 70% aq. TBHP as an oxidant over a heterogeneous vanadium catalyst system. Notably, the synthesis of industrially important azelaic acid from various renewable vegetable oils is accomplished. The catalyst could be recycled for up to 5 cycles without significant loss in yield and the protocol was successfully demonstrated at the gram-scale.
Collapse
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Rohit Rana
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Aakriti Sood
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| | - Vikash Singh
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
27
|
Silva JAC, Grilo LM, Gandini A, Lacerda TM. The Prospering of Macromolecular Materials Based on Plant Oils within the Blooming Field of Polymers from Renewable Resources. Polymers (Basel) 2021; 13:1722. [PMID: 34070232 PMCID: PMC8197318 DOI: 10.3390/polym13111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022] Open
Abstract
This paper provides an overview of the recent progress in research and development dealing with polymers derived from plant oils. It highlights the widening interest in novel approaches to the synthesis, characterization, and properties of these materials from renewable resources and emphasizes their growing impact on sustainable macromolecular science and technology. The monomers used include unmodified triglycerides, their fatty acids or the corresponding esters, and chemically modified triglycerides and fatty acid esters. Comonomers include styrene, divinylbenzene, acrylics, furan derivatives, epoxides, etc. The synthetic pathways adopted for the preparation of these materials are very varied, going from traditional free radical and cationic polymerizations to polycondensation reactions, as well as metatheses and Diels-Alder syntheses. In addition to this general appraisal, the specific topic of the use of tung oil as a source of original polymers, copolymers, and (nano)composites is discussed in greater detail in terms of mechanisms, structures, properties, and possible applications.
Collapse
Affiliation(s)
- Julio Antonio Conti Silva
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| | - Luan Moreira Grilo
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| | - Alessandro Gandini
- Graduate School of Engineering in Paper, Print Media and Biomaterials (Grenoble INP-Pagora), University Grenoble Alpes, LGP2, CEDEX 9, 38402 Saint Martin d’Hères, France;
| | - Talita Martins Lacerda
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, CEP 12602-810 Lorena, SP, Brazil; (J.A.C.S.); (L.M.G.)
| |
Collapse
|
28
|
Melchiorre M, Cucciolito ME, Di Serio M, Ruffo F, Tarallo O, Trifuoggi M, Esposito R. Homogeneous Catalysis and Heterogeneous Recycling: A Simple Zn(II) Catalyst for Green Fatty Acid Esterification. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6001-6011. [PMID: 34306834 PMCID: PMC8297397 DOI: 10.1021/acssuschemeng.1c01140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Indexed: 05/17/2023]
Abstract
This work describes the use of simple zinc(II) salts (ZnCl2, ZnCO3, Zn(OAc)2, ZnO, Zn(ClO4)2, Zn(TfO)2, and Zn(BF4)2) as effective catalysts for the esterification of fatty acids with long-chain alcohols and simple polyols through a homogeneous system that allows the gradual and selective removal of water. The results show that the catalytic activity depends on the nature of the counterion: the most effective are the salts with poorly coordinating anions (perchlorate and triflate) or containing basic Brønsted anions (oxide, acetate, and carbonate). However, only with the latter is it possible to fully recover the catalyst at the end of each run, which is easily filtered in the form of zinc carboxylate, given its insolubility in the ester produced. In this way, it is possible to recycle the catalyst numerous times, without any loss of activity. This beneficial prerogative couples the efficiency of the homogeneous catalysis with the advantage of the heterogeneous catalysis. The process is, therefore, truly sustainable, given its high efficiency, low energy consumption, ease of purification, and the absence of auxiliary substances and byproducts.
