1
|
Kim JY, Kang J, Cha S, Kim H, Kim D, Kang H, Choi I, Kim M. Stability of Zr-Based UiO-66 Metal-Organic Frameworks in Basic Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:110. [PMID: 38202565 PMCID: PMC10780619 DOI: 10.3390/nano14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Although Zr-based metal-organic frameworks (MOFs) exhibit robust chemical and physical stability in the presence of moisture and acidic conditions, their susceptibility to nucleophilic attacks from bases poses a critical challenge to their overall stability. Herein, we systematically investigate the stability of Zr-based UiO-66 (UiO = University of Oslo) MOFs in basic solutions. The impact of 11 standard bases, including inorganic salts and organic bases, on the stability of these MOFs is examined. The destruction of the framework is confirmed through powder X-ray diffraction (PXRD) patterns, and the monitored dissolution of ligands from the framework is assessed using nuclear magnetic resonance (NMR) spectroscopy. Our key findings reveal a direct correlation between the strength and concentration of the base and the destruction of the MOFs. The summarized data provide valuable insights that can guide the practical application of Zr-based UiO-66 MOFs under basic conditions, offering essential information for their optimal utilization in various settings.
Collapse
Affiliation(s)
- Jun Yeong Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Jiwon Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Seungheon Cha
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Haein Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Dopil Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Isaac Choi
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.Y.K.); (J.K.); (S.C.); (H.K.); (D.K.)
| |
Collapse
|
2
|
Esfahani HJ, Shahhosseini S, Ghaemi A. Improved structure of Zr-BTC metal organic framework using NH 2 to enhance CO 2 adsorption performance. Sci Rep 2023; 13:17700. [PMID: 37848469 PMCID: PMC10582194 DOI: 10.1038/s41598-023-44076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Modified mesoporous NH2-Zr-BTC mixed ligand MOF nanocomposites were synthesized via the hydrothermal method as a novel adsorbent for CO2 capture. The newly modified MOF-808 with NH2 demonstrated a similar mesoporous morphology as MOF-808, whereas the specific surface area, pore volume, and average particle size, respectively, increased by 15%, 6%, and 46% compared to those of MOF-808. The characterization analyses exhibited the formation of more active groups on the adsorbent surface after modification. In addition, a laboratory adsorption setup was used to evaluate the effect of temperature, pressure, and NH2 content on the CO2 adsorption capacity in the range of 25-65 °C, 1-9 bar, and 0-20 wt%, respectively. An increase in pressure and a decrease in temperature enhanced the adsorption capacity. The highest equilibrium adsorption capacity of 369.11 mg/g was achieved at 25 °C, 9 bar, and 20 wt% NH2. By adding 20 wt% NH2, the maximum adsorption capacity calculated by the Langmuir model increased by about 4% compared to that of pure MOF-808. Moreover, Ritchie second-order and Sips models were the best-fitted models to predict the kinetics and isotherm data of CO2 adsorption capacity with the high correlation coefficient (R2 > 0.99) and AARE% of less than 0.1. The ΔH°, ΔS°, and ΔG° values were - 17.360 kJ/mol, - 0.028 kJ/mol K, and - 8.975 kJ/mol, respectively, demonstrating a spontaneous, exothermic, and physical adsorption process. Furthermore, the capacity of MH-20% sample decreased from 279.05 to 257.56 mg/g after 15 cycles, verifying excellent stability of the prepared mix-ligand MOF sorbent.
Collapse
Affiliation(s)
- Heidar Javdani Esfahani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
3
|
He C, Li S, Jiang B, Chen F, Hu W, Deng F. Surface Hydrophobicity and Guest Permeability in Polydimethylsiloxane-Coated MIL-53 as Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37936-37945. [PMID: 37503940 DOI: 10.1021/acsami.3c07142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experimental characterization of the hydrophobic porous materials at the atomic and molecular levels is of great significance, but exploring their hydrophobicity characteristics and interactions with guest molecules with distinct polarity is still challenging. In this work, solid-state NMR is employed to characterize the surface hydrophobicity and explore the guest solvent permeability in polydimethylsiloxane (PDMS)-coated MIL-53. It was found that the PDMS-coated MIL-53 was hydrophobic to water and infiltrated to methanol, acetone, benzene, toluene, and ethylbenzene solvents. In addition, two types of guest solvents (methanol, acetone, benzene, toluene, and ethylbenzene), inside the pore and outside the pore of PDMS-coated MIL-53, were clearly identified using two-dimensional 1H-1H homo-nuclear correlation NMR experiments. Moreover, the membrane thickness of the PDMS-coated MIL-53 could be determined from the analysis of the 1H-1H spin diffusion buildup curves. Furthermore, the permeability of benzene, toluene, and ethylbenzene at different PDMS coating levels was extracted from 1H MAS NMR. The increase of the hydrophobic PDMS layer resulted in a decrease of the penetration of aromatic guests to the internal pore of MIL-53. This work provides deep insights into the understanding of guest solvent permeability of hydrophobic layer-coated MOFs in the application fields of catalysis and separation.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Cyclodextrin Metal-Organic Framework as a Broad-Spectrum Potential Delivery Vehicle for the Gasotransmitters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020852. [PMID: 36677910 PMCID: PMC9866194 DOI: 10.3390/molecules28020852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The important role of gasotransmitters in physiology and pathophysiology suggest employing gasotransmitters for biomedical treatment. Unfortunately, the difficulty in storage and controlled delivery of these gaseous molecules hindered the development of effective gasotransmitters-based therapies. The design of a safe, facile, and wide-scale method to delivery multiple gasotransmitters is a great challenge. Herein, we use an ultrasonic assisted preparation γ-cyclodextrin metal organic framework (γ-CD-MOF) as a broad-spectrum delivery vehicle for various gasotransmitters, such as SO2, NO, and H2S. The release rate of gasotransmitters could be tuned by modifying the γ-CD-MOF with different Pluronics. The biological relevance of the exogenous gasotransmitters produced by this method is evidenced by the DNA cleavage ability and the anti-inflammatory effects. Furthermore, the γ-CD-MOF composed of food-grade γ-CD and nontoxic metal salts shows good biocompatibility and particle size (180 nm). Therefore, γ-CD-MOF is expected to be an excellent tool for the study of co-delivery and cooperative therapy of gasotransmitters.
