1
|
Kumar P, Singh G, Guan X, Roy S, Lee J, Kim IY, Li X, Bu F, Bahadur R, Iyengar SA, Yi J, Zhao D, Ajayan PM, Vinu A. The Rise of Xene Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403881. [PMID: 38899836 DOI: 10.1002/adma.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - In Young Kim
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xiaomin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
2
|
Mir RA, Hoseini AHA, Hansen EJ, Tao L, Zhang Y, Liu J. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors. Chemistry 2024; 30:e202400907. [PMID: 38649319 DOI: 10.1002/chem.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.
Collapse
Affiliation(s)
- Rameez Ahmad Mir
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Amir Hosein Ahmadian Hoseini
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Evan J Hansen
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Li Tao
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
3
|
Swaminathan R, Pazhamalai P, Mohan V, Krishnamoorthy K, Kim SJ. Topochemically prepared tungsten disulfide nanostructures as a novel pseudocapacitive electrode for high performance supercapacitor. J Colloid Interface Sci 2023; 652:845-855. [PMID: 37625359 DOI: 10.1016/j.jcis.2023.07.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
The topochemical preparation of nanostructured materials (NMs) has received significant attention in recent years due to the exceptional electrochemical properties exhibited by the resulting NMs. This work focuses on the preparation of two-dimensional tungsten di-sulfide (WS2) nanostructures through the topochemical conversion of tungsten trioxide (WO3) nanostructures and also evaluates their potential applications as electrode materials for supercapacitors (SCs). The X-ray diffraction and photoelectron studies conducted in this research reveal the conversion of hexagonal WO3 into hexagonal WS2 nanosheets, accompanied by changes in oxidation states. The FE-SEM and HR-TEM studies confirm the formation of WS2 in the sheet-like morphologies with lateral dimensions of 100 × 100 nm. The electrochemical investigation, using techniques such as CV, galvanostatic CD, and EIS, confirmed the presence of intercalation pseudocapacitance in the WS2 electrode, with a higher electrode-specific-capacitance (260 F g-1) than that of WO3 electrode. The WS2 symmetric SC delivered high device capacitance (59.17 F g-1), energy density (8.21 Wh kg-1) and power density (3,750 W kg-1) with better cyclic stability over 5000 cycles. These experimental findings show that the topochemically synthesized WS2as novel supercapacitor electrodes might be useful for the advancement of future-generation energy storage devices.
Collapse
Affiliation(s)
- Rajavarman Swaminathan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
| | - Parthiban Pazhamalai
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea.
| | - Vigneshwaran Mohan
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea.
| | - Karthikeyan Krishnamoorthy
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea; Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Sang-Jae Kim
- Nanomaterials & System Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea; Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, South Korea; Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
4
|
Mohamed Ismail KB, Arun Kumar M, Jayavel R, Arivanandhan M, Mohamed Ismail MA. Enhanced electrochemical performance of the MoS 2/Bi 2S 3 nanocomposite-based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC Adv 2023; 13:24272-24285. [PMID: 37583657 PMCID: PMC10424499 DOI: 10.1039/d3ra03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023] Open
Abstract
Supercapacitors are widely used energy storage systems in the modern world due to their excellent electrochemical performance, fast charging capability, easy handling, and high power density. In the present work, pure MoS2 and MoS2/Bi2S3 nanocomposites with different compositions of bismuth were synthesized by the hydrothermal method. The structural properties of the electrode materials were studied using the XRD technique, which confirmed the formation of MoS2 and the secondary phase of Bi2S3 while increasing Bi substitution. The morphological studies of the synthesized electrode materials were performed using SEM, TEM, and HRTEM techniques, which indicated the 3D layered hierarchical structure of MoS2 nanospheres and the nanosheet-like structure of Bi2S3. The electrochemical properties of pristine MoS2 and MoS2/Bi2S3 nanocomposites were analysed by CV, CP, and EIS techniques using a 2 M KOH electrolyte in a three-electrode system. The CV curves show evidence of significant improvement in the electrochemical performance of MoS2/Bi2S3 composites compared to that of pure MoS2. The calculated specific capacitances of MoS2/Bi2S3 nanocomposites were relatively higher than those of pristine MoS2. The 20 mol% Bi added sample showed a maximum specific capacitance of 371 F g-1, compared to pristine MoS2 and other samples at a current density of 1 A g-1. The kinetics of the electrochemical process was studied. The Nyquist plots indicated that the Bi-added nanocomposites had lower Resr and RCT values, which resulted in high electrochemical performance. The experimental results revealed that Bi-substitution can further enhance the electrochemical energy storage performance of MoS2 for supercapacitor applications.
Collapse
Affiliation(s)
- Kamal Batcha Mohamed Ismail
- Department of Electrical, Electronics & Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM) Bengaluru-561 203 India +91-7708587758
- Department of Electronics & Communication Engineering, Agni College of Technology Chennai-600 130 Tamil Nadu India
| | - Manoharan Arun Kumar
- Department of Electrical, Electronics & Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM) Bengaluru-561 203 India +91-7708587758
| | - Ramasamy Jayavel
- Centre for Nanoscience and Technology, Anna University Chennai-600 025 Tamil Nadu India
| | - Mukannan Arivanandhan
- Centre for Nanoscience and Technology, Anna University Chennai-600 025 Tamil Nadu India
| | | |
Collapse
|
5
|
Kumar N, Ghosh S, Thakur D, Lee CP, Sahoo PK. Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:3146-3176. [PMID: 37325524 PMCID: PMC10263109 DOI: 10.1039/d3na00094j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Supercapacitors have gained significant attention owing to their exceptional performance in terms of energy density and power density, making them suitable for various applications, such as mobile devices, electric vehicles, and renewable energy storage systems. This review focuses on recent advancements in the utilization of 0-dimensional to 3-dimensional carbon network materials as electrode materials for high-performance supercapacitor devices. This study aims to provide a comprehensive evaluation of the potential of carbon-based materials in enhancing the electrochemical performance of supercapacitors. The combination of these materials with other cutting-edge materials, such as Transition Metal Dichalcogenides (TMDs), MXenes, Layered Double Hydroxides (LDHs), graphitic carbon nitride (g-C3N4), Metal-Organic Frameworks (MOFs), Black Phosphorus (BP), and perovskite nanoarchitectures, has been extensively studied to achieve a wide operating potential window. The combination of these materials synchronizes their different charge-storage mechanisms to attain practical and realistic applications. The findings of this review indicate that hybrid composite electrodes with 3D structures exhibit the best potential in terms of overall electrochemical performance. However, this field faces several challenges and promising research directions. This study aimed to highlight these challenges and provide insights into the potential of carbon-based materials in supercapacitor applications.