Collapse
Affiliation(s)
| | - Maria Elena Cucciolito
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Martino Di Serio
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Francesco Ruffo
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Oreste Tarallo
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
| | - Marco Trifuoggi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
| | - Roberto Esposito
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Via
Cintia 21, 80126 Napoli, Italy
- Consorzio
Interuniversitario di Reattività Chimica e Catalisi, Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
29
|
Gandon A, Nguyen C, Kaliaguine S, Do T. Synthesis of magnetic core@dual shell
Fe
3
O
4
@
SiO
2
@
WO
3
nanocatalysts for olefin double bond oxidative cleavage. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arnaud Gandon
- Department of Chemical Engineering Laval University Québec Québec Canada
| | - Chinh‐Chien Nguyen
- Department of Chemical Engineering Laval University Québec Québec Canada
- Institute of Research and Development Duy Tan University Da Nang Vietnam
| | - Serge Kaliaguine
- Department of Chemical Engineering Laval University Québec Québec Canada
| | - Trong‐On Do
- Department of Chemical Engineering Laval University Québec Québec Canada
| |
Collapse
|
30
|
Cousin T, Chatel G, Andrioletti B, Draye M. Oxidative cleavage of cycloalkenes using hydrogen peroxide and a tungsten-based catalyst: towards a complete mechanistic investigation. NEW J CHEM 2021. [DOI: 10.1039/d0nj03592k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of intermediates and by-products issuing from the oxidative cleavage of cycloolefins allows proposing of a reaction mechanism.
Collapse
Affiliation(s)
- Tony Cousin
- LCME
- Univ. Savoie Mont Blanc
- 73000 Chambéry
- France
- Univ. Lyon
| | | | - Bruno Andrioletti
- Univ. Lyon
- Université Claude Bernard Lyon 1
- INSA-Lyon
- CPE-Lyon
- ICBMS UMR CNRS 5246
| | | |
Collapse
|
31
|
Esposito R, Melchiorre M, Annunziata A, Cucciolito ME, Ruffo F. Emerging catalysis in biomass valorisation: simple Zn(II) catalysts for fatty acids esterification and transesterification. ChemCatChem 2020. [DOI: 10.1002/cctc.202001144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roberto Esposito
- Dipartimento di Scienze Chimiche Università degli Studi di Napoli Federico II Complesso Universitario di Monte S. Angelo via Cintia 21 80126 Napoli Italy
- CIRCC Via Celso Ulpiani 27 70126 Bari Italy
| | | | - Alfonso Annunziata
- Dipartimento di Scienze Chimiche Università degli Studi di Napoli Federico II Complesso Universitario di Monte S. Angelo via Cintia 21 80126 Napoli Italy
- CIRCC Via Celso Ulpiani 27 70126 Bari Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche Università degli Studi di Napoli Federico II Complesso Universitario di Monte S. Angelo via Cintia 21 80126 Napoli Italy
- CIRCC Via Celso Ulpiani 27 70126 Bari Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche Università degli Studi di Napoli Federico II Complesso Universitario di Monte S. Angelo via Cintia 21 80126 Napoli Italy
- CIRCC Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
32
|
Kang SH, Kim TH, Park JB, Oh DK. Increased Production of ω-Hydroxynonanoic Acid and α,ω-Nonanedioic Acid from Olive Oil by a Constructed Biocatalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9488-9495. [PMID: 32786834 DOI: 10.1021/acs.jafc.0c03255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ω-Hydroxynonanoic acid and α,ω-nonanedioic acid are used for synthesizing diverse chemicals. Although biological methods are developed, their concentrations are low due to the toxicity of high concentrations of the hydrophobic chemicals toward biocatalysts. Here, we constructed a biocatalytic system with high productivity by adding an adsorbent resin and a strong base anion-exchange resin, reducing the solubility of ω-hydroxynonanoic acid and α,ω-nonanedioic acid, feeding ω-hydroxynonanoic acid, and introducing a cofactor regeneration system. The constructed biocatalytic system converted 300 mM (83.9 g L-1) and 154 mM (43.5 g L-1) oleic acid in the olive oil hydrolysate obtained after resin extraction, which were derived from 110 and 54 g L-1 olive oil, respectively, into 202 mM (35.2 g L-1) ω-hydroxynonanoic acid and 103 mM (19.4 g L-1) α,ω-nonanedioic acid, which are 21- and 24-fold higher values than the previously reported results, respectively. This study may contribute to the industrial biosynthesis of ω-hydroxynonanoic acid and α,ω-nonanedioic acid from olive oil.