Collapse
|
5
|
Maneewong Y, Chaemchuen S, Verpoort F, Klomkliang N. Paracetamol removal from water using N-doped activated carbon derived from coconut shell: Kinetics, equilibrium, cost analysis, heat contributions, and molecular-level insight. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Zeng H, Qu X, Xu D, Luo Y. Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Front Chem 2022; 10:939701. [PMID: 35844653 PMCID: PMC9277071 DOI: 10.3389/fchem.2022.939701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the intensification of the greenhouse effect and the emphasis on the utilization of CO2 resources, the enrichment and separation of CO2 have become a current research focus in the environment and energy. Compared with other technologies, pressure swing adsorption has the advantages of low cost and high efficiency and has been widely used. The design and preparation of high-efficiency adsorbents is the core of the pressure swing adsorption technology. Therefore, high-performance porous CO2 adsorption materials have attracted increasing attention. Porous adsorption materials with high specific surface area, high CO2 adsorption capacity, low regeneration energy, good cycle performance, and moisture resistance have been focused on. This article summarizes the optimization of CO2 adsorption by porous adsorption materials and then applies them to the field of CO2 adsorption. The internal laws between the pore structure, surface chemistry, and CO2 adsorption performance of porous adsorbent materials are discussed. Further development requirements and research focus on porous adsorbent materials for CO2 treatment in industrial waste gas are prospected. The structural design of porous carbon adsorption materials is still the current research focus. With the requirements of applications and environmental conditions, the integrity, mechanical strength and water resistance of high-performance materials need to be met.
Collapse
Affiliation(s)
- Hongxue Zeng
- Zhejiang Tongji Vocational College of Science and Technology, Hang Zhou, China
- *Correspondence: Hongxue Zeng, ; Dong Xu, ; Yang Luo,
| | - Xinghong Qu
- Zhejiang Tongji Vocational College of Science and Technology, Hang Zhou, China
| | - Dong Xu
- College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hang zhou, China
- *Correspondence: Hongxue Zeng, ; Dong Xu, ; Yang Luo,
| | - Yang Luo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, ETH Domain, Dübendorf, Switzerland
- *Correspondence: Hongxue Zeng, ; Dong Xu, ; Yang Luo,
| |
Collapse
|
7
|
Anand B, Szulejko JE, Kim KH, Younis SA. Proof of concept for CUK family metal-organic frameworks as environmentally-friendly adsorbents for benzene vapor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117491. [PMID: 34380213 DOI: 10.1016/j.envpol.2021.117491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The utility of metal-organic frameworks (MOFs) such as the CUK family (CUK - Cambridge University-KRICT) has been explored intensively for adsorption/separation of airborne volatile organic compounds (VOCs). In this article, three M-CUK analogs (M = Mg, Co, or Ni) were synthesized hydrothermally under similar conditions to assess the effects of their isostructural properties and metal centers on adsorption of benzene vapor (0.05-1 Pa). A list of performance metrics (e.g., breakthrough volume (BTV) and partition coefficient (PC)) were used to assess the role of the metal type (in M-CUK-1s) in the adsorption of VOCs. Specifically, Co-CUK-1 (average pore size of 8.98 nm) showed 2-3 times greater performance (e.g., in terms of 10% BTV (2012 L atm g-1) and PC (6 mol kg-1 Pa-1)) over other analogs when exposed up to 0.05 Pa benzene vapor. The superiority of mesoporous Co-CUK-1 (e.g., enhanced adsorption diffusion mechanism through favorable metal-π and π- π interactions) can be attributed to the presence of cobalt metal centers (e.g., in reference to Mg- or Ni-CUK-1).