Collapse
Affiliation(s)
- Niraj Kumar
- Sustainable Energy Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DIAT) Pune Maharashtra 411025 India
| | - Sudip Ghosh
- Department of Chemistry, Siksha 'O' Anusandhan, Deemed to be University Bhubaneswar Odisha India
| | - Dinbandhu Thakur
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai-400076 India
| | - Chuan-Pei Lee
- Department of Applied Physics and Chemistry, University of Taipei Taipei 10048 Taiwan
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar 751030 India
| |
Collapse
|
6
|
Kim T, Lee TH, Park SY, Eom TH, Cho I, Kim Y, Kim C, Lee SA, Choi MJ, Suh JM, Hwang IS, Lee D, Park I, Jang HW. Drastic Gas Sensing Selectivity in 2-Dimensional MoS 2 Nanoflakes by Noble Metal Decoration. ACS NANO 2023; 17:4404-4413. [PMID: 36825770 DOI: 10.1021/acsnano.2c09733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonhoo Kim
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Donghwa Lee
- Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
7
|
Tue LNM, Sahoo S, Dhakal G, Nguyen VH, Lee J, Lee YR, Shim JJ. NiCo 2S 4/MoS 2 Nanocomposites for Long-Life High-Performance Hybrid Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:689. [PMID: 36839056 PMCID: PMC9960812 DOI: 10.3390/nano13040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Metal sulfides (MS) and mixed metal sulfides (MTMS) have been considered potential candidates over their metal oxide/mixed metal oxide counterparts in recent years. Herein, one MTMS, i.e., NiCo2S4, was combined with 2D MS MoS2 through a single-step solvothermal process with different morphologies (sheet-like and rod-like) for supercapacitor applications. The resulting electrode exhibited excellent coulombic efficiency, high specific capacitance, superior energy density, and, most importantly, ultra-high cycling stability. In particular, the electrode delivered a capacitance of 2594 F g-1 at 0.8 A g-1 after 45,000 charge/discharge cycles with a remarkable stability of 192%. Moreover, the corresponding hybrid supercapacitor device displayed an impressive coulombic efficiency of 123% after 20,000 cycles and 118% after 45,000 cycles. In addition, the device also exhibited a decent energy density of 31.9 Wh kg-1 and good cycling stability of 102% over 15,000 cycles.
Collapse
Affiliation(s)
- Le Nhu Minh Tue
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Ganesh Dhakal
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Van Hoa Nguyen
- Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang, Vietnam
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Qian Y, Lyu Z, Zhang Q, Lee TH, Kang TK, Sohn M, Shen L, Kim DH, Kang DJ. High-Performance Flexible Energy Storage Devices Based on Graphene Decorated with Flower-Shaped MoS 2 Heterostructures. MICROMACHINES 2023; 14:297. [PMID: 36837997 PMCID: PMC9967960 DOI: 10.3390/mi14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
MoS2, owing to its advantages of having a sheet-like structure, high electrical conductivity, and benign environmental nature, has emerged as a candidate of choice for electrodes of next-generation supercapacitors. Its widespread use is offset, however, by its low energy density and poor durability. In this study, to overcome these limitations, flower-shaped MoS2/graphene heterostructures have been deployed as electrode materials on flexible substrates. Three-electrode measurements yielded an exceptional capacitance of 853 F g-1 at 1.0 A g-1, while device measurements on an asymmetric supercapacitor yielded 208 F g-1 at 0.5 A g-1 and long-term cyclic durability. Nearly 86.5% of the electrochemical capacitance was retained after 10,000 cycles at 0.5 A g-1. Moreover, a remarkable energy density of 65 Wh kg-1 at a power density of 0.33 kW kg-1 was obtained. Our MoS2/Gr heterostructure composites have great potential for the development of advanced energy storage devices.
Collapse
Affiliation(s)
- Yongteng Qian
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Zhiyi Lyu
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Qianwen Zhang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Tae Hyeong Lee
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Tae Kyu Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Minkyun Sohn
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Lin Shen
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| |
Collapse
|
9
|
Venkateshwaran S, Ajith A, Duraisamy V, Krishnan A, Senthil Kumar SM. Tailoring of 1T Phase-Domain MoS 2 Active Sites with Bridging S 22-/Apical S 2- Phase-Selective Precursor Modulation for Enriched HER Kinetics. Inorg Chem 2023; 62:841-852. [PMID: 36599060 DOI: 10.1021/acs.inorgchem.2c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molybdenum disulfide (MoS2) is a promising alternative electrocatalyst for hydrogen evolution reaction (HER) due to its relatively near zero hydrogen adsorption free energy (ΔGH = 0.08) and availability as a metallic (1T) phase. The superior catalytic activity of the 1T phase over 2H is owing to the availability of dense active sites, 107 fold higher conductivity, and greater hydrophilicity. However, in the synthesis of 1T-MoS2, a highly controlled proficient method is indispensable due to its metastable nature. Besides, phase enrichment is greatly sensitive to experimental parameters such as precursor, temperature, reaction time, and solvent. In the context of precursors, to date, no single precursor has been recognized as a selective precursor for the synthesis of 1T-MoS2. In this work, MoS2 with high content of 1T phase (79.4%) and excessive bridging S22-/apical S2- sites has been formulated from a single precursor, that is, ammonium tetrathiomolybdate ((NH4)2MoS4), ATTM). In HER, it displayed an inspired activity, that is, achieving 10 mA cm-2 current density, it requires just 248 mV overpotential with a minimal Tafel slope value (56 mV/dec). The maximum enrichment of the 1T phase, abundant accumulation of catalytically active bridging S22-/apical S2- sites, and the complete reduction of Mo+6 to Mo+4 (absence of Mo+6) are root causes for the outstanding activity of the synthesized 1T phase-domain MoS2. To the best of our knowledge for the very first time, here, we declare that the single source, that is, ATTM is an exclusive precursor for the selective synthesis of 1T-MoS2 with advantageous structural features. Moreover, this expedient precursor could be more pertinent for the industrial-scale preparation of 1T phase-domain MoS2 in near future.
