1
|
Servida S, Piontini A, Gori F, Tomaino L, Moroncini G, De Gennaro Colonna V, La Vecchia C, Vigna L. Curcumin and Gut Microbiota: A Narrative Overview with Focus on Glycemic Control. Int J Mol Sci 2024; 25:7710. [PMID: 39062953 PMCID: PMC11277527 DOI: 10.3390/ijms25147710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Turmeric is a spice widely used in China, Southeast Asia, and in traditional Ayurvedic medicine. Its safety profile and efficacy as an antioxidant, anti-inflammatory, antimicrobial, antitumor, antidiabetic, and anti-obesity agent have led to extensive research into its potential role in preventing and treating metabolic diseases. The active compound in turmeric is curcumin, which exhibits low systemic bioavailability after oral administration. However, it is detectable in the gut, where it bidirectionally interacts with the gut microbiota (GM), which plays a crucial role in maintaining host health. The favorable effects of curcumin, particularly its hypoglycemic properties, are linked to alteration in intestinal dysbiosis observed in type 2 diabetes mellitus and metabolic syndrome patients. Restoration of the eubiotic GM may contribute to glycemic homeostasis. Preclinical and clinical studies have demonstrated the involvement of the GM in the regulation of glucose and lipid metabolism. Although the underlying mechanism remains incompletely understood, intestinal dysbiosis is associated with insulin resistance, hyperglycemia, and low-grade inflammation. In the present overview, we summarize the biological properties of curcumin, focusing on its link with GM and, therefore, on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Simona Servida
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Alessandra Piontini
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Francesca Gori
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Laura Tomaino
- Postgraduate School of Emergency Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Vito De Gennaro Colonna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Luisella Vigna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| |
Collapse
|
2
|
Hu Y, Hao R, Li D, Lu Y, Yu G. Experimental verification about treatment of Bu-Shen-Yi-Jing-Fang in Alzheimer's disease by the analysis of the feasible signaling pathway of network pharmacology. BMC Complement Med Ther 2024; 24:222. [PMID: 38851758 PMCID: PMC11162075 DOI: 10.1186/s12906-024-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
CONTEXT Bu-shen-yi-jing-fang (BSYJF) has been reported to reduce amyloid-β (Aβ)1-42 deposition in the brain of APP/PS1 mice and ameliorate cognitive function. However, its neuroprotective mechanism remains unclear. OBJECTIVE This study aims to investigate whether BSYJF exerts a protective effect on Aβ1-42-induced oxidative stress injury and explore its possible mechanism. MATERIALS AND METHODS The platform databases TCMSP, Swiss, TTD, DrugBank, and GeneCards were used to mine the targets of Alzheimer's disease (AD) and BSYJF. The platform databases STRING and Metascape were used to build the interaction network of the target protein, and Cytoscape software was used to analyze this network and screen out the key pathways. Aβ1-42-treated SKNMC cells were established to verify the mechanism of BSYJF and the key proteins. The downstream proteins and antioxidants as well as apoptosis and ferroptosis of the PI3K/AKT/Nrf2 signaling pathway were validated using an in vitro SKNMC cell model experiment. The expression levels of related proteins were detected using Western blotting. Flow cytometry and immunofluorescence staining were used to analyze apoptosis and ferroptosis. RESULTS Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis considered the key signal pathways, mainly involving the PI3K/AKT signaling pathway. Experimental validation demonstrated that BSYJF treatment markedly increased the activity of the PI3K/AKT pathway, which could exert anti-AD effects. CONCLUSIONS Our data provided compelling evidence that the protective effects of BSYJF might be associated with their regulation of the PI3K/AKT/Nrf2 signaling pathway. These studies offered a potential therapy for natural herbal medicine treatment of AD.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Renjuan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Deyu Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Yunwei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Guran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China.
| |
Collapse
|
3
|
Su W, Wang Y, Shao S, Ye X. Crocin ameliorates neuroinflammation and cognitive impairment in mice with Alzheimer's disease by activating PI3K/AKT pathway. Brain Behav 2024; 14:e3503. [PMID: 38775292 PMCID: PMC11110482 DOI: 10.1002/brb3.3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD. METHODS AD mice were set up by injecting Aβ25-35 solution into the hippocampus. Then, the AD mice were injected intraperitoneally with 40 mg/kg/day of Crocin for 14 days. Following the completion of Crocin treatment, an open-field test, Y-maze test and Morris water maze test were conducted to evaluate the impact of Crocin on spatial learning and memory deficiency in mice. The effects of Crocin on hippocampal neuron injury, proinflammatory cytokine expressions (IL-1β, IL-6, and TNF-α), and PI3K/AKT signaling-related protein expressions were measured using hematoxylin and eosin staining, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) experiments, respectively. RESULTS Crocin attenuated Aβ25-35-induced spatial learning and memory deficiency and hippocampal neuron injury. Furthermore, the Western blot and qRT-PCR results showed that Crocin effectively suppressed inflammation and activated the PI3K/AKT pathway in Aβ25-35-induced mice. CONCLUSION Crocin restrained neuroinflammation via the activation of the PI3K/AKT pathway, thereby ameliorating the cognitive dysfunction of AD mice.
Collapse
Affiliation(s)
- Wenwen Su
- Department of Internal MedicineCiXi Seventh People's HospitalNingboZhejiangChina
| | - Yanbo Wang
- Department of NeurologyThe Third Affiliated Hospital of Zhejiang Chinese Medicine UniversityHangzhouZhejiangChina
| | - Sen Shao
- Department of NeurologyThe Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaojun Ye
- Department of NeurologyThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Tang L, Ye Y, Ji J, Wang JS, Huang Z, Sun J, Sheng L, Sun X. PI3K/Akt/FoxO Pathway Mediates Antagonistic Toxicity in HepG2 Cells Coexposed to Deoxynivalenol and Enniatins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8214-8224. [PMID: 38557103 DOI: 10.1021/acs.jafc.4c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.
Collapse
Affiliation(s)
- Luyao Tang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Zhicong Huang
- Food and Drug Administration, Zhongshan City West District Street, Zhongshan, Guangdong 528401, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| |
Collapse
|
5
|
Gandhi H, Mahant S, Sharma AK, Kumar D, Dua K, Chellappan DK, Singh SK, Gupta G, Aljabali AAA, Tambuwala MM, Kapoor DN. Exploring the therapeutic potential of naturally occurring piceatannol in non-communicable diseases. Biofactors 2024; 50:232-249. [PMID: 37702264 DOI: 10.1002/biof.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.
Collapse
Affiliation(s)
- Himanshu Gandhi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Shikha Mahant
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Zhu M, Lu EQ, Fang YX, Liu GW, Cheng YJ, Huang K, Xu E, Zhang YY, Wang XJ. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules 2024; 29:855. [PMID: 38398607 PMCID: PMC10891758 DOI: 10.3390/molecules29040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yong-Xia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Guo-Wei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Ke Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
8
|
Al-Radadi NS, Al-Bishri WM, Salem NA, ElShebiney SA. Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm J 2024; 32:101921. [PMID: 38283153 PMCID: PMC10820356 DOI: 10.1016/j.jsps.2023.101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The current study was conducted to examine an innovative method for synthesizing gold nanoparticles (AuNPs) from an aqueous sweet granadilla (Passiflora ligularis Juss) P. ligularis. Furthermore, the synthesized AuNPs were used to explore their potential neuroprotective impact against propionic acid (PPA)-induced autism. A sweet granadilla extract was used to achieve the synthesis of AuNPs. The structural and dimensional dispersion of AuNPs were confirmed by different techniques, including UV-Vis spectrophotometer (UV-Vis), X-ray Diffraction (XRD) Pattern, Energy Dispersive X-ray (EDX), Zeta potential, and High-Resolution Transmission Electron Microscopy (HRTEM) analysis. The AuNPs mediated by P. ligularis adopt a spherical shape morphology and the particle size was distributed in the range of 8.43-13 nm without aggregation. Moreover, in vivo, the anti-autistic effects of AuNPs administration were higher than those of P. ligularis extract per second. In addition, the reduced anxiety and neurobehavioral deficits of AuNPs were observed in autistic rats which halted the brain oxidative stress, reduced inflammatory cytokines, ameliorated neurotransmitters, and neurochemical release, and suppressed apoptotic genes (p < 0.05). The alleviated antiapoptotic gene expression and histopathological analysis confirmed that the treatment of AuNPs showed significant neural pathways that aid in reducing tissue damage and necrosis. The results emphasize that the biomedical activity was increased by using the green source synthesis P. ligularis -AuNPs. Additionally, the formulation of AuNPs demonstrates strong neuroprotective effects against PPA-induced autism that were arbitrated by a range of different mechanisms, such as anti-inflammatory, antioxidant, neuromodulator, and antiapoptotic effects.