Collapse
Affiliation(s)
- Bhaskar Anand
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
8
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Gogoi C, Nagarjun N, Roy S, Mostakim SK, Volkmer D, Dhakshinamoorthy A, Biswas S. A Zr-Based Metal-Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorg Chem 2021; 60:4539-4550. [PMID: 33703899 DOI: 10.1021/acs.inorgchem.0c03472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A zirconium (Zr) metal-organic framework having a DUT-52 (DUT stands for Dresden University of Technology) structure with face-centered cubic topology and bearing the rigid 1-(2,2,2-trifluoroacetamido) naphthalene-3,7-dicarboxylic acid (H2NDC-NHCOCF3) ligand was prepared, and its solid structure was characterized with the help of the X-ray powder diffraction (XRPD) technique. Other characterization methods like thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy were applied to verify the phase purity of the compound. In order to get the solvent-free compound (1'), 1 was stirred with methanol for overnight and subsequently heated at 100 °C overnight under vacuum. As-synthesized (1) and activated (1') compounds are thermally stable up to 300 °C. The Brunsuer Emmett-Teller (BET) surface area of 1' was found to be 1105 m2 g-1. Fluorescence titration experiments showed that 1' exhibits highly selective and sensitive fluorescence turn-on behavior toward cyanide (CN-) anion. The interference experiments suggested that other anions did not interfere in the detection of CN-. Moreover, a very short response time (2 min) was shown by probe 1' for CN- detection. The detection limit was found to be 0.23 μM. 1' can also be effectively used for CN- detection in real water samples. The mechanism for the selective detection of CN- was investigated systematically. Furthermore, the aerobic oxidation of cyclohexane was performed with 1' under mild reaction conditions, observing higher activity than the analogous DUT-52 solid under identical conditions. These experiments clearly indicate the benefits of hydrophobic cavities of 1' in achieving higher conversion of cyclohexane and cyclohexanol/cyclohexanone selectivity. Catalyst stability was proved by two consecutive reuses and comparing the structural integrity of 1' before and after reuses by the XRPD study.
Collapse
Affiliation(s)
- Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | | | - Shubasis Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | - S K Mostakim
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| | - Dirk Volkmer
- Institute of Physics, Chair of Solid State and Materials Chemistry, University of Augsburg, Universitaetsstrasse 1, 86159 Augsburg, Germany
| | | | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 Assam, India
| |
Collapse
|
10
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
12
|
Madden DG, Albadarin AB, O'Nolan D, Cronin P, Perry JJ, Solomon S, Curtin T, Khraisheh M, Zaworotko MJ, Walker GM. Metal-Organic Material Polymer Coatings for Enhanced Gas Sorption Performance and Hydrolytic Stability under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33759-33764. [PMID: 32497420 DOI: 10.1021/acsami.0c08078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Physisorbent metal-organic materials (MOMs) have shown benchmark performance for highly selective CO2 capture from bulk and trace gas mixtures. However, gas stream moisture can be detrimental to both adsorbent performance and hydrolytic stability. One of the most effective methods to solve this issue is to transform the adsorbent surface from hydrophilic to hydrophobic. Herein, we present a facile approach for coating MOMs with organic polymers to afford improved hydrophobicity and hydrolytic stability under humid conditions. The impact of gas stream moisture on CO2 capture for the composite materials was found to be negligible under both bulk and trace CO2 capture conditions with significant improvements in regeneration times and energy requirements.
Collapse
Affiliation(s)
- David G Madden
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Ahmad B Albadarin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Daniel O'Nolan
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Patrick Cronin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - John J Perry
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Samuel Solomon
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Teresa Curtin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Gavin M Walker
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
13
|
Delmas LC, White AJP, Pugh D, Evans A, Isbell MA, Heng JYY, Lickiss PD, Davies RP. Stable metal-organic frameworks with low water affinity built from methyl-siloxane linkers. Chem Commun (Camb) 2020; 56:7905-7908. [PMID: 32525142 DOI: 10.1039/d0cc01186j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A tetracarboxylic acid with a methyl-substituted siloxane core (L-H4) has been prepared and applied in the construction of water stable MOFs with low water affinity. L-H4 itself crystallizes as an interpenetrated 3D hydrogen-bonded network. Reaction of L-H4 with ZrIV/HfIV gave IMP-32-Zr/Hf - both 3D MOFs of scu topology.