Collapse
Affiliation(s)
- Selvaraj Venkateshwaran
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akhila Ajith
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athira Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
11
|
Scanning electrochemical microscope as a tool for the electroporation of living yeast cells. Biosens Bioelectron 2022; 205:114096. [PMID: 35219018 DOI: 10.1016/j.bios.2022.114096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
In this study, a scanning electrochemical microscope (SECM) was for the first time adapted to perform the electroporation process of living yeast cells. We have demonstrated that relatively low voltage pulses of 1-2 V vs. Ag/AglCl,Cl-sat applied to gold-based ultramicroelectrode (Au-UME) are performing reversible electroporation of yeast cells immobilized on fluorine-doped tin oxide (FTO)/glass surface. SECM and electrochemical impedance spectroscopy (EIS) were used for the determination of quantitative electrochemical characteristics before and after the electroporation. The electrochemical impedance spectroscopy (EIS) illustrated significant electrochemical changes of electroporated yeast cells, while SECM feedback mode surface vertical scan current-distance curves showed that the diameter of the area affected by the electrical pulse is about 25 times larger than the diameter of the Au-UME used for the electroporation process. The results presented in this research open up a possibility to develop a targeted electroporation system which will affect only the selected area of tissue or some other cell-covered surface. Such model is promising for the selective treatment of selected cells in tissues and/or other sensitive biological systems while selecting the location and size of electroporated areas.
Collapse
|
12
|
Kajana T, Pirashanthan A, Velauthapillai D, Yuvapragasam A, Yohi S, Ravirajan P, Senthilnanthanan M. Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Adv 2022; 12:18041-18062. [PMID: 35800326 PMCID: PMC9208027 DOI: 10.1039/d2ra01574a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 12/25/2022] Open
Abstract
Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development. Transition metal sulfides and post-transition metal sulfides have been intensively been focused on due to their potential as electrode materials for energy storage applications in different types of capacitors such as supercapacitors and pseudocapacitors, which have high power density and long cycle life. Herein, the physicochemical properties of transition and post-transition metal sulfides, their typical synthesis, structural characterization, and electrochemical energy storage applications are reviewed. Various perspectives on the design and fabrication of transition and post-transition metal sulfides-based electrode materials having capacitive applications are discussed. This review further discusses various strategies to develop transition and/or post-transition metal sulfide heterostructured electrode-based self-powered photocapacitors with high energy storage efficiencies. Electrochemical energy storage has attracted much attention due to the common recognition of sustainable energy development.![]()
Collapse
Affiliation(s)
- Thirunavukarasu Kajana
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Arumugam Pirashanthan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - Akila Yuvapragasam
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Punniamoorthy Ravirajan
- Clean Energy Research Laboratory, Department of Physics, University of Jaffna, Jaffna, Sri Lanka
| | | |
Collapse
|
13
|
Verma S, Pandey CM, Kumar D. A highly efficient rGO grafted MoS 2 nanocomposite for dye adsorption and electrochemical detection of hydroquinone in wastewater. NEW J CHEM 2022. [DOI: 10.1039/d2nj04285a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scheme depicting the synthesis and the fabrication of rGO–MoS2 nanocomposite-based enzymatic biosensor for estimation of hydroquinone.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi-110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505, India
| | - D. Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi-110042, India
| |
Collapse
|
14
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Insights into the Influence of Key Preparation Parameters on the Performance of MoS2/Graphene Oxide Composites as Active Materials in Supercapacitors. Catalysts 2021. [DOI: 10.3390/catal11121553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advances in energy storage and energy conversion play an essential role nowadays because the energy demands are becoming greater than ever. To overcome the actual performances of the materials used to build supercapacitors, a combination of transition metal dichalcogenides (TMDCs) and graphene oxide (GO) or reduced graphene oxide (rGO) as graphene-based structures are often studied for their excellent properties, such as high specific area and good electrical conductivity. Nevertheless, synthesis pathways and parameters play key roles in obtaining better materials as components for supercapacitors with higher technical performances. Driven by the desire to understand the influence of the structural and morphological particularities on the performances of supercapacitors based on MoS2/graphene oxide (GO) composites, a survey of the literature was performed by pointing out the alterations induced by different synthesis pathways and key parameters to the above-mentioned particularities.
Collapse
|
16
|
Du Y, Cao D, Li B, Lü H, Shen Y. Stable conge red doped poly (3,4-ethylene dioxythiophene)/graphene oxide composite as electrode material for high-performance asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Raman V, Rhee D, Selvaraj AR, Kim J, Prabakar K, Kang J, Kim HK. High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS 2 nanosheets. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:875-884. [PMID: 34658671 PMCID: PMC8519527 DOI: 10.1080/14686996.2021.1978274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 05/06/2023]
Abstract
Two-dimensional molybdenum disulfide (MoS2) nanosheets have emerged as a promising material for transparent, flexible micro-supercapacitors, but their use in electrodes is hindered by their poor electrical conductivity and cycling stability because of restacking. In this paper, we report a novel electrode architecture to exploit electrochemical activity of MoS2 nanosheets. Electrochemically exfoliated MoS2 dispersion was spin coated on mesh-like silver networks encapsulated with a flexible conducting film exhibiting a pseudocapacitive behavior. MoS2 nanosheets were electrochemically active over the whole electrode surface and the conductive layer provided a pathway to transport electrons between the MoS2 and the electrolyte. As the result, the composite electrode achieved a large areal capacitance (89.44 mF cm-2 at 6 mA cm-2) and high energy and power densities (12.42 µWh cm-2 and P = 6043 µW cm-2 at 6 mA cm-2) in a symmetric cell configuration with 3 M KOH solution while exhibiting a high optical transmittance of ~80%. Because the system was stable against mechanical bending and charge/discharge cycles, a flexible micro-supercapacitor that can power electronics at different bending states was realized.