Collapse
Affiliation(s)
- Su-Hwan Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
33
|
Araji N, Chatel G, Moores A, Jérôme F, De Oliveira Vigier K. Oxidative cyclization of linoleic acid in the presence of hydrogen peroxide and phosphotungstic acid. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Conversion of Oleic Acid into Azelaic and Pelargonic Acid by a Chemo-Enzymatic Route. Molecules 2020; 25:molecules25081882. [PMID: 32325747 PMCID: PMC7221618 DOI: 10.3390/molecules25081882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
A chemo-enzymatic approach for the conversion of oleic acid into azelaic and pelargonic acid is herein described. It represents a sustainable alternative to ozonolysis, currently employed at the industrial scale to perform the reaction. Azelaic acid is produced in high chemical purity in 44% isolation yield after three steps, avoiding column chromatography purifications. In the first step, the lipase-mediated generation of peroleic acid in the presence of 35% H2O2 is employed for the self-epoxidation of the unsaturated acid to the corresponding oxirane derivative. This intermediate is submitted to in situ acid-catalyzed opening, to afford 9,10-dihydroxystearic acid, which readily crystallizes from the reaction medium. The chemical oxidation of the diol derivative, using atmospheric oxygen as a stoichiometric oxidant with catalytic quantities of Fe(NO3)3∙9∙H2O, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), and NaCl, affords 9,10-dioxostearic acid which is cleaved by the action of 35% H2O2 in mild conditions, without requiring any catalyst, to give pelargonic and azelaic acid.
Collapse
|
35
|
Vogelsang D, Vondran J, Hares K, Schäfer K, Seidensticker T, Vorholt AJ. Palladium Catalysed Acid‐Free Carboxytelomerisation of 1,3‐Butadiene with Alcohols Accessing Pelargonic Acid Derivatives Including Triglycerides under Selectivity Control. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dennis Vogelsang
- Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry TU Dortmund University Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Johanna Vondran
- Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry TU Dortmund University Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Kevin Hares
- Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry TU Dortmund University Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Kevin Schäfer
- Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry TU Dortmund University Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Thomas Seidensticker
- Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry TU Dortmund University Emil-Figge-Straße 66 44227 Dortmund Germany
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
36
|
Direct and Solvent‐Free Oxidative Cleavage of Double Bonds in High‐Oleic Vegetable Oils. ChemistrySelect 2020. [DOI: 10.1002/slct.201903516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Nguyen VT, Nguyen VD, Haug GC, Dang HT, Jin S, Li Z, Flores-Hansen C, Benavides BS, Arman HD, Larionov OV. Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catal 2019; 9:9485-9498. [PMID: 35223139 DOI: 10.1021/acscatal.9b02951] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct conversion of renewable biomass and bioderived chemicals to valuable synthetic intermediates for organic synthesis and materials science applications by means of mild and chemoselective catalytic methods has largely remained elusive. Development of artificial catalytic systems that are compatible with enzymatic reactions provides a synergistic solution to this enduring challenge by leveraging previously unachievable reactivity and selectivity modes. We report herein a dual catalytic dehydrodecarboxylation reaction that is enabled by a crossover of the photoinduced acridine-catalyzed O-H hydrogen atom transfer (HAT) and cobaloxime-catalyzed C-H-HAT processes. The reaction produces a variety of alkenes from readily available carboxylic acids. The reaction can be embedded in a scalable triple-catalytic cooperative chemoenzymatic lipase-acridine-cobaloxime process that allows for direct conversion of plant oils and biomass to long-chain terminal alkenes, precursors to bioderived polymers.
Collapse
Affiliation(s)
- Vu T. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hang T. Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Zhiliang Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Carsten Flores-Hansen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Brenda S. Benavides
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
38
|
Suresh M, Kumari A, Singh RB. A transition metal free expedient approach for the C C bond cleavage of arylidene Meldrum's acid and malononitrile derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Sang R, Kucmierczyk P, Dühren R, Razzaq R, Dong K, Liu J, Franke R, Jackstell R, Beller M. Synthesis of Carboxylic Acids by Palladium‐Catalyzed Hydroxycarbonylation. Angew Chem Int Ed Engl 2019; 58:14365-14373. [DOI: 10.1002/anie.201908451] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Sang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Peter Kucmierczyk
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Ricarda Dühren
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rauf Razzaq
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kaiwu Dong
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jie Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
40
|
Sang R, Kucmierczyk P, Dühren R, Razzaq R, Dong K, Liu J, Franke R, Jackstell R, Beller M. Synthesis of Carboxylic Acids by Palladium‐Catalyzed Hydroxycarbonylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Sang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Peter Kucmierczyk
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Ricarda Dühren
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rauf Razzaq
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kaiwu Dong
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jie Liu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
41
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
42
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
43
|
Cousin T, Chatel G, Kardos N, Andrioletti B, Draye M. Recent trends in the development of sustainable catalytic systems for the oxidative cleavage of cycloalkenes by hydrogen peroxide. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01269a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review proposes a comprehensive, critical, and accessible assessment of reaction conditions for cycloolefin oxidative cleavage regarding green chemistry criteria.