Collapse
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawarah 14177, Saudi Arabia
| | - Widad M. Al-Bishri
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Neveen A. Salem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Shaimaa A. ElShebiney
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Rajan RK, Kumar RP, Ramanathan M. Piceatannol improved cerebral blood flow and attenuated JNK3 and mitochondrial apoptotic pathway in a global ischemic model to produce neuroprotection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:479-496. [PMID: 37470802 DOI: 10.1007/s00210-023-02616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. The only FDA-approved treatment is recanalization with systemic tissue plasminogen activators like alteplase, although reperfusion caused by recanalization can result in neuroinflammation, which can cause brain cell apoptosis. Therefore, after an ischemic/reperfusion injury, interventions are needed to minimize the neuroinflammatory cascade. In the present study, piceatannol (PCT) was studied for its neuroprotective efficacy in a rat model of global ischemic injury by attenuating c-Jun N-terminal kinase 3 (JNK3) downstream signaling. PCT is a resveratrol analog and a polyphenolic stilbenoid naturally occurring in passion fruit and grapes. The neuroprotective efficacy of PCT (1, 5, 10 mg/kg) in ischemic conditions was assessed through pre- and post-treatment. Cerebral blood flow (CBF) and tests for functional recovery were assessed. Protein and gene expression were done for JNK3 and other inflammatory markers. A docking study was performed to identify the amino acid interaction. The results showed that PCT improved motor and memory function as measured by a functional recovery test believed to be due to an increase in cerebral blood flow. Also, the caspase signaling which promotes apoptosis was found to be down-regulated; however, nitric oxide synthase expression was up-regulated, which could explain the enhanced cerebral blood flow (CBF). According to our findings, PCT impeded c-Jun N-terminal kinase 3 (JNK3) signaling by suppressing phosphorylation and disrupting the mitochondrial apoptotic pathway, which resulted in the neuroprotective effect. Molecular docking analysis was performed to investigate the atomic-level interaction of JNK3 and PCT, which reveals that Met149, Leu206, and Lys93 amino acid residues are critical for the interaction of PCT and JNK3. According to our current research, JNK3 downstream signaling and the mitochondrial apoptosis pathway are both inhibited by PCT, which results in neuroprotection under conditions of global brain ischemia. Piceatannol attenuated JNK3 phosphorylation during the ischemic condition and prevented neuronal apoptosis.
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India.
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Dekargaon, Tezpur, 784501, Assam, India.
| | - Ram Pravin Kumar
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, 641004, Tamilnadu, India
| |
Collapse
|
10
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
11
|
Wang J, Lin Y, Xu X, Wang Y, Xie Q. Identification of tau-tubulin kinase 1 inhibitors by microfluidics-based mobility shift assay from a kinase inhibitor library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:385-393. [PMID: 37399991 DOI: 10.1016/j.slasd.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Tau tubulin kinase 1 (TTBK1) is a serine/threonine/tyrosine kinase that phosphorylates multiple residues in tau protein. Hyperphosphorylated tau is the main cause of tauopathy, such as Alzheimer's disease (AD). Therefore, preventing tau phosphorylation by inhibiting TTBK1 has been proposed as a therapeutic strategy for AD. However, few substrates of TTBK1 are reported for a biochemical assay and few inhibitors targeting TTBK1 have been reported so far. In this study, we identified a fluorescein amidite (FAM)-labeled peptide 15 from a small peptide library as the optimal peptide substrate for human TTBK1 (hTTBK1). We then developed and validated a microfluidics-based mobility shift assay (MMSA) with peptide 15. We further confirmed that peptide 15 could also be used in the ADP-Glo kinase assay. The established MMSA was applied for screening of a 427-compound kinase inhibitor library, yielding five compounds with IC50s of several micro molars against hTTBK1. Among them, three compounds, AZD5363, A-674,563 and GSK690693 inhibited hTTBK1 in an ATP competitive manner and molecular docking simulations revealed that they enter the ATP pocket and form one or two hydrogen bonds to the hinge region with hTTBK1. Another hit compound, piceatannol, showed non-ATP competitive inhibitory effect on hTTBK1 and may serve as a starting point to develop highly selective hTTBK1 inhibitors. Altogether, this study provided a new in vitro platform for the development of novel hTTBK1 inhibitors that might have potential applications in AD prevention.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Ying Lin
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoyu Xu
- Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| | - Qiong Xie
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
13
|
Jiang Q, Wang L, Si X, Bian Y, Zhang W, Cui H, Gui H, Zhang Y, Li B, Tan D. Pterostilbene antagonizes homocysteine-induced oxidative stress, apoptosis and lipid deposition in vascular endothelial cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Liu Y, Liu Q, Zhang Z, Yang Y, Zhou Y, Yan H, Wang X, Li X, Zhao J, Hu J, Yang S, Tian Y, Yao Y, Qiu Z, Song Y, Yang Y. The regulatory role of PI3K in ageing-related diseases. Ageing Res Rev 2023; 88:101963. [PMID: 37245633 DOI: 10.1016/j.arr.2023.101963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.
Collapse
Affiliation(s)
- Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yaru Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jingyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Shulin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yifan Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, 43 North Street, Yan'an 716000, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
15
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
16
|
Investigating the chemical profile of Rheum lhasaense and its main ingredient of piceatannol-3'-O-β-D-glucopyranoside on ameliorating cognitive impairment. Biomed Pharmacother 2023; 160:114394. [PMID: 36774724 DOI: 10.1016/j.biopha.2023.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Rheum lhasaense A. J. Li et P. K. Hsiao, a stout herb plant from the Polygonaceae, is a typical Tibetan folk herb with heat-clearing and detoxifying effects, but does not have the typical laxative effect compared with other rhubarb plants. Nevertheless, its chemical composition and pharmacological activities still lack in-depth research. The present study endeavored to analyze the possible phytochemical constituents in R. lhasaense and explore the main compound piceatannol-3'-O-β-D-glucopyranoside (PG) effect on cognitive impairment and its underlying mechanism. The chemical profile of R. lhasaense discovered 46 compounds, including 27 stilbenoids and 13 gallotannins using UPLC-Q-TOF-MS/MS. The UPLC determined the contents of 6 main stilbenoids, among which the content of PG was the highest, up to 61.06 mg/g. Moreover, behavioral tests showed that PG (40 mg/kg and 160 mg/kg) administration markedly ameliorated memory impairments of scopolamine-induced mice. Biochemical parameters showed that PG treatment alleviated the levels of Ach, AchE, and inflammatory factors while elevating the levels of antioxidants in mice. In addition, network pharmacology was performed to reveal PG exert an mild cognitive impairment effect by participating in neurodegenerative disease pathways, proliferation and apoptosis-, and inflammation-related pathways. Eventually, the results of molecular docking and the qRT-PCR revealed that PG down-regulated the mRNA expressions of MMP3, MMP9 and BACE1 in cognitive impairment mice brain tissue. In conclusion, our results demonstrated that PG mitigated scopolamine-induced cognitive dysfunction in mice by targeting the BACE1-MMP3/9 pathway, and PG might be a promising mild AD drug candidate.