Collapse
Affiliation(s)
- Luke C Delmas
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City, London W12 0BZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Safy MEA, Amin M, Haikal RR, Elshazly B, Wang J, Wang Y, Wöll C, Alkordi MH. Probing the Water Stability Limits and Degradation Pathways of Metal–Organic Frameworks. Chemistry 2020; 26:7109-7117. [DOI: 10.1002/chem.202000207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Mohamed E. A. Safy
- Center for Materials Science Zewail City of Science and Technology October Gardens Giza 12578 Egypt
| | - Muhamed Amin
- Department of Sciences University College Groningen University of Groningen 9718 BG Groningen Netherlands
| | - Rana R. Haikal
- Center for Materials Science Zewail City of Science and Technology October Gardens Giza 12578 Egypt
| | - Basma Elshazly
- Center for Materials Science Zewail City of Science and Technology October Gardens Giza 12578 Egypt
| | - Junjun Wang
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Mohamed H. Alkordi
- Center for Materials Science Zewail City of Science and Technology October Gardens Giza 12578 Egypt
| |
Collapse
|
15
|
Slyusarchuk VD, Kruger PE, Hawes CS. Cyclic Aliphatic Hydrocarbons as Linkers in Metal‐Organic Frameworks: New Frontiers for Ligand Design. Chempluschem 2020; 85:845-854. [DOI: 10.1002/cplu.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and NanotechnologySchool of Physical and Chemical SciencesUniversity of Canterbury Christchurch 8140 New Zealand
| | - Chris S. Hawes
- School of Chemical and Physical SciencesKeele University Keele ST5 5BG United Kingdom
| |
Collapse
|
16
|
Xie L, Xu M, Liu X, Zhao M, Li J. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901758. [PMID: 32099755 PMCID: PMC7029650 DOI: 10.1002/advs.201901758] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Tens of thousands of metal-organic frameworks (MOFs) have been developed in the past two decades, and only ≈100 of them have been demonstrated as porous and hydrophobic. These hydrophobic MOFs feature not only a rich structural variety, highly crystalline frameworks, and uniform micropores, but also a low affinity toward water and superior hydrolytic stability, which make them promising adsorbents for diverse applications, including humid CO2 capture, alcohol/water separation, pollutant removal from air or water, substrate-selective catalysis, energy storage, anticorrosion, and self-cleaning. Herein, the recent research advancements in hydrophobic MOFs are presented. The existing techniques for qualitatively or quantitatively assessing the hydrophobicity of MOFs are first introduced. The reported experimental methods for the preparation of hydrophobic MOFs are then categorized. The concept that hydrophobic MOFs normally synthesized from predesigned organic ligands can also be prepared by the postsynthetic modification of the internal pore surface and/or external crystal surface of hydrophilic or less hydrophobic MOFs is highlighted. Finally, an overview of the recent studies on hydrophobic MOFs for various applications is provided and suggests the high versatility of this unique class of materials for practical use as either adsorbents or nanomaterials.
Collapse
Affiliation(s)
- Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Ming‐Ming Xu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xiao‐Min Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Min‐Jian Zhao
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
17
|
Abstract
In this study, Mn-MOF-74 was successfully synthesized and further modified via two paths for enhanced water resistance. The structure and morphology of the modified samples were investigated by a series of characterization methods. The results of selective catalytic reduction (SCR) performance tests showed that polyethylene oxide-polypropylene-polyethylene oxide (P123)-modified Mn-MOF-74 exhibited outstanding NO conversion of up to 92.1% in the presence of 5 vol.% water at 250 °C, compared to 52% for Mn-MOF-74 under the same conditions. It was concluded that the water resistance of Mn-MOF-74 was significantly promoted after the introduction of P123 and that the unmodified P123-Mn-MOF-74 was proven to be a potential low-temperature SCR catalyst.
Collapse
|
18
|
Self‐Generation of Surface Roughness by Low‐Surface‐Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angew Chem Int Ed Engl 2019; 58:17033-17040. [DOI: 10.1002/anie.201909912] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/14/2022]
|
19
|
Self‐Generation of Surface Roughness by Low‐Surface‐Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Jayaramulu K, Geyer F, Schneemann A, Kment Š, Otyepka M, Zboril R, Vollmer D, Fischer RA. Hydrophobic Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900820. [PMID: 31155761 DOI: 10.1002/adma.201900820] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Indexed: 05/24/2023]
Abstract
Metal-organic frameworks (MOFs) have diverse potential applications in catalysis, gas storage, separation, and drug delivery because of their nanoscale periodicity, permanent porosity, channel functionalization, and structural diversity. Despite these promising properties, the inherent structural features of even some of the best-performing MOFs make them moisture-sensitive and unstable in aqueous media, limiting their practical usefulness. This problem could be overcome by developing stable hydrophobic MOFs whose chemical composition is tuned to ensure that their metal-ligand bonds persist even in the presence of moisture and water. However, the design and fabrication of such hydrophobic MOFs pose a significant challenge. Reported syntheses of hydrophobic MOFs are critically summarized, highlighting issues relating to their design, characterization, and practical use. First, wetting of hydrophobic materials is introduced and the four main strategies for synthesizing hydrophobic MOFs are discussed. Afterward, critical challenges in quantifying the wettability of these hydrophobic porous surfaces and solutions to these challenges are discussed. Finally, the reported uses of hydrophobic MOFs in practical applications such as hydrocarbon storage/separation and their use in separating oil spills from water are summarized. Finally, the state of the art is summarized and promising future developments of hydrophobic MOFs are highlighted.
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department of Chemistry and Catalysis Research Centre, Technical University of Munich, 85748, Garching, Germany
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Florian Geyer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Andreas Schneemann
- Department of Chemistry and Catalysis Research Centre, Technical University of Munich, 85748, Garching, Germany
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94551, USA
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelu˚ 27, 783 71, Olomouc, Czech Republic
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Centre, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
21
|
Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Kim KH, Tiwari UK, Deep A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Fast CD, Woods J, Lentchner J, Makal TA. Stabilizing defects in metal–organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials. Dalton Trans 2019; 48:14696-14704. [DOI: 10.1039/c9dt03004b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Highly defective UiO-66-type MOFs are stabilized by Lewis basic sites on pendant groups, resulting in water-, acid-, and base-stable MOFs.