Collapse
Affiliation(s)
- Tony Cousin
- LCME
- Univ. Savoie Mont Blanc
- 73000 Chambéry
- France
- Univ Lyon
| | | | | | - Bruno Andrioletti
- Univ Lyon
- Université Claude Bernard Lyon 1
- INSA-Lyon
- CPE-Lyon
- ICBMS-UMR CNRS 5246
| | | |
Collapse
|
44
|
Peng L, Xie Q, Nie Y, Liu X, Lu M, Ji J. Room-temperature production of bio-based aldehydes from vegetable oil-derived epoxide via H2WO4@Al-MCM-41 as recyclable catalyst. RSC Adv 2019; 9:23061-23070. [PMID: 35514466 PMCID: PMC9067276 DOI: 10.1039/c9ra04348a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/20/2019] [Indexed: 01/17/2023] Open
Abstract
The oxidative cleavage of vegetable oils and their derivatives to produce bio-based aldehydes is a potentially useful process, although the aldehyde products are readily oxidized to carboxylic acids and thus seldom obtained in high yields. The present study developed a room-temperature method for the synthesis of bio-aldehydes via the oxidative cleavage of vegetable oil-derived epoxides, using H2WO4 as the catalyst, H2O2 as the oxidant, and t-BuOH as the solvent. Reactions were carried out at temperatures ranging from 25 to 35 °C for 3.5–10.5 h, and provided >99% conversion and >90% aldehyde yield. In particular, an approximately 97% yield was obtained at 25 °C after 10.5 h. As the reaction proceeded, the H2WO4 dissolved to form a W-containing anion. Several mesoporous Al-MCM-41 materials having different Si/Al ratios were hydrothermally synthesized and used as adsorbents to recover the catalyst by adsorbing these anions. The adsorption capacity of the Al-MCM-41 was found to increase with decreases in the Si/Al ratio. The Al-MCM-41 had little effect on the oxidative cleavage reaction at 25 °C, and thus could be directly added to the reaction system. The excellent anion adsorption performance of the Al-MCM-41 greatly improved the reusability of the H2WO4 catalyst. When using the Al-MCM-41 with the best adsorption performance, there was no significant decrease in the activity of the catalyst following five reuses. >90% bio-aldehydes yield was obtained from H2WO4-catalyzed epoxy vegetable oil at room-temperature; Al-MCM-41 was added to recover catalyst via adsorption.![]()
Collapse
Affiliation(s)
- Libo Peng
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| | - Qinglong Xie
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| | - Yong Nie
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| | - Xuejun Liu
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| | - Meizhen Lu
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| | - Jianbing Ji
- Institute of Chemical Engineering
- Zhejiang University of Technology
- Zhejiang Province Key Laboratory of Biofuel
- Biodiesel Laboratory of China Petroleum and Chemical Industry Federation
- Hangzhou
| |
Collapse
|
45
|
Guicheret B, Bertholo Y, Blach P, Raoul Y, Métay E, Lemaire M. A Two-Step Oxidative Cleavage of 1,2-Diol Fatty Esters into Acids or Nitriles by a Dehydrogenation-Oxidative Cleavage Sequence. CHEMSUSCHEM 2018; 11:3431-3437. [PMID: 30058760 DOI: 10.1002/cssc.201801640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Dehydrogenative oxidation of vicinal alcohols catalyzed by a commercially 64 wt.% Ni/SiO2 catalyst leads to the formation of α-hydroxyketone. This first step was developed without additional solvent according to two protocols: "under vacuum" or "with an olefin scavenger". The synthesis of ketols was carried out with good conversions and selectivities. The recyclability of the supported nickel was also studied. Acyloin was then cleaved with oxidative reagent "formic acid/hydrogen peroxide", which is cheap and can be used on a large scale for industrial oxidation processes. The global yield of this sequential system was up to 80 % to pelargonic acid and azelaic acid monomethyl ester without intermediate purification. By treating the acyloin intermediate with hydroxylamine, nitriles were obtained with a good selectivity.