Collapse
|
17
|
Vastegani SM, Hajipour S, Sarkaki A, Basir Z, Farbood Y, Bavarsad K, Khoshnam SE. Curcumin Ameliorates Neurobehavioral Deficits in Ambient Dusty Particulate Matter-Exposure Rats: The Role of Oxidative Stress. Neurochem Res 2023; 48:1798-1810. [PMID: 36708454 DOI: 10.1007/s11064-023-03877-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
It has been consistently found that exposure to ambient air pollution, such as particulate matter (PM), results in cognitive impairments and mental disorders. This study aimed to investigate the possible neuroprotective effects of curcumin, a polyphenol compound, on the neurobehavioral deficits and to identify the role of oxidative stress in dusty PM exposure rats. Rats received curcumin (50 mg/kg, daily, gavage, 2 weeks) 30 min before placing animals in a clean air chamber (≤ 150 µg/m3, 60 min daily, 2 weeks) or ambient dusty PM chamber (2000-8000 µg/m3, 60 min daily, 2 weeks). Subsequently, the cognitive and non-cognitive functions of the animals were evaluated using standard behavioral tests. Moreover, blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and histological changes were determined in the cerebral cortex and hippocampal areas of the rats. Our results showed that curcumin administration in dusty PM exposure rats attenuates memory impairment, decreases anxiety-/depression-like behaviors, and improves locomotor/exploratory activities. These findings were accompanied by reduced BBB permeability and BWC, decreasing oxidative stress, and lessening neuronal loss in the cerebral cortex and different hippocampal areas. The results of this study suggest that curcumin's antioxidant properties may contribute to its efficacy in improving neurobehavioral deficits and preventing neuronal loss associated with dusty PM exposure.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Mechanism Study of Cinnamomi Ramulus and Paris polyphylla Sm. Drug Pair in the Treatment of Adenomyosis by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2624434. [PMID: 36016675 PMCID: PMC9398691 DOI: 10.1155/2022/2624434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the molecular mechanism of the Cinnamomi ramulus and Paris polyphylla Sm. (C-P) drug pair in the treatment of adenomyosis (AM) based on network pharmacology and animal experiments. Methods. Via a network pharmacology strategy, a drug-component-target-disease network (D-C-T-D) and protein–protein interaction (PPI) network were constructed to explore the core components and key targets of C-P drug pair therapy for AM, and the core components and key targets were verified by molecular docking. Based on the results of network pharmacology, animal experiments were performed for further verification. The therapeutic effect of the C-P drug pair on uterine ectopic lesions was evaluated in a constructed AM rat model. Results. A total of 30 components and 45 corresponding targets of C-P in the treatment of AM were obtained through network pharmacology. In the D-C-T-D network and PPI network, 5 core components and 10 key targets were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K signaling pathway was the most significantly enriched nontumor pathway. Molecular docking showed that most of the core components and key targets docked completely. Animal experiments showed that the C-P drug pair significantly ameliorated the pathological changes of endometriotic lesions in AM model rats and inhibited PI3K and Akt gene expression, and PI3K and Akt protein phosphorylation. In addition, treatment with the C-P drug pair promoted AM cell apoptosis; upregulated the protein expression of Bax, Caspase-3, and cleaved Caspase-9; and restrained Bcl-2 expression. Conclusions. We propose that the pharmacological mechanism of the C-P drug pair in the treatment of AM is related to inhibition of the PI3K/Akt pathway and promotion of apoptosis in AM ectopic lesions.
Collapse
|
19
|
Liu Y, Li J, Ye Z, Ma T, Li Z. Protective Effects of Piceatannol against Selenite-Induced Cataract and Oxidative Damage in Rats. Curr Eye Res 2022; 47:1272-1278. [PMID: 35904449 DOI: 10.1080/02713683.2022.2104320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to investigate the protective effects of piceatannol (PIC) on selenite-induced cataracts in Sprague-Dawley rats and explore its therapeutic effects as an antioxidant. METHODS Thirty-two eight-day-old rat pups were randomly divided into four groups, with eight pups in each of them. Group 1, as the control group, was injected with the same amount of saline, while Groups 2-4 were administered with sodium selenite (3.46 mg/kg) subcutaneously into the neck on postpartum day 10 for cataract induction. Without further treatment, Group 2 served as the control model, while Groups 3 and 4 (low- and high-dose PIC-treated) had intraperitoneal piceatannol from day 8 to day 17 at doses of 10 mg/kg and 20 mg/kg, respectively. On postpartum day 17, after the last injection, the rat pups were examined for cataract grade by slit lamp, and the lenses of every group were isolated for oxidative damage indicators and further analysis. SRA01/04 cells were exposed to 600 μM H2O2 for 24 hours with or without pretreatment with 10μМ piceatannol. Cell viability was tested by CCK-8 assay and cell apoptosis was evaluated by AnnexinV-PE/7AAD assay. RESULTS This study determined that compared with the model group, the degree of lens opacity was significantly reduced in PIC-treated groups. The histopathological damage of the lenses in the PIC-treated groups improved compared to the model group. There were fewer signs of lesions, such as vacuoles and atrophy. The biochemical results indicated that malondialdehyde (MDA) content of the PIC-treated groups were downregulated and the antioxidant enzyme activities (GSH and catalase) and antioxidant status (SOD) were upregulated compared with the model group. In vitro, piceatannol significantly restored cell viability and cell apoptosis under H2O2 injury. CONCLUSION Pretreatment with piceatannol may achieve a protective effect on cataract development through upregulating antioxidant enzyme activity.
Collapse
Affiliation(s)
- Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J Food Biochem 2022; 46:e14264. [PMID: 35694805 DOI: 10.1111/jfbc.14264] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Plants produce polyphenols, which are considered highly essential functional foods in our diet. They are classified into several groups according to their diverse chemical structures. Flavanoids, lignans, stilbenes, and phenolic acids are the four main families of polyphenols. Several in vivo and in vitro research have been conducted so far to evaluate their health consequences. Polyphenols serve a vital function in the protection of the organism from external stimuli and in eliminating reactive oxygen species (ROS), which are instigators of several illnesses. Polyphenols are present in tea, chocolate, fruits, and vegetables with the potential to positively influence human health. For instance, cocoa flavan-3-ols have been associated with a decreased risk of myocardial infarction, stroke, and diabetes. Polyphenols in the diet also help to improve lipid profiles, blood pressure, insulin resistance, and systemic inflammation. Quercetin, a flavonoid, and resveratrol, a stilbene, have been linked to improved cardiovascular health. Dietary polyphenols potential to elicit therapeutic effects might be attributed, at least in part, to a bidirectional association with the gut microbiome. This is because polyphenols are known to affect the gut microbiome composition in ways that lead to better human health. Specifically, the gut microbiome converts polyphenols into bioactive compounds that have therapeutic effects. In this review, the antioxidant, cytotoxicity, anti-inflammatory, antihypertensive, and anti-diabetic actions of polyphenols are described based on findings from in vivo and in vitro experimental trials. PRACTICAL APPLICATIONS: The non-communicable diseases (NCDs) burden has been increasing worldwide due to the sedentary lifestyle and several other factors such as smoking, junk food, etc. Scientific literature evidence supports the use of plant-based food polyphenols as therapeutic agents that could help to alleviate NCD's burden. Thus, consuming polyphenolic compounds from natural sources could be an effective solution to mitigate NCDs concerns. It is also discussed how natural antioxidants from medicinal plants might help prevent or repair damage caused by free radicals, such as oxidative stress.