Collapse
Affiliation(s)
- Caleb D. Fast
- Department of Natural Sciences
- The University of Virginia's College at Wise
- Wise
- USA
| | - Jason Woods
- Department of Natural Sciences
- The University of Virginia's College at Wise
- Wise
- USA
| | - Jared Lentchner
- Department of Natural Sciences
- The University of Virginia's College at Wise
- Wise
- USA
| | - Trevor A. Makal
- Department of Natural Sciences
- The University of Virginia's College at Wise
- Wise
- USA
| |
Collapse
|
23
|
Isaeva VI, Chernyshev VV, Sokolova NA, Kapustin GI. Modifying the Hydrophobic Properties of Metal–Organic Framework HKUST-1. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418120178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
He S, Wang H, Zhang C, Zhang S, Yu Y, Lee Y, Li T. A generalizable method for the construction of MOF@polymer functional composites through surface-initiated atom transfer radical polymerization. Chem Sci 2018; 10:1816-1822. [PMID: 31191897 PMCID: PMC6532532 DOI: 10.1039/c8sc03520b] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023] Open
Abstract
A universal method to grow polymers on MOF surfaces with well-defined thickness, sequence and functionality.
We report a generalizable approach to construct MOF@polymer functional composites through surface-initiated atom transfer radical polymerization (SI-ATRP). Unlike conventional SI-ATRP that requires covalent pre-anchoring of the initiating group on substrate surfaces, in our approach, a rationally designed random copolymer (RCP) macroinitiator first self-assembles on MOF surfaces through inter-chain hydrogen bond crosslinking. Subsequent polymerization in the presence of a crosslinking monomer covalently threads these polymer chains into a robust network, physically confining the MOF particle inside the polymer shell. We demonstrated the universality of this approach by growing various polymers on five MOFs of different metals (Zr, Zn, Co, Al, and Cr) with complete control over shell thickness, functionality and layer sequence while still retaining the inherent porosity of the MOFs. Moreover, the wettability of UiO-66 can be continuously tuned from superhydrophilic to superhydrophobic simply through judicious monomer(s) selection. We also demonstrated that a 7 nm polystyrene shell can effectively shield UiO-66 particles against 1 M H2SO4 and 1 M NaOH at elevated temperature, enabling their potential application in demanding chemical environments.
Collapse
Affiliation(s)
- Sanfeng He
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Hongliang Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Cuizheng Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Songwei Zhang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Yi Yu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Yongjin Lee
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| | - Tao Li
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China .
| |
Collapse
|
25
|
Boudjema L, Long J, Salles F, Larionova J, Guari Y, Trens P. A Switch in the Hydrophobic/Hydrophilic Gas-Adsorption Character of Prussian Blue Analogues: An Affinity Control for Smart Gas Sorption. Chemistry 2018; 25:479-484. [PMID: 30371960 DOI: 10.1002/chem.201804730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/24/2018] [Indexed: 11/07/2022]
Abstract
Porous coordination polymers are molecule-based materials presenting a high degree of tunability, which offer many advantages for targeted applications over conventional inorganic materials. This work demonstrates that the hydrophilic/hydrophobic character of Prussian blue analogues having a lipophilic feature may be tuned to optimize the gas adsorption properties. The role of the coordinatively unsaturated metal sites is emphasized through a combination of theoretical and experimental study of water, ethanol, and n-hexane adsorption.
Collapse
Affiliation(s)
- Lotfi Boudjema
- Institut Charles Gerhardt Montpellier, UMR 5253, Matériaux Avancés pour la Catalyse et la Santé, ENSCM/CNRS/UM, 240 Av. Prof. Jeanbrau, 34296, Montpellier Cedex 5, France
| | - Jérôme Long
- Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objets, ENSCM/CNRS/UM, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Fabrice Salles
- Institut Charles Gerhardt Montpellier, UMR 5253, Agrégats, Interfaces et Matériaux pour l'Energie, ENSCM/CNRS/UM, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Joulia Larionova
- Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objets, ENSCM/CNRS/UM, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Yannick Guari
- Institut Charles Gerhardt Montpellier, UMR 5253, Ingénierie Moléculaire et Nano-Objets, ENSCM/CNRS/UM, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Philippe Trens
- Institut Charles Gerhardt Montpellier, UMR 5253, Matériaux Avancés pour la Catalyse et la Santé, ENSCM/CNRS/UM, 240 Av. Prof. Jeanbrau, 34296, Montpellier Cedex 5, France
| |
Collapse
|
26
|
Gao Y, Liu K, Kang R, Xia J, Yu G, Deng S. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:248-257. [PMID: 30036755 DOI: 10.1016/j.jhazmat.2018.07.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 05/08/2023]
Abstract
Recently metal-organic frameworks (MOFs) have attracted great attention in the field of environmental remediation. In this article, rigid MIL-101(Cr) and flexible MIL-53(Cr) were synthesized and used for the adsorption of two typical pharmaceuticals, clofibric acid (CA) and carbamazepine (CBZ), from water. The adsorption equilibrium was rapidly reached within 60 min and the kinetics best fitted with the pseudo-second-order kinetic model. There was no significant difference in the maximum adsorption capacity of CA on MIL-101(Cr) and MIL-53(Cr), and electrostatic interaction was suggested to be the main factor in the adsorption processes. However, for the removal of CBZ, MIL-53(Cr) showed much better adsorptive performance (0.428 mmol/g) than MIL-101(Cr) (0.0570 mmol/g), indicating the adsorption of CBZ on MOFs is affected by the structural property. The Powder X-ray diffraction analysis revealed that MIL-53(Cr) was transformed into large pore form, leading to variations in cell volume up to 33%, lower binding energy and crucial modifications of the hydrophobicity/hydrophilicity. This unusual behavior enhanced its adsorption capacity for CBZ. Moreover, hydrogen bonding and π-π interactions/stacking also contributed to the adsorption of pharmaceuticals on the MOFs. The excellent adsorptive performance of MIL-53(Cr) and its structure/property switching might lead to the applications in water treatment.