Collapse
Affiliation(s)
- Vivekanandan Raman
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Dongjoon Rhee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Kandasamy Prabakar
- School of Electrical Engineering, Pusan National University, Busan, South Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
18
|
Pallavolu MR, Anil Kumar Y, Mani G, Alshgari RA, Ouladsmane M, Joo SW. Facile fabrication of novel heterostructured tin disulfide (SnS2)/tin sulfide (SnS)/N-CNO composite with improved energy storage capacity for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Peter IJ, Vijaya S, Anandan S, Nithiananthi P. Sb2S3 entrenched MWCNT composite as a low-cost Pt-free counter electrode for dye-sensitized solar cell and a viewpoint for a photo-powered energy system. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Li M, Addad A, Zhang Y, Barras A, Roussel P, Amin MA, Szunerits S, Boukherroub R. Flower‐like Nitrogen‐co‐doped MoS
2
@RGO Composites with Excellent Stability for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202100401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Li
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN 59000 Lille France
| | - Ahmed Addad
- Univ. Lille CNRS UMR 8207 – UMET 59000 Lille France
| | - Yuan Zhang
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN 59000 Lille France
| | - Alexandre Barras
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN 59000 Lille France
| | - Pascal Roussel
- Univ. Lille CNRS ENSCL Centrale Lille Univ. Artois UMR 8181 UCCS-Unité de Catalyse et Chimie du Solide Lille 59000 France
| | - Mohammed A. Amin
- Department of Chemistry College of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Sabine Szunerits
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN 59000 Lille France
| | - Rabah Boukherroub
- Univ. Lille CNRS Centrale Lille Univ. Polytechnique Hauts-de-France UMR 8520 – IEMN 59000 Lille France
| |
Collapse
|
21
|
Qumar U, Hassan J, Naz S, Haider A, Raza A, Ul-Hamid A, Haider J, Shahzadi I, Ahmad I, Ikram M. Silver decorated 2D nanosheets of GO and MoS 2serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. NANOTECHNOLOGY 2021; 32:255704. [PMID: 33556921 DOI: 10.1088/1361-6528/abe43c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) was realized through a modified Hummers route. Different concentrations (5 and 10 wt%) of Ag were doped in MoS2and rGO using a hydrothermal technique. Synthesized Ag-MoS2and Ag-rGO were evaluated through XRD that confirmed the hexagonal structure of MoS2along with the transformation of GO to Ag-rGO as indicated by a shift in XRD peaks while Mo-O bonding and S=O functional groups were confirmed with FTIR. Morphological information of GO and formation of MoS2nanopetals as well as interlayer spacing were verified through FESEM and HRTEM respectively. Raman analysis was employed to probe any evidence regarding defect densities of GO. Optical properties of GO, MoS2, Ag-rGO, and Ag-MoS2were visualized through UV-vis and PL spectroscopy. Prepared products were employed as nanocatalysts to purify industrial wastewater. Experimental results revealed that Ag-rGO and Ag-MoS2showed 99% and 80% response in photocatalytic activity. Besides, the nanocatalyst (Ag-MoS2and Ag-rGO) exhibited 6.05 mm inhibition zones againstS. aureusgram positive (G+) and 3.05 mm forE. coligram negative (G-) in antibacterial activity. To rationalize biocidal mechanism of Ag-doped MoS2NPs and Ag-rGO,in silicomolecular docking study was employed for two enzymes i.e.β-lactamase and D-alanine-D-alanine ligase B (ddlB) from cell wall biosynthetic pathway and enoyl-[acylcarrier-protein] reductase (FabI) from fatty acid biosynthetic pathway belonging toS. aureus. The present study provides evidence for the development of cost-effective, environment friendly and viable candidate for photocatalytic and antimicrobial applications.
Collapse
Affiliation(s)
- U Qumar
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - J Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - A Raza
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - I Shahzadi
- College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - I Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
22
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 2021; 178:270-282. [PMID: 33647336 DOI: 10.1016/j.ijbiomac.2021.02.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
The transition-metal dichalcogenides (TMDCs) like MoS2 and WS2 are a new and interesting class of materials and show considerable promise for use in a wide variety of fields, including nanomedicine for cancer. The eco-friendly, biodegradability, toxicity, and antimicrobial activity remain an open issue. Herein, we focused on the current demands of two dimensional (2D) TMDCs and produced high-quality, few-layered MoS2 nanosheets. Noble metal Ag incorporated into the 2D-CS/MoS2 NC by the liquid exfoliated process. The manufactured CS/MoS2/Ag hybrid NC showed excellent antibacterial activity against two microorganisms such as Gram-positive (21, 27, and 33 mm) and Gram-negative bacteria (23, 30, and 39 mm). The CS/MoS2/Ag hybrid NC was designed to have significant antibacterial activity against E.coli bacteria than S.aureus. Furthermore, the hybrid NC has a 74.18% cell inhibition against MCF-7 cancer cells. According to the literature relevant, it is the first extensive experimental analysis on the nano-bio interaction of 2D TMDCs nanomaterials in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Selvam Samayanan
- Department of Chemical and Biochemical Engineering, Dongguk University, Jung-Gu, Pil-Dong, Seoul 100715, Republic of Korea
| | - Sarojini Jeeva Panchu
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Hendrik C Swart
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
23
|
Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Mahmoudabadi ZS, Tavasoli A, Rashidi A, Esrafili M. Catalytic activity of synthesized 2D MoS 2/graphene nanohybrids for the hydrodesulfurization of SRLGO: experimental and DFT study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5978-5990. [PMID: 32978740 DOI: 10.1007/s11356-020-10889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrodesulfurization (HDS) of straight run light gas oil (SRLGO) using novel highly active two-dimensional (2D) MoS2/graphene (G) nanohybrid catalysts is a precursor technology for the production of clean heavy fuel. The aim of this research is the synthesis of 2D MoS2/G nanohybrid catalysts by use of exfoliation method from commercial bulky MoS2 and graphite using hydrothermal ball milling system, which is a low-cost, high-yield, and scalable method. These nanohybrid catalysts were characterized by XRD, Raman spectroscopy, XPS, SEM, TEM, STEM, ICP, BET surface, TPR, and TPD techniques. Also, catalytic activities of 2D MoS2/G nanohybrid catalysts were evaluated under different operating conditions such as temperature, pressure, LHSV, and H2/Feed (SRLGO) ratio in the HDS reaction. The conversion of the HDS of SRLGO with 14000 ppm sulfur showed a considerably higher activity of 2D MoS2/G nanohybrid catalyst (99.95% HDS efficiency) compared with the Co-Mo/γAl2O3 as a commercial catalyst (90% HDS efficiency) in the operation condition (340 °C, 40 bars, LHSV: 1 h-1and H2/oil: 600 NL L-1) which is economically valuable. Using density functional theory calculations, the detailed mechanism of the HDS process over MoS2/G catalyst was explored. It was found that sulfur coverage on the Mo edge of MoS2 plays an important role in the hydrogenation of sulfur components.