Collapse
Affiliation(s)
- Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Li Q, Li X, Tian B, Chen L. Protective effect of pterostilbene in a streptozotocin-induced mouse model of Alzheimer's disease by targeting monoamine oxidase B. J Appl Toxicol 2022; 42:1777-1786. [PMID: 35665945 DOI: 10.1002/jat.4355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in elderly population. Pterostilbene (PTS) is a resveratrol analogue with neuroprotective activity. However, the biological mechanisms of PTS in AD progression are largely uncertain. An animal model of AD was established using streptozotocin (STZ)-treated C57BL/6J mice. Monoamine oxidase B (MAOB) expression was analyzed by bioinformatics analysis and detected by western blotting assay. The memory impairment was investigated by Morris water maze test. The levels of Tau hyperphosphorylation and death-related proteins were detected by western blotting analysis. The levels of amyloid β (Aβ)1-42 accumulation, oxidative stress-related markers (ROS, MDA, SOD and GSH), and inflammation-relative markers (TNF-α, IL-1β, IL-6 and p-NF-κB) were measured by ELISA. MAOB expression was increased in hippocampus of AD mice, and it was decreased by PTS. PTS attenuated STZ-induced body weight loss and memory impairment by regulating MAOB. PTS mitigated Aβ1-42 accumulation and Tau hyperphosphorylation by regulating MAOB in STZ-treated mice. PTS attenuated neuronal death by decreasing cleaved caspase-3 and Bax levels and increasing Bcl2 expression in hippocampus by regulating MAOB in STZ-treated mice. PTS weakened STZ-induced oxidative stress in hippocampus by decreasing ROS and MDA levels and increasing SOD and GSH levels by regulating MAOB. PTS protected against STZ-induced neuroinflammation in hippocampus by inhibiting TNF-α, IL-1β, IL-6 and p-NF-κB levels through regulating MAOB. In conclusion, PTS alleviates STZ-induced memory impairment, Aβ1-42 accumulation, Tau hyperphosphorylation, neuronal death, oxidative stress and inflammation by decreasing MAOB in AD mice, proving anti-AD potential of PTS.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Buxian Tian
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
23
|
Sato A, Tagai N, Ogino Y, Uozumi H, Kawakami S, Yamamoto T, Tanuma S, Maruki‐Uchida H, Mori S, Morita M. Passion fruit seed extract protects beta-amyloid-induced neuronal cell death in a differentiated human neuroblastoma SH-SY5Y cell model. Food Sci Nutr 2022; 10:1461-1468. [PMID: 35592293 PMCID: PMC9094456 DOI: 10.1002/fsn3.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with accompanying perceptive disorder. We previously reported that decreasing levels of brain-derived neurotrophic factor (BDNF) promoted beta-amyloid (Aβ)-induced neuronal cell death in neuron-like differentiated SH-SY5Y (ndSH-SY5Y) human neuroblastoma cells in an AD mimic cell model. We investigated the neuroprotective effects of passion fruit seed extract (PFSE) and one of the main stilbene compounds, piceatannol, in an AD cell model using ndSH-SY5Y cells. Both PFSE and piceatannol were found to protect Aβ-induced neurite fragmentation in the cell model (protection efficacy; 34% in PFSE and 36% in piceatannol). In addition, both PFSE and piceatannol suppress Aβ-induced neuronal cell death in the cell model (inhibitory effect; 27% in PFSE and 32% in piceatannol). Our study is the first to report that piceatannol-rich PFSE can repress Aβ-induced neuronal cell death by protecting against neurite fragmentation in the AD human cell model. These findings suggest that piceatannol-rich PFSE can be considered a potentially neuroprotective functional food for both prevention and treatment of AD.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Nozomi Tagai
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Yoko Ogino
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Present address:
Department of Gene RegulationFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Haruka Uozumi
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Shinpei Kawakami
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Takayuki Yamamoto
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Sei‐ichi Tanuma
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of Genomic Medicinal ScienceResearch Institute for Science and TechnologyOrganization for Research AdvancementTokyo University of ScienceNoda, ChibaJapan
| | - Hiroko Maruki‐Uchida
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Sadao Mori
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Minoru Morita
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| |
Collapse
|
24
|
Zhu L, Lu F, Zhang X, Liu S, Mu P. SIRT1 Is Involved in the Neuroprotection of Pterostilbene Against Amyloid β 25-35-Induced Cognitive Deficits in Mice. Front Pharmacol 2022; 13:877098. [PMID: 35496289 PMCID: PMC9047953 DOI: 10.3389/fphar.2022.877098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-β (Aβ) deposits and neurofibrillary tangles. Pterostilbene (PTE), a bioactive component mainly in blueberries, is found to have neuroprotective properties. However, the specific underlying mechanisms of PTE in protecting AD remain unclear. Herein, we explored its effects on Aβ25-35-induced neuronal damage in vivo and in vitro and further compared the roles with its structural analog resveratrol (RES) in improving learning-memory deficits. We found that intragastric administration of PTE (40 mg/kg) displayed more effective neuroprotection on Aβ25-35-induced cognitive dysfunction assessed using the novel object test, Y-maze test, and Morris water maze test. Then, we found that PTE improved neuronal plasticity and alleviated neuronal loss both in vivo and in vitro. Additionally, PTE upregulated the expression of sirtuin-1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2) and the level of superoxide dismutase (SOD), and inhibited mitochondria-dependent apoptosis in the Aβ25-35-treated group. However, SIRT1 inhibitor EX527 reversed the neuroprotection and induced a drop in mitochondrial membrane potential in PTE-treated primary cortical neurons. Our data suggest that PTE's enhancing learning-memory ability and improving neuroplasticity might be related to inhibiting mitochondria-dependent apoptosis via the antioxidant effect regulated by SIRT1/Nrf2 in AD.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Fangjin Lu
- Department of Pharmacology, Shenyang Medical College, Shenyang, China
| | - Xiaoran Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Siyuan Liu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Ping Mu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
25
|
Guo J, Wang J, Guo R, Shao H, Guo L. Pterostilbene protects the optic nerves and retina in a murine model of experimental autoimmune encephalomyelitis via activation of SIRT1 signaling. Neuroscience 2022; 487:35-46. [DOI: 10.1016/j.neuroscience.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
26
|
Wahdan SA, Elsherbiny DA, Azab SS, El-Demerdash E. Piceatannol ameliorates behavioural, biochemical and histological aspects in cisplatin-induced peripheral neuropathy in rats. Basic Clin Pharmacol Toxicol 2021; 129:486-495. [PMID: 34390194 DOI: 10.1111/bcpt.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Peripheral neurotoxicity is a dose-limiting and a potentially lifelong persistent toxicity of cisplatin. This study investigated the possible protective effect of piceatannol (PIC) in a model of cisplatin-induced peripheral neuropathy in rats. PIC (10 mg/kg, i.p.) was given for 7 days, starting 2 days before cisplatin single injection (7 mg/kg, i.p.). Behavioural, biochemical and histological examinations were conducted. Cisplatin administration resulted in thermal hypoalgesia evidenced by increased paw and tail withdrawal latency times in the hotplate and tail flick tests, respectively, and reduced the abdominal constrictions in response to the acetic acid injection. Moreover, cisplatin treatment decreased rat locomotor activity and grip strength. These behavioural alterations were reversed by PIC coadministration. In addition, PIC decreased cisplatin-induced elevation in serum neurotensin and platinum accumulation in sciatic nerve. Also, PIC reversed, to a large extent, cisplatin-induced microscopical alterations in nerve axons and restored normal myelin thickness. Therefore, PIC may protect against cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Sara A Wahdan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Front Pharmacol 2021; 12:648636. [PMID: 33935751 PMCID: PMC8082498 DOI: 10.3389/fphar.2021.648636] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
Collapse
Affiliation(s)
- Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
28
|
Huang SH, Fang ST, Chen YC. Molecular Mechanism of Vitamin K2 Protection against Amyloid-β-Induced Cytotoxicity. Biomolecules 2021; 11:423. [PMID: 33805625 PMCID: PMC8000266 DOI: 10.3390/biom11030423] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The pathological role of vitamin K2 in Alzheimer's disease (AD) involves a definite link between impaired cognitive functions and decreased serum vitamin K levels. Vitamin K2 supplementation may have a protective effect on AD. However, the mechanism underlying vitamin K2 protection has not been elucidated. With the amyloid-β (Aβ) cascade hypothesis, we constructed a clone containing the C-terminal fragment of amyloid precursor protein (β-CTF/APP), transfected in astroglioma C6 cells and used this cell model (β-CTF/C6) to study the protective effect of vitamin K2 against Aβ cytotoxicity. Both cellular and biochemical assays, including cell viability and reactive oxygen species (ROS), assays assay, and Western blot and caspase activity analyses, were used to characterize and unveil the protective role and mechanism of vitamin K2 protecting against Aβ-induced cytotoxicity. Vitamin K2 treatment dose-dependently decreased the death of neural cells. The protective effect of vitamin K2 could be abolished by adding warfarin, a vitamin K2 antagonist. The addition of vitamin K2 reduced the ROS formation and inhibited the caspase-3 mediated apoptosis induced by Aβ peptides, indicating that the mechanism underlying the vitamin K2 protection is likely against Aβ-mediated apoptosis. Inhibitor assay and Western blot analyses revealed that the possible mechanism of vitamin K2 protection against Aβ-mediated apoptosis might be via regulating phosphatidylinositol 3-kinase (PI3K) associated-signaling pathway and inhibiting caspase-3-mediated apoptosis. Our study demonstrates that vitamin K2 can protect neural cells against Aβ toxicity.