Collapse
Affiliation(s)
- Yanxin Gao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Line and Robinson Laboratory Rm. 227, California Institute of Technology, 1200 E California Blvd, CA 91125, USA
| | - Ruoxi Kang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China.
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704501. [PMID: 29363822 DOI: 10.1002/adma.201704501] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Indexed: 05/27/2023]
Abstract
The targeted incorporation of defects into crystalline matter allows for the manipulation of many properties and has led to relevant discoveries for optimized and even novel technological applications of materials. It is therefore exciting to see that defects are now recognized to be similarly useful in tailoring properties of metal-organic frameworks (MOFs). For instance, heterogeneous catalysis crucially depends on the number of active catalytic sites as well as on diffusion limitations. By the incorporation of missing linker and missing node defects into MOFs, both parameters can be accessed, improving the catalytic properties. Furthermore, the creation of defects allows for adding properties such as electronic conductivity, which are inherently absent in the parent MOFs. Herein, progress of the rapidly evolving field of the past two years is overviewed, putting a focus on properties that are altered by the incorporation and even tailoring of defects in MOFs. A brief account is also given on the emerging quantitative understanding of defects and heterogeneity in MOFs based on scale-bridging computational modeling and simulations.
Collapse
Affiliation(s)
- Stefano Dissegna
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Konstantin Epp
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Werner R Heinz
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Gregor Kieslich
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
28
|
Zhang Y, Lucier BEG, McKenzie SM, Arhangelskis M, Morris AJ, Friščić T, Reid JW, Terskikh VV, Chen M, Huang Y. Welcoming Gallium- and Indium-Fumarate MOFs to the Family: Synthesis, Comprehensive Characterization, Observation of Porous Hydrophobicity, and CO 2 Dynamics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28582-28596. [PMID: 30070824 DOI: 10.1021/acsami.8b08562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The properties and applications of metal-organic frameworks (MOFs) are strongly dependent on the nature of the metals and linkers, along with the specific conditions employed during synthesis. Al-fumarate, trademarked as Basolite A520, is a porous MOF that incorporates aluminum centers along with fumarate linkers and is a promising material for applications involving adsorption of gases such as CO2. In this work, the solvothermal synthesis and detailed characterization of the gallium- and indium-fumarate MOFs (Ga-fumarate, In-fumarate) are described. Using a combination of powder X-ray diffraction, Rietveld refinements, solid-state NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis, the topologies of Ga-fumarate and In-fumarate are revealed to be analogous to Al-fumarate. Ultra-wideline 69Ga, 71Ga, and 115In NMR experiments at 21.1 T strongly support our refined structure. Adsorption isotherms show that the Al-, Ga-, and In-fumarate MOFs all exhibit an affinity for CO2, with Al-fumarate being the superior adsorbent at 1 bar and 273 K. Static direct excitation and cross-polarized 13C NMR experiments permit investigation of CO2 adsorption locations, binding strengths, motional rates, and motional angles that are critical to increasing adsorption capacity and selectivity in these materials. Conducting the synthesis of the indium-based framework in methanol demonstrates a simple route to introduce porous hydrophobicity into a MIL-53-type framework by incorporation of metal-bridging -OCH3 groups in the MOF pores.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Bryan E G Lucier
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Sarah M McKenzie
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Mihails Arhangelskis
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montréal , Québec , Canada H3A 0B8
| | - Andrew J Morris
- School of Metallurgy and Materials , University of Birmingham , Edgbaston , Birmingham B15 2TT , U.K
| | - Tomislav Friščić
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montréal , Québec , Canada H3A 0B8
| | - Joel W Reid
- Canadian Light Source , 44 Innovation Boulevard , Saskatoon , Saskatchewan , Canada S7N 2V3
| | - Victor V Terskikh
- Department of Chemistry , University of Ottawa , 10 Marie Curie Private , Ottawa , Ontario , Canada K1N 6N5
| | - Mansheng Chen
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| |
Collapse
|
29
|
Wong YL, Yee KK, Hou YL, Li J, Wang Z, Zeller M, Hunter AD, Xu Z. Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. Inorg Chem 2018; 57:6198-6201. [DOI: 10.1021/acs.inorgchem.8b00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | | | | | - Matthias Zeller
- Department of Chemistry, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, United States
| | - Allen D. Hunter
- Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555, United States
| | | |
Collapse
|
30
|
Virdis T, Danilov V, Baron GV, Denayer JFM. Nonideality in the Adsorption of Ethanol/Ethyl Acetate/Water Mixtures On ZIF-8 Metal Organic Framework. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Virdis
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel−Belgium
| | - Valery Danilov
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel−Belgium
| | - Gino V. Baron
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel−Belgium
| | - Joeri F. M. Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel−Belgium
| |
Collapse
|
31
|