Collapse
Affiliation(s)
| | - Ahmad Tavasoli
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran.
| | - Mehdi Esrafili
- Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
25
|
Chaudhary C, Kumar S, Chandra R. Hierarchical structure of molybdenum disulfide-reduced graphene oxide nanocomposite for the development of a highly efficient serotonin biosensing platform. NEW J CHEM 2021. [DOI: 10.1039/d1nj03534g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide-reduced graphene oxide nanocomposite based immunosensor for the serotonin detection.
Collapse
Affiliation(s)
- Chhaya Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Suveen Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
26
|
Chouhan A, Sarkar TK, Kumari S, Vemuluri S, Khatri OP. Synergistic lubrication performance by incommensurately stacked ZnO-decorated reduced graphene oxide/MoS 2 heterostructure. J Colloid Interface Sci 2020; 580:730-739. [PMID: 32712478 DOI: 10.1016/j.jcis.2020.07.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
Incommensurate stacking between two different types of two-dimensional layered materials furnished the weak interfacial interaction due to the mismatch of their lattice structure, which can be harnessed for development of new generation lubricant additives. Herein, a facile approach is presented to synthesize the ZnO-decorated reduced graphene oxide/MoS2 (Gr-MS-Zn) nanosheets. The Fourier transform infrared, X-ray photoelectron spectroscopic, Raman, and transmission electron microscopic analyses confirmed the preparation of Gr-MS-Zn heterostructure. The MoS2 nanosheets having 3-7 molecular lamellae are thoroughly distributed over the graphene skeleton via weak interfacial interaction. The curved and bent structure of MoS2 nanosheets grown over the graphene lamellae subsidized the cohesive interaction and furnished the stable dispersion of Gr-MS-Zn in the fully formulated engine oil. The minute dose of Gr-MS-Zn as a nano-additive to engine oil significantly enhanced the tribological performance between the steel-steel tribopair by decreasing the friction (37%) and the wear volume (87%). The microscopic and spectroscopic analyses revealed the formation of a Gr-MS-Zn-based surface protective tribo thin film of low shear strength. The enhanced tribo performance is collectively attributed to (a) uninterrupted supply of ultrathin Gr-MS-Zn nanosheets to tribo-interfaces, (b) stable dispersion of Gr-MS-Zn, and (c) the significantly low shear strength, arising from weak interfacial interaction between the incommensurately stacked graphene and MoS2 nanosheets.
Collapse
Affiliation(s)
- Ajay Chouhan
- CSIR -Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Tarun K Sarkar
- CSIR -Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Sangita Kumari
- CSIR -Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Srikanth Vemuluri
- CSIR -Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Om P Khatri
- CSIR -Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
27
|
Mohamed Ismail M, Vigneshwaran J, Arunbalaji S, Mani D, Arivanandhan M, Jose SP, Jayavel R. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. Dalton Trans 2020; 49:13717-13725. [PMID: 32996516 DOI: 10.1039/d0dt01753a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimonene is an exfoliated 2D nanomaterial obtained from bulk antimony. It is a novel class of 2D material for energy storage applications. In the present work, antimonene was synthesized using a high-energy ball milling-sonochemical method. The structural, morphological, thermal, and electrochemical properties of antimonene were comparatively analyzed against bulk antimony. X-ray diffractometry (XRD) analysis confirms the crystal structure and 2D structure of antimonene, as a peak shift was observed. The Raman spectra show the peak shift for the Eg and A1g modes of vibration of antimony, which confirms the formation of antimonene. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) images depict the exfoliation of antimonene from bulk antimony. Thermal analysis unveiled the thermal stability of antimonene up to 400 °C with only 3% weight loss. X-ray photoelectron spectroscopy (XPS) analysis reveals the formation of antimonene, which is free from contamination. The electrochemical properties of antimony and antimonene were investigated using cyclic voltammetry (CV) and chronopotentiometric (CP) analysis, using 2 M KOH as an electrolyte. Antimonene exhibited a relatively high specific capacitance of 597 F g-1 compared to ball-milled antimony (101 F g-1) at a scan rate of 10 mV s-1. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that antimonene has a relatively low equivalence series resistance (RESR) and low charge transfer resistance (RCT) compared to bulk antimony, which favors high electrochemical performance. The cyclic stability of antimonene was studied for 3000 cycles, and the results show high cyclic stability. The electrochemical results demonstrated that antimonene is a promising material for energy storage applications.
Collapse
Affiliation(s)
- M Mohamed Ismail
- Centre for Nanoscience and Technology, Anna University, Chennai-600025, India.
| | | | | | | | | | | | | |
Collapse
|
28
|
Joseph N, A. CB. Construction of few layered metallic MoS2 microspheres using glucose induced carbon spheres and its application in symmetric supercapacitor device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kumari S, Chouhan A, Sharma OP, Kuriakose S, Tawfik SA, Spencer MJS, Walia S, Sugimura H, Khatri OP. Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS 2 and Its Potential for Enhancement of Tribological Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30720-30730. [PMID: 32524815 DOI: 10.1021/acsami.0c08307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition-metal dichalcogenides possess inherent structural characteristics that can be harnessed for enhancement of tribological properties by making them dispersible in lube media. Here, we present a hydrothermal approach to preparing MoS2 nanosheets comprising 4-10 molecular lamellae. A structural-defect-mediated route for grafting of octadecylamine (ODA) on MoS2 nanosheets is outlined. The unsaturated d orbitals of Mo at the sulfur vacancies on the MoS2 surface are coupled with the electron-rich nitrogen center of ODA and yield ODA-functionalized MoS2 (MoS2-ODA). The MoS2-ODA nanosheets exhibit good dispersibility in lube base oil and are used as an additive (optimized dose: 0.1 mg·mL-1) to mineral oil. It is shown that even at low concentration, MoS2-ODA nanosheets significantly reduce the friction (48%) and wear (44%). Microscopy (field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM)) and spectroscopy (Raman and elemental mapping) analyses of worn scars revealed the formation of MoS2-based protective thin films for lowering of friction and wear. This work, therefore, presents a pathway for low-friction lubricants by deploying functionalized low-dimensional material systems.