Collapse
Affiliation(s)
| | | | - Yi-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (S.-H.H.); (S.-T.F.)
| |
Collapse
|
29
|
Thapa K, Khan H, Sharma U, Grewal AK, Singh TG. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 2020; 267:118975. [PMID: 33387580 DOI: 10.1016/j.lfs.2020.118975] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
AIMS Poly (ADP-ribose) polymerase- (PARP)-1 is predominantly triggered by DNA damage. Overexpression of PARP-1 is known for its association with the pathogenesis of several CNS disorders, such as Stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington (HD) and Amyotrophic lateral sclerosis (ALS). NAD+ depletion resulted PARP related cell death only happened when the trial used extreme high oxidization treatment. Inhibition of PARP1/2 may induce replication related cell death due to un-repaired DNA damage. This review has discussed PARP-1 modulated downstream pathways in neurodegeneration and various FDA approved PARP-1 inhibitors. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on mechanistic role of Poly (ADP-ribose) polymerase and its inhibition in Neurodegenerative diseases. KEY FINDINGS Several researchers have put forward number of potential treatments, of which PARP-1 enzyme has been regarded as a potent target intended for the handling of neurodegenerative ailments. Targeting PARP using its chemical inhibitors in various neurodegenerative may have therapeutic outcomes by reducing neuronal death mediated by PARPi. Numerous PARP-1 inhibitors have been studied in neurodegenerative diseases but they haven't been clinically evaluated. SIGNIFICANCE In this review, the pathological role of PARP-1 in various neurodegenerative diseases has been discussed along with the therapeutic role of PARP-1 inhibitors in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Uma Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
30
|
Xu J, Liu J, Li Q, Mi Y, Zhou D, Meng Q, Chen G, Li N, Hou Y. Pterostilbene Alleviates Aβ 1-42 -Induced Cognitive Dysfunction via Inhibition of Oxidative Stress by Activating Nrf2 Signaling Pathway. Mol Nutr Food Res 2020; 65:e2000711. [PMID: 33280250 DOI: 10.1002/mnfr.202000711] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Indexed: 12/19/2022]
Abstract
SCOPE In the present study, effect of pterostilbene on β-amyloid 1-42 (Aβ1-42 ) induced cognitive impairment in mice is investigated and explored its possible mechanism of action. METHODS AND RESULTS The behavior results show that pterostilbene alleviated Aβ1-42 -induces cognitive dysfunction assessed using the Y-maze test, novel object recognition task, Morris water maze test, and passive avoidance test. Pterostilbene alleviates neuron loss and accumulation of reactive oxygen species in Aβ1-42 treated mouse brain. Additionally, pterostilbene promotes nuclear factor-E2 p45-related factor 2 (Nrf2) nuclear translocation and enhance the transcription and expression of antioxidant genes such as heme oxygenase-1 and superoxide dismutase both in vivo and in vitro. Nrf2 inhibitor ML385 reverses the antioxidant function of pterostilbene in SH-SY5Y cells. Nrf2 is the master regulator of oxidative homeostasis and can be activated by substrate adaptor sequestosome-1 (also named p62). Pterostilbene promotes the binding of Kelch-like ECH-associated protein 1 and p62, which enhanced activation of Nrf2. CONCLUSION The present study reports that pterostilbene alleviated Aβ1-42 -induces cognitive dysfunction in mice. The mechanism of pterostilbene can be associated to the inhibition of oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| | - Qing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, 110819, China
| |
Collapse
|
31
|
Wang KJ, Zhang WQ, Liu JJ, Cui Y, Cui JZ. Piceatannol protects against cerebral ischemia/reperfusion‑induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway. Mol Med Rep 2020; 22:5399-5411. [PMID: 33173979 PMCID: PMC7647030 DOI: 10.3892/mmr.2020.11618] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Reperfusion is a critical therapeutic intervention used following acute ischemic stroke; however, it may cause cerebral ischemia/reperfusion injury (CIRI) and aggravate brain damage. Piceatannol (Pic), a hydroxylated analog of resveratrol, has been reported to exhibit anti‑inflammatory effects. However, the detailed molecular mechanisms and its effects on CIRI have not been sufficiently assessed, and, to the best of our knowledge, current methods of prevention of CIRI are limited. The aim of the present study was to investigate the effects of Pic on improving neurological function in a mouse model of CIRI. For the animal experiments, 8‑week‑old C57BL/6 mice were raised and randomly grouped, and an in vivo model of CIRI was established. Mice were administered a low (10 mg/kg/day) or high‑dose (20 mg/kg/d) of Pic 1 h after CIRI orally and once daily for the next 6 days. Neurological dysfunction was assessed using a modified neurological severity score and a rotarod test 1 week after CIRI establishment, and the cognitive status of the mice was assessed using a Morris water maze. Hematoxylin and eosin staining was used to evaluate the histopathological changes. The expression levels of sirtuin 1 (Sirt1), FoxO1, cleaved caspase‑3 (CC‑3), Bax and Bcl‑2 were measured using western blotting. Intracellular reactive oxygen species (ROS) generation, antioxidant enzymes [superoxide dismutase, glutathione (GSH) peroxidase and catalase] and non‑enzymatic antioxidants (GSH) were also detected using spectrophotometry. After inhibition of the Sirt1/FoxO1 pathway, a TUNEL assay was used for the detection of apoptotic cells in vitro and in vivo. The co‑localization of neuron‑specific nuclear protein and CC‑3 was assessing using immunofluorescent staining. Pic improved neurological functions and ameliorated hippocampal neuronal pathology following CIRI. In addition, the expression levels of CC‑3 and Bax and intracellular ROS levels were increased, while levels of antioxidant and non‑enzymatic enzymes were decreased in the mouse model of CIRI. Low and high doses of Pic significantly decreased ROS production and the expression levels of apoptosis‑related proteins, but increased antioxidant enzyme levels. However, a high‑dose of Pic did not result in increased levels of non‑enzymatic enzymes. Furthermore, low and high doses of Pic treatment significantly activated the Sirt1/FoxO1 pathway. Following inhibition of the Sirt1/FoxO1 pathway, the percentage of TUNEL‑positive cells and expression of CC‑3 were increased, and CC‑3 was enriched in neurons. The antioxidant effects of Pic were blocked by inhibition of Sirt1 in vitro and in vivo. In conclusion, these results suggested that Pic may exert a neuroprotective effect against in hippocampal neurons via the Sirt1/FoxO1 pathway.
Collapse
Affiliation(s)
- Kai-Jie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Wen-Qian Zhang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jing-Jing Liu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ying Cui
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jian-Zhong Cui
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
32
|
Cao Y, Smith W, Yan L, Kong L. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Curr Stem Cell Res Ther 2020; 15:4-10. [PMID: 30947674 DOI: 10.2174/1574888x14666190402100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
Collapse
Affiliation(s)
- Yang Cao
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States
| | - Liang Yan
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
33
|
Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules 2020; 25:molecules25215166. [PMID: 33171952 PMCID: PMC7664215 DOI: 10.3390/molecules25215166] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pterostilbene is a natural 3,5-dimethoxy analog of resveratrol. This stilbene compound has a strong bioactivity and exists widely in Dalbergia and Vaccinium spp. Besides natural extraction, pterostilbene can be obtained by biosynthesis. Pterostilbene has become popular because of its remarkable pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammation, and neuroprotection. Pterostilbene can be rapidly absorbed and is widely distributed in tissues, but it does not seriously accumulate in the body. Pterostilbene can easily pass through the blood-brain barrier because of its low molecular weight and good liposolubility. In this review, the studies performed in the last three years on resources, synthesis, bioactivity, and pharmacokinetics of pterostilbene are summarized. This review focuses on the effects of pterostilbene on certain diseases to explore its targets, explain the possible mechanism, and look for potential therapeutic applications.