Vikrant K, Tsang DCW, Raza N, Giri BS, Kukkar D, Kim KH. Potential Utility of Metal-Organic Framework-Based Platform for Sensing Pesticides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8797-8817. [PMID: 29465977 DOI: 10.1021/acsami.8b00664] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The progress in modern agricultural practices could not have been realized without the large-scale contribution of assorted pesticides (e.g., organophosphates and nonorganophosphates). Precise tracking of these chemicals has become very important for safeguarding the environment and food resources owing to their very high toxicity. Hence, the development of sensitive and convenient sensors for the on-site detection of pesticides is imperative to overcome practical limitations encountered in conventional methodologies, which require skilled manpower at the expense of high cost and low portability. In this regard, the role of novel, advanced functional materials such as metal-organic frameworks (MOFs) has drawn great interest as an alternative for conventional sensory systems because of their numerous advantages over other nanomaterials. This review was organized to address the recent advances in applications of MOFs for sensing various pesticides because of their tailorable optical and electrical characteristics. It also provides in-depth comparison of the performance of MOFs with other nanomaterial sensing platforms. Further, we discuss the present challenges (e.g., potential bias due to instability under certain conditions, variations in the diffusion rate of the pesticide, chemical interferences, and the precise measurement of luminesce quenching) in developing robust and sensitive sensors by using tailored porosity, functionalities, and better framework stability.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology , Banaras Hindu University , Varanasi 221005 , India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Nadeem Raza
- Government Emerson College Affiliated with Bahauddin Zakariya University , Multan 60800 , Pakistan
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , U.K
| | - Balendu Shekher Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology , Banaras Hindu University , Varanasi 221005 , India
| | - Deepak Kukkar
- Department of Nanotechnology , Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
- Department of Civil and Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 04763 , Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 04763 , Republic of Korea
| |
Collapse
|
32
|
Qian X, Ren Q, Wu X, Sun J, Wu H, Lei J. Enhanced Water Stability in Zn-Doped Zeolitic Imidazolate Framework-67 (ZIF-67) for CO2
Capture Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201702114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xukun Qian
- Institute of Optoelectronic Technology; Lishui University; Lishui 323000, P.R. China
| | - Qingbao Ren
- Institute of Optoelectronic Technology; Lishui University; Lishui 323000, P.R. China
| | - Xiaofei Wu
- Institute of Optoelectronic Technology; Lishui University; Lishui 323000, P.R. China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Dingxi Road Shanghai 200050, P.R. China
| | - Hongyu Wu
- Institute of Optoelectronic Technology; Lishui University; Lishui 323000, P.R. China
| | - Jun Lei
- Institute of Optoelectronic Technology; Lishui University; Lishui 323000, P.R. China
| |
Collapse
|
33
|
Milner PJ, Martell JD, Siegelman RL, Gygi D, Weston SC, Long JR. Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2(dobpdc). Chem Sci 2018; 9:160-174. [PMID: 29629084 PMCID: PMC5869309 DOI: 10.1039/c7sc04266c] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Alkyldiamine-functionalized variants of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.
Collapse
Affiliation(s)
- Phillip J Milner
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
| | - Jeffrey D Martell
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
| | - Rebecca L Siegelman
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
| | - David Gygi
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA
| | - Simon C Weston
- Corporate Strategic Research , ExxonMobil Research and Engineering Company , Annandale , NJ 08801 , USA
| | - Jeffrey R Long
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Department of Chemical Engineering , University of California , Berkeley , CA 94720 , USA
- Materials Sciences Division , Lawrence Berkeley National Lab , Berkeley , CA 94720 , USA
| |
Collapse
|
34
|
Yan S, Xu L, Li X. Stability and Hydration/Dehydration Mechanisms of a Carboxylate-Containing Metal-Organic Framework. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/wjm.2018.81001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Qian X, Sun F, Sun J, Wu H, Xiao F, Wu X, Zhu G. Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO 2 capture. NANOSCALE 2017; 9:2003-2008. [PMID: 28106212 DOI: 10.1039/c6nr07801j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The water sensitivity of metal-organic frameworks (MOFs) poses a critical issue for their large-scale applications. One effective method to solve this is to provide MOFs with a hydrophobic surface. Herein, we develop a facile solution-immersion process to deposit a hydrophobic coating on the MOFs' external surface without blocking their intrinsic pores. The water contact angle of the surface hydrophobic (SH) MOFs is ∼146°. The hydrophobic coating not only greatly enhances MOFs' water stability but also provides durable protection against the attack of water molecules. When exposed to liquid water, the SH samples well retain their crystal structure, morphology, surface area and CO2 uptake capacity. However, the as-synthesized (AS) samples nearly collapse and lose their porosity as well as CO2 uptake capacity after the same exposure. This study opens up a new avenue for the MOFs' application of gas sorption in the presence of water.