Collapse
Affiliation(s)
- Sangita Kumari
- CSIR-Indian Institute of Petroleum, Dehradun 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Ajay Chouhan
- CSIR-Indian Institute of Petroleum, Dehradun 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Om P Sharma
- CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Functional Materials and Microsystems Research Group and MicroNano Research Facility, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Michelle J S Spencer
- School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Functional Materials and Microsystems Research Group and MicroNano Research Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Kyoto 6068501, Japan
| | - Om P Khatri
- CSIR-Indian Institute of Petroleum, Dehradun 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
High-efficiency electrodeposition of polyindole nanocomposite using MoS2 nanosheets as electrolytes and their capacitive performance. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Kim S, Cha W, Ramadass K, Singh G, Kim IY, Vinu A. Single-Step Synthesis of Mesoporous Carbon Nitride/Molybdenum Sulfide Nanohybrids for High-Performance Sodium-Ion Batteries. Chem Asian J 2020; 15:1863-1868. [PMID: 32329239 DOI: 10.1002/asia.202000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/21/2020] [Indexed: 11/10/2022]
Abstract
Molybdenum disulfide (MoS2 ) is a promising candidate as a high-performing anode material for sodium-ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon-based materials, but it is quite challenging. Herein, we demonstrate a single-step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5-amino-1H-tetrazole (5-ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2 , polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg-1 at current densities of 100 and 1000 mAg-1 , respectively, for SIBs.
Collapse
Affiliation(s)
- Sungho Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wangsoo Cha
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN) School of Engineering Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
32
|
Raza A, Qumar U, Hassan J, Ikram M, Ul-Hamid A, Haider J, Imran M, Ali S. A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01475-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Qumar U, Ikram M, Imran M, Haider A, Ul-Hamid A, Haider J, Riaz KN, Ali S. Synergistic effect of Bi-doped exfoliated MoS 2 nanosheets on their bactericidal and dye degradation potential. Dalton Trans 2020; 49:5362-5377. [PMID: 32255457 DOI: 10.1039/d0dt00924e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanosheets incorporated with biological reducing agents are widely used to minimize the toxic effects of chemicals. Biologically amalgamated metal oxide nanomaterials have crucial importance in nanotechnology. In this study, bare and bismuth (Bi)-doped molybdenum disulfide (MoS2) nanosheets were synthesized via a hydrothermal method. Different Bi weight ratios of 2.5, 5, 7.5 and 10% were incorporated in a fixed amount of MoS2 to evaluate its catalytic and antimicrobial activities. Doped nanosheets were characterized using XRD, FTIR and UV-vis spectroscopy, FESEM, HRTEM, Raman, PL, DSC/TGA, EDX, XRF and XPS analysis. The XRD spectra confirmed that the doped nanosheets exhibit a hexagonal structure and their crystallite size increases gradually upon doping. The morphology and interlayer d-spacing of doped MoS2 were determined by FESEM and HRTEM. The presence of functional groups in the doped nanosheets was confirmed using FTIR, PL and Raman analysis. The absorption intensity increased and the corresponding measured band gap energy decreased with doping. The thermal stability and weight loss behaviour of the prepared samples were studied using DSC/TGA. The doped MoS2 nanosheets showed a higher catalytic potential compared to undoped MoS2. The doped Bi nanosheets exhibited higher antimicrobial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at different concentrations of Bi (0.075 and 0.1), showing a tendency to counter the emerging drug resistance against pathogenic bacterial diseases. Consequently, significant inhibition zones were recorded against (MDR) S. aureus ranging from 2.25 to 3.3 mm and 3.25 to 5.05 mm at low and high concentrations of doped-Bi nanosheets and against Gram-negative E. coli ranging from 1 to 1.45 mm at high concentrations. In conclusion, the Bi-doped MoS2 nanocomposite has exhibited significant potential for use in industrial dye degradation applications. Its antibacterial properties can also mitigate health risks associated with the presence of several well-known pathogens in the environment.
Collapse
Affiliation(s)
- U Qumar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan. and Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - M Imran
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore, 54000, Punjab, Pakistan
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - K N Riaz
- Department of Physics, University of Gujrat, HH Campus, Gujrat, 50700, Pakistan
| | - S Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| |
Collapse
|
34
|
Sree Raj KA, Shajahan AS, Chakraborty B, Rout CS. Two‐Dimensional Layered Metallic VSe
2
/SWCNTs/rGO Based Ternary Hybrid Materials for High Performance Energy Storage Applications. Chemistry 2020; 26:6662-6669. [DOI: 10.1002/chem.202000243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Indexed: 11/09/2022]
Affiliation(s)
- K. A. Sree Raj
- Centre for Nano and Material ScienceJain University, Jain global campus, Jakkasandra, Ramanagaram Banglore 562112 India
| | - Afsal S. Shajahan
- High Pressure and Synchrotron Radiation Physics DivisionBhabha Atomic Research Centre Mumbai 400085 India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics DivisionBhabha Atomic Research Centre Mumbai 400085 India
| | - Chandra Sekhar Rout
- High Pressure and Synchrotron Radiation Physics DivisionBhabha Atomic Research Centre Mumbai 400085 India
| |
Collapse
|
35
|
Singha SS, Rudra S, Mondal S, Pradhan M, Nayak AK, Satpati B, Pal P, Das K, Singha A. Mn incorporated MoS2 nanoflowers: A high performance electrode material for symmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Kasinathan K, Murugesan B, Pandian N, Mahalingam S, Selvaraj B, Marimuthu K. Synthesis of biogenic chitosan-functionalized 2D layered MoS 2 hybrid nanocomposite and its performance in pharmaceutical applications: In-vitro antibacterial and anticancer activity. Int J Biol Macromol 2020; 149:1019-1033. [PMID: 32027897 DOI: 10.1016/j.ijbiomac.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 02/02/2023]
Abstract
A bacterial and viral infection causes life threatening diseases owing to the abuse of antibiotics and the development of antibiotic resistance microbes. Currently, biopolymers have been considered as the most promising materials in the medical field. Herein, the biogenic chitosan-functionalized MoS2 nanocomposite was prepared by the hydrothermal method with the liquid exfoliation process. The X-ray diffraction (XRD) results of chitosan-MoS2 hybrid nanocomposite revealed that MoS2 nanoparticle was found to be 42 nm with a hexagonal crystal structure. FTIR and Raman spectrum revealed that the nitrogen functionalities in the chitosan interacted with MoS2 to form the nanocomposite. The XPS spectrum of chitosan-MoS2 nanocomposite confirms that C, N, O, Mo, and S exist in the nanocomposite. Thermal gravimetric analysis (TGA) and Differential thermal analysis (DTA) analysis showed that the chitosan-MoS2 nanocomposite has higher thermal stability up to 600 °C. In the antibacterial application the chitosan-MoS2 hybrid nanocomposite shows zones of inhibition against S. aureus as 22, 28, and 32 mm, and against E. coli as 26, 30, and 35 mm. In the anticancer analysis, chitosan-MoS2 hybrid nanocomposites showed a maximum cell inhibition of 65.45% at 100 μg/mL-1, resulting in the most significant MCF-7 cell inhibition.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Affiliated by Alagappa University, Karaikudi 630 003, India
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Nithya Pandian
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Sundrarajan Mahalingam
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Balamurugan Selvaraj
- PG and Research Department of Physics, AVVM Sri Pushpam College, Poondi, Thanjavur, Tamil Nadu, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Affiliated by Alagappa University, Karaikudi 630 003, India..