Collapse
|
34
|
Elsherbini AM, Sheweita SA, Sultan AS. Pterostilbene as a Phytochemical Compound Induces Signaling Pathways Involved in the Apoptosis and Death of Mutant P53-Breast Cancer Cell Lines. Nutr Cancer 2020; 73:1976-1984. [PMID: 32900227 DOI: 10.1080/01635581.2020.1817513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pterostilbene is a natural nonflavonoid polyphenolic compound. It shows a remarkable range of biological activities, including antiproliferative, antiinflammatory, and antioxidant activity. However, the mechanism of action of PT in breast cancer cells containing mutant p53 protein has not been fully elucidated. Therefore, the present study was aimed at investigating the influence of PT on signaling pathways involved in the apoptosis of mutant p53-breast cancer cell lines. Immunocytochemistry and Western Immunoblotting techniques were used in this study. The present data showed that the viabilities and the proliferations of MDA-MB-231 and T-47D decreased significantly (P < 0.001) after treatment with different concentrations of PT. In addition, the morphological characteristics of both cell lines were changed after treatment with PT. Decreased protein expression of mutant p53 (R280 K, L194F) in MDA-MB-231 and T-47D breast cancer cell lines has also been achieved. In addition, overexpression of pro-apoptotic (Bax) protein, caspase-3 activity and histone release were increased after treatment of both cell lines with different PT concentrations. Furthermore, the protein expressions of cyclin D1, mTOR, and oncogenic β-catenin were significantly downregulated after treatment of both cell lines with PT. In conclusion, downregulations of protein expression of mutant p53, cyclin D1, mTOR, and β-catenin were increased after both cell lines had been treated with pterostilbene. PT could point to a promising use against the development and the progression of breast cancer as a natural therapeutic agent.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.,Department of Clinical Biochemistry, King Khalid University, Abha, Saudi Arabia
| | - Ahmed S Sultan
- Department of Biochemistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Wang C, Hao J, Liu X, Li C, Yuan X, Lee RJ, Bai T, Wang D. Isoforsythiaside Attenuates Alzheimer's Disease via Regulating Mitochondrial Function Through the PI3K/AKT Pathway. Int J Mol Sci 2020; 21:E5687. [PMID: 32784451 PMCID: PMC7460834 DOI: 10.3390/ijms21165687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022] Open
Abstract
Improving mitochondrial dysfunction and inhibiting apoptosis has always been regarded as a treatment strategy for Alzheimer's disease (AD). Isoforsythiaside (IFY), a phenylethanoid glycoside isolated from the dried fruit of Forsythia suspensa, displays antioxidant activity. This study examined the neuroprotective effects of IFY and its underlying mechanisms. In the L-glutamate (L-Glu)-induced apoptosis of HT22 cells, IFY increased cell viability, inhibited mitochondrial apoptosis, and reduced the intracellular levels of reactive oxygen species (ROS), caspase-3, -8 and -9 after 3 h of pretreatment and 12-24 h of co-incubation. In the APPswe/PSEN1dE9 transgenic (APP/PS1) model, IFY reduced the anxiety of mice, improved their memory and cognitive ability, reduced the deposition of beta amyloid (Aβ) plaques in the brain, restrained the phosphorylation of the tau protein to form neurofibrillary tangles, inhibited the level of 4-hydroxynonenal in the brain, and improved phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway-related mitochondrial apoptosis. In Aβ1-42-induced U251 cells, IFY relieved the mitochondrial swelling, crest ruptures and increased their electron density after 3 h of pretreatment and 18-24 h of co-incubation. The improved cell viability and mitochondrial function after IFY incubation was blocked by the synthetic PI3K inhibitor LY294002. Taken together, these results suggest that IFY exerts a protective effect against AD by enhancing the expression levels of anti-apoptosis proteins and reducing the expression levels of pro-apoptosis proteins of B-cell lymphoma-2 (BCL-2) family members though activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chunyue Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Xuyang Yuan
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Tian Bai
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (C.W.); (J.H.); (X.L.); (C.L.); (X.Y.)
| |
Collapse
|
36
|
Zhao J, Xu H, Duan Z, Chen X, Ao Z, Chen Y, Ruan Y, Ni M. miR-31-5p Regulates 14-3-3 ɛ to Inhibit Prostate Cancer 22RV1 Cell Survival and Proliferation via PI3K/AKT/Bcl-2 Signaling Pathway. Cancer Manag Res 2020; 12:6679-6694. [PMID: 32801901 PMCID: PMC7402864 DOI: 10.2147/cmar.s247780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignancies, and almost all patients with advanced PCa will develop castration-resistant prostate cancer (CRPC) after receiving endocrine therapy. Effective treatment for patients with CRPC has not been established. Novel approaches are needed to identify therapeutic targets for CRPC. Purpose Recent research studies have found that members of the 14-3-3 family play an important role in the development and progression of PCa. Previous results have shown that 14-3-3 ɛ is significantly upregulated in several cancers. This study aimed to identify novel miRNAs that regulate 14-3-3 ɛ expression and therapeutic targets for CRPC. Methods In this study, we used computation and experimental approaches for the prediction and verification of the miRNAs targeting 14-3-3 ɛ, and investigated the potential roles of 14-3-3 ɛ in the survival and proliferation of 22RV1 cells. Results We confirm that mir-31-5p is downregulated in 22RV1 cells and acts as a tumor suppressor by regulating 14-3-3 ɛ. Ectopic expression of miR-31-5p or 14-3-3 ɛ interference significantly inhibits cell proliferation, invasion, and migration in 22RV1 cells, as well as promotes cell apoptosis via the PI3K/AKT/Bcl-2 signaling pathway. Moreover, 14-3-3 ɛ is required for the miR-31-5p-mediated upregulation of the PI3K/AKT/Bcl-2 signaling pathway. Conclusion Our findings provide information on the underlying mechanisms of miR-31-5p/14-3-3 ɛ in 22RV1 cell proliferation and apoptosis through the PI3K/AKT/Bcl-2 signaling pathway. These results suggest that miR-31-5p and 14-3-3 ɛ may potentially be utilized as novel prognostic markers and therapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Jiafu Zhao
- College of Life Science, Guizhou University, Guiyang 550025, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Houqiang Xu
- College of Life Science, Guizhou University, Guiyang 550025, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yinglian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mengmeng Ni
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
37
|
Piceatannol Ameliorates Hepatic Oxidative Damage and Mitochondrial Dysfunction of Weaned Piglets Challenged with Diquat. Animals (Basel) 2020; 10:ani10071239. [PMID: 32708214 PMCID: PMC7401537 DOI: 10.3390/ani10071239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In our experiment, piglets in two challenged groups were orally administrated either piceatannol or another vehicle solution, and then injected with diquat, a bipyridyl herbicide that can cause a large amount of reactive oxygen species in animal bodies and is widely used to cause oxidative stress, to investigate the effects of piceatannol on hepatic redox status, mitochondrial function and the underlying mechanism. A control group was given neither piceatannol supplementation nor diquat injection. Results showed that piceatannol could improve hepatic redox status, preserve mitochondrial function, and prevent excessive apoptosis of liver cells. In addition, piceatannol might exert its protective effects through a classic antioxidant signaling pathway named Nrf2. Our findings indicated that piceatannol might be an appropriate candidate for further development as an antioxidant food supplement to minimize the risk of oxidative stress in young animals. Abstract The liver is an organ that produces large amounts of reactive oxygen species (ROS). Human infants or piglets are prone to oxidative damage due to their uncompleted development of the antioxidant system, causing liver disease. Piceatannol (PIC) has been found to have significant antioxidant effects. The aim of this experiment was to investigate the effects of PIC on the liver in piglets experiencing oxidative stress caused by diquat (DQ). After weaning, 54 male piglets (Duroc × [Landrace × Yorkshire]) were selected and randomly divided into three treatment groups: the CON group, the DQ-CON group, and the DQ-PIC group. The two challenged groups were injected with DQ and then orally administrated either PIC or another vehicle solution, while the control group was given sterile saline injections and an orally administrated vehicle solution. Compared to the results of the CON group, DQ increased the percentage of apoptosis cells in the liver, also decreased the amount of reduced glutathione (GSH) and increased the concentration of malondialdehyde (MDA). In addition, the adenosine triphosphate (ATP) production, activities of mitochondrial complex I, II, III, and V, and the protein expression level of sirtuin 1 (SIRT1) were inhibited by DQ. Furthermore, PIC supplementation inhibited the apoptosis of hepatic cells caused by DQ. PIC also decreased MDA levels and increased the amount of GSH. Piglets given PIC supplementation exhibited increased activities of mitochondrial complex I, II, III, and V, the protein expression level of SIRT1, and the ATP production in the liver. In conclusion, PIC affected the liver of piglets by improving redox status, preserving mitochondrial function, and preventing excessive apoptosis.
Collapse
|
38
|
Hydroxy- α-sanshool Possesses Protective Potentials on H 2O 2-Stimulated PC12 Cells by Suppression of Oxidative Stress-Induced Apoptosis through Regulation of PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3481758. [PMID: 32695254 PMCID: PMC7368233 DOI: 10.1155/2020/3481758] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023]
Abstract
Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic, improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells. Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2, while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.