Collapse
Affiliation(s)
- Boris Guicheret
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Yann Bertholo
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Philippe Blach
- Oleon, Avril Group, Rue les Rives de l'Oise, 60280, Compiègne, France
| | - Yann Raoul
- Oleon, Avril Group, Rue les Rives de l'Oise, 60280, Compiègne, France
| | - Estelle Métay
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| | - Marc Lemaire
- ICBMS-UMR 5246-Université Lyon 1, CNRS-INSA-ESCPE Bâtiment Lederer, 69622, Villeurbanne, France
| |
Collapse
|
46
|
Probing the Catalytic Efficiency of Supported Heteropoly Acids for Esterification: Effect of Weak Catalyst Support Interactions. J CHEM-NY 2018. [DOI: 10.1155/2018/7037461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Supported heteropoly acids are an interesting class of solid acid catalysts which possess flexible structure and super acidic properties essentially required for the oil-based biodiesel production. In this study, a series of catalysts containing 25 wt.% of heteropolytungstate (HPW) supported on various clays or SiO2 were prepared, and their catalytic efficiency was evaluated for esterification of acetic acid with heptanol. The as-prepared catalysts were characterized by various techniques including FT-IR spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and BET. The catalytic efficiency of both bulk and supported HPW catalysts for the esterification activity strongly depends on the type of support and amount of catalyst; the bulk HPW catalyst and the catalyst supported by kaolinite with 25 wt.% of HPW exhibited highest activity. In order to study the effect of temperature on conversion, all the catalysts were subjected to different reaction temperatures. It was revealed that esterification activity of both bulk and supported HPW catalysts strongly depends upon the temperature variations of the reaction. Besides, the effect of leaching of active sites on the catalysts performance for biodiesel production was also evaluated by inductively coupled plasma studies (ICP). The kaolinite-supported catalyst (25% HPW/kaolinite) demonstrated higher amount of leaching which is also confirmed by the significant decrease in its catalytic activity when it is used for the second time. However, the higher activity demonstrated by HPW/kaolinite maybe because of some homogeneous reaction indicating a weak catalyst support interaction (WCSI) resulting in the leaching of the catalyst during the test. Furthermore, the effects of other reaction variables such as catalyst loading and reaction time on the conversion of acetic acid were also studied.
Collapse
|
47
|
Lu M, Peng L, Xie Q, Nie Y, Liu X, Lu X, Ji J. Oxidative Cleavage of Methyl 9,10‐Epoxystearate over WO
3
/MCM‐41 for Methyl 9‐Oxononanoate Production. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Meizhen Lu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Libo Peng
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Qinglong Xie
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Yong Nie
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Xuejun Liu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Xianghong Lu
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| | - Jianbing Ji
- Zhejiang Province Key Lab of Biofuel, Zhejiang University of TechnologyNo. 18 Chaowang Road, HangzhouZhejiang 310014China
| |
Collapse
|
48
|
Esteban J, Bakalis S, Duckitt C, Tantawy H, Fryer PJ. On the Discrimination of Models for the Viscometric Properties of Myristic, Palmitic and Stearic Acids and Their Binary Mixtures. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jesús Esteban
- School of Chemical Engineering, University of BirminghamEdgbastonBirmingham B15 2TTUnited Kingdom
- Faculty of Bio‐ and Chemical Engineering, Technische Univeristät DortmundEmil‐Figge‐Straße 6644227 DortmundGermany
| | - Serafim Bakalis
- School of Chemical Engineering, University of BirminghamEdgbastonBirmingham B15 2TTUnited Kingdom
| | - Claire Duckitt
- Procter & Gamble Ltd., Newcastle Innovation CentreWhitley Road, LongbentonNewcastle upon Tyne, NE12 9BZUnited Kingdom
| | - Hossam Tantawy
- Procter & Gamble Ltd., Newcastle Innovation CentreWhitley Road, LongbentonNewcastle upon Tyne, NE12 9BZUnited Kingdom
| | - Peter J. Fryer
- School of Chemical Engineering, University of BirminghamEdgbastonBirmingham B15 2TTUnited Kingdom
| |
Collapse
|
49
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
50
|
New Insights on the Oxidation of Unsaturated Fatty Acid Methyl Esters Catalyzed by Niobium(V) Oxide. A Study of the Catalyst Surface Reactivity. Catalysts 2018. [DOI: 10.3390/catal8010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|