| |
Collapse
|
37
|
Siwatch P, Sharma K, Tripathi S. Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135084] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Chao Y, Wang K, Jalili R, Morlando A, Qin C, Vijayakumar A, Wang C, Wallace GG. Scalable Solution Processing MoS 2 Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46746-46755. [PMID: 31738045 DOI: 10.1021/acsami.9b15371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Freestanding flexible electrodes with high areal mass loading are required for the development of flexible high-performance lithium-ion batteries (LIBs). Currently they face the challenge of low mass loading due to the limited concentrations attainable in processable dispersions. Here, we report a simple low-temperature hydrothermal route to fabricate flexible layered molybdenum disulfide (MoS2)/reduced graphene oxide (MSG) films offering high areal capacity and good lithium storage performance. This is achieved using a self-assembly process facilitated by the use of liquid crystalline graphene oxide (LCGO) and commercial MoS2 powders at a low temperature of 70 °C. The amphiphilic properties of ultralarge LCGO nanosheets facilitates the processability of large-size MoS2 powders, which is otherwise nondispersible in water. The resultant film with an areal mass of 8.2 mg cm-2 delivers a high areal capacity of 5.80 mAh cm-2 (706 mAh g-1) at 0.1 A g-1. This simple method can be adapted to similar nondispersible commercial battery materials for films fabrication or production of more complicated constructs via advanced fabrication technologies.
Collapse
Affiliation(s)
- Yunfeng Chao
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Kezhong Wang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Rouhollah Jalili
- School of Chemical Engineering , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Alexander Morlando
- Institute for Superconducting and Electronic Materials, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Chunyan Qin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Amruthalakshmi Vijayakumar
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility , University of Wollongong , North Wollongong , New South Wales 2500 , Australia
| |
Collapse
|
39
|
Majumder S, Banerjee S. Flower-Like MoS 2 for Next-Generation High-Performance Energy Storage Device Applications. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1394-1400. [PMID: 31452487 DOI: 10.1017/s143192761901479x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, a well crystalline 3D flower-like structured MoS2 (~420 nm) has been successfully synthesized on a large scale by a simple hydrothermal technique. The evolution of morphology in the formation process has also been investigated. The crystallinity, purity, and morphology of the sample are characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, fieldemission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The FESEM and TEM images reveal that the sample exhibits a uniform 3D flower-like microsphere shape with folded nanosheets, which are stretched out along the edge of the microsphere. The electrochemical performance of the sample has been investigated by cyclic voltammogram, galvanostatic charge-discharge, and electrochemical impedance spectroscopy studies. The results of the electrochemical analysis suggest that the material delivers a maximum specific capacitance (Csp) of 350 F/g at a discharge current density of 0.25 A/g with energy density 17.5 Wh/kg. It also exhibits good capability and excellent cyclic stability (94% capacity retention after 1,000 cycles in 1 A/g) owing to the coupling effect of electrical conductivity with the interesting morphology and larger active surface area. Hence, the sample may be used as a promising electrode material for high-performance energy storage devices.
Collapse
Affiliation(s)
- Sumit Majumder
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF, Saltlake, Kolkata 700064, India
| | - Sangam Banerjee
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF, Saltlake, Kolkata 700064, India
| |
Collapse
|
40
|
Shabangoli Y, Rahmanifar MS, Noori A, El-Kady MF, Kaner RB, Mousavi MF. Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS NANO 2019; 13:12567-12576. [PMID: 31633927 DOI: 10.1021/acsnano.9b03351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pursuit of new negative electrode materials for redox supercapacitors with a high capacitance, boosted energy, and high rate capability is still a tremendous challenge. Herein, we report a Nile Blue conjugated graphene aerogel (NB-GA) as a negative electrode material with excellent pseudocapacitive performance (with specific capacitance of up to 483 F g-1 at 1 A g-1) in all acidic, neutral, and alkaline aqueous electrolytes. The contribution from capacitive charge storage represents 93.4% of the total charge, surpassing the best pseudocapacitors known. To assess the feasibility of NB-GA as a negative electrode material across the full pH range, we fabricated three devices, namely, a symmetric NB-GA||NB-GA device in an acidic (1.0 M H2SO4) electrolyte, an NB-GA||MnO2 device in a pH-neutral (1.0 M Na2SO4) electrolyte, and an NB-GA||LDH (LDH = Ni-Co-Fe layered double hydroxide) device in an alkaline (1.0 M KOH) electrolyte. The NB-GA||NB-GA device exhibits a maximum specific energy of 22.1 Wh kg-1 and a specific power of up to 8.1 kW kg-1; the NB-GA||MnO2 device displays a maximum specific energy of 55.5 Wh kg-1 and a specific power of up to 14.9 kW kg-1, and the NB-GA||LDH device shows a maximum specific energy of 108.5 Wh kg-1 and a specific power of up to 25.1 kW kg-1. All the devices maintain excellent stability over 5000 charge-discharge cycles. The outstanding pseudocapacitive performances of the NB-GA nanocomposites render them a highly promising negative electrode material across the entire pH range.