Collapse
|
39
|
Du D, Shen X, Zhang Y, Yin L, Pu Y, Liang G. Expression of long non-coding RNA SFTA1P and its function in non-small cell lung cancer. Pathol Res Pract 2020; 216:153049. [PMID: 32825934 DOI: 10.1016/j.prp.2020.153049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major type of lung cancer with high morbidity and mortality. Long non-coding RNAs (lncRNAs) have been reported to be important in development and progression of NSCLC. However, the role of lncRNA SFTA1P remains unclear. This study aims to explore the clinical roles, biological function, and mechanism of SFTA1P in NSCLC. SFTA1P expression was estimated by the quantitative real-time polymerase chain reaction (qRT-PCR) of 90 pairs of tissue samples, the Cancer Genome Atlas (TCGA) database and microarray. After overexpressing SFTA1P, NSCLC cell proliferation, cycle, and apoptosis were detected. We found that the expression of SFTA1P was significantly downregulated in NSCLC tissues with high diagnostic value (AUC = 0.87), which was consistent with the results of TCGA and microarray data. For the analysis of clinical features, the results revealed that SFTA1P expression was closely related to the pathological type (P < 0.01). Furthermore, the cell function results suggested that the overexpression of SFTA1P triggered cell cycle arrest in the S-phase (P < 0.05). From a mechanistic perspective, the results showed that the PI3K-AKT signaling pathway was inhibited after overexpression of SFTA1P in NSCLC. Taken together, this work supported that SFTA1P may play a suppressing role in the tumorigenesis of NSCLC by modulating PI3K-AKT signaling pathway to influence cell cycle, which provides a potential and prospective biomarker for NSCLC.
Collapse
Affiliation(s)
- Dandan Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, No.318 Yongtai Road, Hailing District, Taizhou City, Jiangsu Province, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
40
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
41
|
Chen HI, Ou HC, Chen CY, Yu SH, Cheng SM, Wu XB, Lee SD. Neuroprotective Effect of Rhodiola crenulata in D-Galactose-Induced Aging Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:373-390. [PMID: 32138536 DOI: 10.1142/s0192415x20500196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The medicinal plant Rhodiola crenulata grows at high altitudes in the Arctic and mountainous regions and is commonly used in phytotherapy in Eastern European and Asian countries. In the present study, we investigated the anti-apoptotic effect of Rhodiola crenulata and its neuroprotective mechanism of action in a rat model of D-galactose-induced aging. Two groups of twelve-week-old male Wistar rats received a daily injection of D-galactose (150mg/kg/day, i.p.) and orally administered Rhodiola crenulata (0, 248mg/kg/day) for eight weeks, while a control group received a saline injection (1ml/kg/day, i.p.). We examined apoptosis in the cortex and hippocampus of three groups of rats based on a terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling (TUNEL) positive assay. The expression levels of apoptotic and anti-apoptotic proteins in excised brains were analyzed by Western blotting. Our findings indicated that D-galactose caused marked neuronal apoptosis via activation of both extrinsic-dependent and mitochondrial-dependent apoptotic pathways. When compared to the control group, the protein levels of Fas receptor, Fas ligand, Fas-associated death domain (FADD), and activated caspase-8 (Fas-dependent apoptotic pathways), as well as those of t-Bid, Bax, cytochrome c, activated caspase-9, and activated caspase-3 (mitochondrial-dependent apoptotic pathways), were significantly increased in the D-galactose treated group. In addition, D-galactose impaired the phosphorylation of PI3K/Akt, an important survival signaling event in neurons. Rhodiola crenulata, however, protected against all these neurotoxicities in aging brains. The present study suggests that neuronal survival promoted by Rhodiola crenulata may be a potentially effective method to enhance the resistance of neurons to age-related disorders.
Collapse
Affiliation(s)
- Hsiu-I Chen
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan
| | - Hsiu-Chung Ou
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| | - Chung-Yu Chen
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Shao-Hong Yu
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, P. R. China
| | - Shiu-Min Cheng
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Xu-Bo Wu
- Department of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung, Taiwan.,College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, P. R. China.,Department of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Dai Y, Lim JX, Yeo SCM, Xiang X, Tan KS, Fu JH, Huang L, Lin HS. Biotransformation of Piceatannol, a Dietary Resveratrol Derivative: Promises to Human Health. Mol Nutr Food Res 2020; 64:e1900905. [PMID: 31837280 DOI: 10.1002/mnfr.201900905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To evaluate the health-promoting potentials of piceatannol (PIC), a dietary resveratrol derivative, its biotransformation is examined. METHODS AND RESULTS The biotransformation is tested in human/rat hepatic microsomes and cytosols; its pharmacokinetic profiles are assessed in rats. Although limited phase I metabolism exists in microsomes, PIC is rapidly converted to two pharmacologically active metabolites, namely rhapontigenin (RHA) and isorhapontigenin (ISO) in cytosols. Such biotransformation is completely blocked by entacapone, a well-known catechol-O-methyltransferase (COMT) inhibitor, demonstrating that the O-methylation is mediated by COMT. Moreover, PIC is identified as a substrate inhibitor of COMT, suggesting its potential benefits in Alzheimer's disease. Due to extensive phase II metabolism including glucuronidation, sulfation, and O-methylation, PIC displays rapid clearance and at least 4.02% ± 0.61% and 17.70% ± 0.91% of PIC is converted to RHA and ISO, respectively, in rats after intravenous administration. Similarly, PIC serves as an effective precursor of ISO upon oral administration. CONCLUSION Since PIC and its metabolites possess pleiotropic health-promoting activities, it has emerged as a promising nutraceutical candidate for further development. This study also reinforces the importance of in vivo testing in nutritional researches as the active metabolite(s) may be absent from the in vitro system.
Collapse
Affiliation(s)
- Yu Dai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Jin Xuan Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Samuel Chao Ming Yeo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore, 119083
| | - Jia Hui Fu
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore, 119083
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| |
Collapse
|
43
|
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural stilbenes effects in animal models of Alzheimer's disease. Neural Regen Res 2020; 15:843-849. [PMID: 31719245 PMCID: PMC6990773 DOI: 10.4103/1673-5374.268970] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease is one of the most frequent neurodegenerative diseases. This pathology is characterized by protein aggregates, mainly constituted by amyloid peptide and tau, leading to neuronal death and cognitive impairments. Drugs currently proposed to treat this pathology do not prevent neurodegenerative processes and are mainly symptomatic therapies. However, stilbenes presenting multiple pharmacological effects could be good potential therapeutic candidates. The aim of this review is to gather the more significant papers among the broad literature on this topic, concerning the beneficial effects of stilbenes (resveratrol derivatives) in animal models of Alzheimer’s disease. Indeed, numerous studies focus on cellular models, but an in vivo approach remains of primary importance since in animals (mice or rats, generally), bioavailability and metabolism are taken into account, which is not the case in in vitro studies. Furthermore, examination of memory ability is feasible in animal models, which strengthens the relevance of a compound with a view to future therapy in humans. This paper is addressed to any researcher who needs to study untested natural stilbenes or who wants to experiment the most effective natural stilbenes in largest animals or in humans. This review shows that resveratrol, the reference polyphenol, is largely studied and seems to have interesting properties on amyloid plaques, and cognitive impairment. However, some resveratrol derivatives such as gnetin C, trans-piceid, or astringin have never been tested on animals. Furthermore, pterostilbene is of particular interest, by its improvement of cognitive disorders and its neuroprotective role. It could be relevant to evaluate this molecule in clinical trials.
Collapse
Affiliation(s)
- Aline Freyssin
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Guylène Page
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Bernard Fauconneau
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Agnès Rioux Bilan
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
44
|
Intracellular mechanisms and behavioral changes in mouse model of attention deficit hyperactivity disorder: Importance of age-specific NMDA receptor blockade. Pharmacol Biochem Behav 2019; 188:172830. [PMID: 31756355 DOI: 10.1016/j.pbb.2019.172830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022]
Abstract
Exposure of NMDA receptor antagonists during developmental stages leads to behavioral consequences like attention deficit hyperactivity disorder (ADHD). However, the underlying molecular mechanisms have remained poorly understood. Herein, we studied the phosphorylated Akt (pAkt) and caspase-3, the key regulators of neuronal cell survival/death, as the probable downstream targets of MK-801 often used to engender ADHD-like condition. Swiss albino mice at postnatal days (PND) 7, 14 or 21 were injected with a single dose of MK-801 and evaluated for hyperactivity (open field test) and memory deficit at adolescence (PND 30) and adult stages (PND 60). PND 7 or 14 treatment groups (but not PND 21) consistently showed hyperactivity at the adolescence stage. A significant increase in working and reference memory errors in radial arm maze was noted at the adolescence age. PND 7 group continued to display the symptoms even in adulthood. All the treatment groups showed a significant decrease in the percent alterations (Y-maze) and discrimination index (novel object recognition test) at adolescence age. A significant increase in caspase-3 expression was noted in the prefrontal cortex (PFC) and hippocampus, whereas increased pAkt was noticed only in the hippocampus, following a single injection of MK-801 at PND 7. Concurrently, PND 7 treatment group showed significantly decreased neuronal nuclei (NeuN) expression (a marker for mature neurons) in the dentate gyrus, cornu ammonis-3 and PFC, but not in cornu ammonis-1, at adolescence age. We suggest that the observed symptoms of ADHD at adolescence and adulthood stages may be linked to alteration in pAkt and caspase-3 followed MK-801 treatment at PND 7.