Collapse
Affiliation(s)
- Xukun Qian
- School of Engineering, Lishui University, Lishui 323000, P.R. China. and State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China
| | - Hongyu Wu
- School of Engineering, Lishui University, Lishui 323000, P.R. China.
| | - Fei Xiao
- School of Engineering, Lishui University, Lishui 323000, P.R. China.
| | - Xinxin Wu
- School of Engineering, Lishui University, Lishui 323000, P.R. China.
| | - Guangshan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China and Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China.
| |
Collapse
|
36
|
Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nat Commun 2016; 7:13871. [PMID: 27958274 PMCID: PMC5159845 DOI: 10.1038/ncomms13871] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022] Open
Abstract
The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO2, SO2, C2H4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained by ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. These findings may provide alternative strategies for gas storage, delivery and separation. Metal-organic frameworks are extensively studied for gas storage applications, but one potential limitation is their relatively weak adsorption of gases. Here, the authors report that the exposure of metal-organic frameworks to ethylenediamine forms a monolayer thick cap which improves gas molecule retention.
Collapse
|
37
|
Zhang L, Yang W, Wu XY, Lu CZ, Chen WZ. A Hydrophobic Metal-Organic Framework Based on Cubane-Type [Co4
(μ3
-F)3
(μ3
-SO4
)]3+
Clusters for Gas Storage and Adsorption Selectivity of Benzene over Cyclohexane. Chemistry 2016; 22:11283-90. [DOI: 10.1002/chem.201600705] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Lei Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 P. R. China
- College of Materials Science and Engineering; Fuzhou University, Fuzhou; Fujian 350116 P. R. China
| | - Wenbin Yang
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 P. R. China
| | - Xiao-Yuan Wu
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 P. R. China
| | - Can-Zhong Lu
- Key Laboratory of Design and Assembly of Functional Nanostructures; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences, Fuzhou; Fujian 350002 P. R. China
| | - Wen-Zhe Chen
- College of Materials Science and Engineering; Fuzhou University, Fuzhou; Fujian 350116 P. R. China
- Xiamen University of Technology; Xiamen Fujian 361024 P. R. China
| |
Collapse
|
38
|
Orellana-Tavra C, Marshall RJ, Baxter EF, Lázaro IA, Tao A, Cheetham AK, Forgan RS, Fairen-Jimenez D. Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. J Mater Chem B 2016; 4:7697-7707. [DOI: 10.1039/c6tb02025a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have used a family of Zr-based metal–organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery.
Collapse
Affiliation(s)
- Claudia Orellana-Tavra
- Adsorption & Advanced Materials (AAM) Laboratory
- Department of Chemical Engineering & Biotechnology
- University of Cambridge
- Cambridge CB2 3RA
- UK
| | | | - Emma F. Baxter
- Department of Materials Science and Metallurgy
- University of Cambridge
- CB3 0FS Cambridge
- UK
| | | | - Andi Tao
- Adsorption & Advanced Materials (AAM) Laboratory
- Department of Chemical Engineering & Biotechnology
- University of Cambridge
- Cambridge CB2 3RA
- UK
| | - Anthony K. Cheetham
- Department of Materials Science and Metallurgy
- University of Cambridge
- CB3 0FS Cambridge
- UK
| | - Ross S. Forgan
- WestCHEM School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials (AAM) Laboratory
- Department of Chemical Engineering & Biotechnology
- University of Cambridge
- Cambridge CB2 3RA
- UK
| |
Collapse
|
39
|
Jayaramulu K, Datta KKR, Rösler C, Petr M, Otyepka M, Zboril R, Fischer RA. Biomimetische superhydrophobe/superoleophile hoch fluorierte Graphenoxid-ZIF-8-Komposite für die Öl-Wasser-Trennung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Kasibhatta Kumara Ramanatha Datta
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Tschechische Republik
| | - Christoph Rösler
- Lehrstuhl für Anorganische Chemie II; Ruhr-Universität Bochum; 44870 Bochum Deutschland
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Tschechische Republik
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Tschechische Republik
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Tschechische Republik
| | - Roland A. Fischer
- Lehrstuhl für Anorganische Chemie II; Ruhr-Universität Bochum; 44870 Bochum Deutschland
| |
Collapse
|
40
|
Jayaramulu K, Datta KKR, Rösler C, Petr M, Otyepka M, Zboril R, Fischer RA. Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew Chem Int Ed Engl 2015; 55:1178-82. [DOI: 10.1002/anie.201507692] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kolleboyina Jayaramulu
- Inorganic Chemistry II-Organometallics and Materials Chemistry; Ruhr University Bochum; 44870 Bochum Germany
| | - Kasibhatta Kumara Ramanatha Datta
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Christoph Rösler
- Inorganic Chemistry II-Organometallics and Materials Chemistry; Ruhr University Bochum; 44870 Bochum Germany
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Roland A. Fischer
- Inorganic Chemistry II-Organometallics and Materials Chemistry; Ruhr University Bochum; 44870 Bochum Germany
| |
Collapse
|