Collapse
Affiliation(s)
- Yasin Shabangoli
- Department of Chemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| | | | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, and California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, and California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran 14115-175 , Iran
| |
Collapse
|
41
|
Moghimian S, Sangpour P. One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01366-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhang S, Song X, Liu S, Sun F, Liu G, Tan Z. Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Gusain M, Dubey A, Das M, Singh SK. Facial surfactant-free hydrothermal synthesis of MoS2 microflower and its effect in electrochemical properties. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Sakthivel M, Ramaraj S, Chen SM, Chen TW, Ho KC. Transition-Metal-Doped Molybdenum Diselenides with Defects and Abundant Active Sites for Efficient Performances of Enzymatic Biofuel Cell and Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18483-18493. [PMID: 31038915 DOI: 10.1021/acsami.9b04884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have demonstrated the synthesis of defect-rich Ni-doped MoSe2 nanoplates (NiMoSe2) and their application as an efficient electrocatalyst for enzymatic biofuel cells and electrochemical pseudocapacitors. In this study, a new type of interpretation is proposed that a defective surface facilitates the effective entrapment of enzymes (glucose oxidase (GOD), laccase) for biofuel cells and additional ion diffusion for Faradic charge-discharge reaction. The transmission electron microscopy and UV-vis spectroscopy techniques scrutinized the formation of defects/distortions and the resultant successful entrapment of enzymes. The performed electrochemical characterizations of enzyme-immobilized NiMoSe2/nickel foam (NF) bioanode (NiMoSe2/GOD/NF) and biocathode (NiMoSe2/laccase/NF) exhibited better direct charge conductive behavior at the interface of enzymes and electrode material. Herein, the assembled biofuel cells exhibited an open-circuit voltage ( VOC = 0.6 V) and a short-circuit current density ( JSC = 8.629 mA cm-2) with a maximum power density ( Pmax) of 1.2 mW cm-2. For the electrochemical pseudocapacitor application, the proposed NiMoSe2/NF exhibited excellent specific capacitance (535.74 F g-1), with 86.7% rate performance. Finally, this work suggests new insights into both enzymatic biofuel cell and supercapacitor applications.
Collapse
Affiliation(s)
| | - Sukanya Ramaraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan
| | | |
Collapse
|
45
|
Riyanto, Sahroni I, Bindumadhavan K, Chang PY, Doong RA. Boron Doped Graphene Quantum Structure and MoS 2 Nanohybrid as Anode Materials for Highly Reversible Lithium Storage. Front Chem 2019; 7:116. [PMID: 30931296 PMCID: PMC6425007 DOI: 10.3389/fchem.2019.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Herein, the boron-doped graphene quantum structure (BGQS), which contains both the advantages of 0-D graphene quantum dot and 2-D reduced graphene oxide, has been fabricated by top-down hydrothermal method and then mixed with molybdenum sulfide (MoS2) to serve as an active electrode material for the enhanced electrochemical performance of lithium ion battery. Results show that 30 wt% of BGQS/MoS2 nanohybrid delivers the superior electrochemical performance in comparison with other BGQS/MoS2 and bare components. A highly reversible capacity of 3,055 mAh g-1 at a current density of 50 mA g-1 is achieved for the initial discharge and a high reversible capacity of 1,041 mAh g-1 is obtained at 100 mA g-1 after 50 cycles. The improved electrochemical performance in BGQS/MoS2 nanohybrid is attributed to the well exfoliated MoS2 structures and the presence of BGQS, which can provide the vitally nano-dimensional contact for the enhanced electrochemical performance. Results obtained in this study clearly demonstrate that BGQS/MoS2 is a promising material for lithium ion battery and can open a pathway to fabricate novel 2-D nanosheeted nanocomposites for highly reversible Li storage application.
Collapse
Affiliation(s)
- Riyanto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Imam Sahroni
- Department of Chemistry, Faculty of Mathematics and Natural Science, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Kartick Bindumadhavan
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Yi Chang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ruey-an Doong
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Ji H, Hu S, Jiang Z, Shi S, Hou W, Yang G. Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Hongtao L, Zichen X, Lina Z, Zhiqiang Z, Li X. The effects of different surfactants on the morphologies and electrochemical properties of MoS2/reduce graphene oxide composites. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Gao A, Zeng D, Liu Q, Yi F, Shu D, Cheng H, Zhou X, Li S, Zhang F. Molecular self-assembly assisted synthesis of carbon nanoparticle-anchored MoS2 nanosheets for high-performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Adigilli HK, Padya B, Venkatesh L, Chakravadhanula VSK, Pandey AK, Joardar J. Oxidation of 2D-WS2 nanosheets for generation of 2D-WS2/WO3 heterostructure and 2D and nanospherical WO3. Phys Chem Chem Phys 2019; 21:25139-25147. [DOI: 10.1039/c9cp01890e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Evolution of 2D-WS2/WO3 heterostructures as well as 2D and nanospherical WO3 during the oxidation of WS2 nanosheets in air.
Collapse
Affiliation(s)
- Harish Kumar Adigilli
- International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)
- PO Balapur
- Hyderabad
- India
| | - Balaji Padya
- International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)
- PO Balapur
- Hyderabad
- India
| | - L. Venkatesh
- International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)
- PO Balapur
- Hyderabad
- India
| | - V. S. K. Chakravadhanula
- International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)
- PO Balapur
- Hyderabad
- India
| | - A. K. Pandey
- National Institute of Technology (NIT)
- Warangal
- India
| | - Joydip Joardar
- International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)
- PO Balapur
- Hyderabad
- India
| |
Collapse
|
50
|
Seman RNAR, Azam MA, Ani MH. Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives. NANOTECHNOLOGY 2018; 29:502001. [PMID: 30248022 DOI: 10.1088/1361-6528/aae3da] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supercapacitors, based on fast ion transportation, are among the most promising energy storage solutions that can deliver fast charging-discharging within seconds and exhibit excellent cycling stability. The development of a good electrode material is one of the key factors in enhancing supercapacitor performance. Graphene (G), an allotrope of carbon that consists of a single layer of carbon atoms arranged in a hexagonal lattice, elicits research attention among scientists in the field of energy storage due to its remarkable properties, such as outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. Furthermore, numerous studies focus on 2D materials that are analogous to graphene as electrode supercapacitors, including transition metal dichalcogenides (TMDs). Recently, scientists and researchers are exploring TMDs because of the distinct features that make 2D TMDs highly attractive for capacitive energy storage. This study provides an overview of the structure, properties, synthesis methods, and electrochemical performance of G/TMD supercapacitors. Furthermore, the combination of G and TMDs to develop a hybrid structure may increase their energy density by introducing an asymmetric supercapacitor system. We will also discuss the future prospect of this system in the energy field.
Collapse
Affiliation(s)
- Raja Noor Amalina Raja Seman
- Carbon Research Technology Research Group, Advanced Manufacturing Centre, Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | | | | |
Collapse
|