Collapse
|
45
|
Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai G. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci 2019; 239:116879. [PMID: 31682849 DOI: 10.1016/j.lfs.2019.116879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Lung cancer is the largest cause of morbidity and mortality among tumor diseases. Traditional first-line chemotherapeutic drugs are frequently accompanied by serious side effects when used to treat tumors, thus, novel drugs with reduced toxic effects may improve a patients' quality of life. Icariin, an extract of herba epimedii, has been demonstrated to exhibit multiple antitumor effects with low toxicity. In the present study, cell cycle analysis, apoptosis assays, DAPI staining, CCK8 assays, xenograft tumor models, mitochondrial membrane potential analysis, western blotting and reverse transcription-quantitative PCR were performed to determine the molecular mechanism underlying icariin activity in the human lung adenocarcinoma cell lines, A549 and H1975. The results showed that icariin reduced proliferation of A549 and H1975 cells in a time- and dose-dependent manner in vitro to a greater degree than the control BEAS-2B cells, and this was associated with increased apoptosis, but not with cell cycle progression. In vivo experiments showed that icariin treatment significantly decreased proliferation of H1975 cells in a xenograft mouse model. Mechanistically, icariin activated the mitochondrial pathway by inhibiting the activation of the PI3K-Akt pathway-associated kinase, Akt, resulting in the activation of members of the caspase family of proteins, and thus inducing apoptosis of A549 cells. Taken together, the results revealed that icariin has anti-cancer properties in lung cancer in vitro and in vivo without any noticeable toxic effects on normal lung epithelial cells. Icariin in combination with conventional anti-cancer agents may be an effective therapeutic strategy for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wencui Kong
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiaoyan Qi
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong Province, 255020, PR China
| | - Shuiliang Wang
- Department of Urology, 900th Hospital of the Joint Logistics Team Support Force, Fujian Medical University, Fuzhou, Fujian Province, 350025, PR China; Fujian Key Laboratory of Transplant Biology, Affiliated Dongfang Hospital, Xiamen University School of Medicine, Fuzhou, Fujian Province, 350025, PR China
| | - Ying Chen
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Zhongquan Zhao
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wenwu Wang
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, 350014, PR China
| | - Jinhuo Lai
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, PR China
| | - Zongyang Yu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China; Fujian Medical University Affiliated Dongfang Hospital, Fuzhou, Fujian Province, 350025, PR China; Xiamen University School of Medicine, Xiamen, Fujian Province, 361102, PR China; Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China.
| | - Guoxiang Lai
- Department of Respiratory and Critical Care Medicine, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China.
| |
Collapse
|
46
|
Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 2019; 11:nu11102426. [PMID: 31614630 PMCID: PMC6835970 DOI: 10.3390/nu11102426] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Curcumin, a nontoxic, naturally occurring polyphenol, has been recently proposed for the management of neurodegenerative and neurological diseases. However, a discrepancy exists between the well-documented pharmacological activities that curcumin seems to possess in vivo and its poor aqueous solubility, bioavailability, and pharmacokinetic profiles that should limit any therapeutic effect. Thus, it is possible that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of curcumin are present after oral administration. Indeed, a new working hypothesis that could explain the neuroprotective role of curcumin despite its limited availability is that curcumin acts indirectly on the central nervous system by influencing the “microbiota–gut–brain axis”, a complex bidirectional system in which the microbiome and its composition represent a factor which preserves and determines brain “health”. Interestingly, curcumin and its metabolites might provide benefit by restoring dysbiosis of gut microbiome. Conversely, curcumin is subject to bacterial enzymatic modifications, forming pharmacologically more active metabolites than curcumin. These mutual interactions allow to keep proper individual physiologic functions and play a key role in neuroprotection.
Collapse
Affiliation(s)
- Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 80100 Naples, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo via Cinthia, 80100 Naples, Italy.
| | - Sabrina Margarucci
- Institute of Research on Terrestrial Ecosystems, 05010 Porano TR, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli, 80100 Naples, Italy.
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 80100 Naples, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo via Cinthia, 80100 Naples, Italy.
| | - Gianfranco Peluso
- Institute of Research on Terrestrial Ecosystems, 05010 Porano TR, Italy.
| |
Collapse
|
47
|
Hao Y, Liu J, Wang Z, Yu LL, Wang J. Piceatannol Protects Human Retinal Pigment Epithelial Cells against Hydrogen Peroxide Induced Oxidative Stress and Apoptosis through Modulating PI3K/Akt Signaling Pathway. Nutrients 2019; 11:nu11071515. [PMID: 31277394 PMCID: PMC6683019 DOI: 10.3390/nu11071515] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
This study investigated the protective effect and the molecular mechanism of piceatannol on hydrogen peroxide (H2O2)-induced retinal pigment epithelium cell (ARPE-19) damage. Piceatannol treatment significantly inhibited H2O2-induced RPE cell death and reactive oxygen species (ROS) generation by 64.4% and 75.0%, respectively. Results of flow cytometry showed that H2O2-induced ARPE-19 cells apoptosis was ameliorated by piceatannol supplementation, along with decreased relative protein expressions of Bax/Bcl-2, Cleave-Caspase-3, and Cleave-PARP. Moreover, piceatannol treatment induced NF-E2-related factor 2 (Nrf2) signaling activation, which was evidenced by increased transcription of anti-oxidant genes, glutamate-cysteine ligase catalytic subunit (GCLc), SOD, and HO-1. Knockdown of Nrf2 through targeted siRNA alleviated piceatannol-mediated HO-1 transcription, and significantly abolished piceatannol-mediated cytoprotection. LY294002 (PI3K inhibitor) dramatically blocked piceatannol-mediated increasing of Nrf2 nuclear translocation, HO-1 expression, and cytoprotective activity, indicating the involvement of PI3K/Akt pathway in the cytoprotective effect of piceatannol. The results from this suggest the potential of piceatannol in reducing the risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China..
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China..
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
48
|
Piceatannol effectively counteracts glyceraldehyde-3-phosphate dehydrogenase aggregation and nuclear translocation in hippocampal cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
49
|
The formation and bioactivities of green substances in Chrysanthemum morifolium tea. Food Chem 2019; 286:268-274. [DOI: 10.1016/j.foodchem.2019.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022]
|
50
|
Huang C, Wen C, Yang M, Gan D, Fan C, Li A, Li Q, Zhao J, Zhu L, Lu D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol Biol Rep 2019; 46:3387-3397. [PMID: 31006097 DOI: 10.1007/s11033-019-04801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a key factor of and closely implicated in the pathogenesis of Alzheimer's disease (AD). We herein used tert-butyl hydroperoxide (t-BHP) to induce oxidative stress and mimic oxidative neurotoxicity in vitro. Lycopene is a natural antioxidant that has a strong ability to eliminate free radicals and shows effective protection in some neurodegenerative disease models. However, the effect of lycopene on t-BHP-induced neuronal damage in primary mouse neurons is unknown. This study aimed to investigate the effects of lycopene on t-BHP-induced neuronal damage and the related mechanisms. We found that lycopene pretreatment effectively enhanced the cell viability, improved the neuron morphology, increased the GSH/GSSG level, restored the mitochondrial membrane potential (ΔΨm) and decreased reactive oxygen species generation. Furthermore, lycopene reduced the ratios of Bax:Bcl-2 and cleaved caspase-3:caspase-3 and the level of cytochrome C, increased the levels of synaptophysin (SYP) and postsynaptic density 95 (PSD95) and activated the PI3K/Akt pathway. In conclusion, lycopene attenuated oxidative stress and reduced t-BHP-induced cell apoptosis, and the mechanism is likely related to activation of the PI3K/Akt pathway. Therefore, lycopene is a potential agent for preventing oxidative stress-mediated AD.
Collapse
Affiliation(s)
- Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|