1
|
Wang F, Li J, Qi Q, Mao Y, Yan X, Li X, Mu Y, Zhang H, Zhao C, Liu J. Structural, physicochemical and digestive properties of non-covalent and covalent complexes of ultrasound treated soybean protein isolate with soybean isoflavone. Food Res Int 2024; 189:114571. [PMID: 38876583 DOI: 10.1016/j.foodres.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jinying Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuxuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiaopian Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xinqi Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yanfei Mu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
2
|
Qin S, Li R, McClements DJ, Chen Y, Duan Z, Chen M, Dai Y, Liao L, Zhou W, Li J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: an in vitro gastrointestinal tract study. Food Funct 2024; 15:7478-7490. [PMID: 38915263 DOI: 10.1039/d4fo01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Ying Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
3
|
Zhou Z, Wang D, Luo D, Zhou Z, Liu W, Zeng W, Dinnyés A, Xiong YL, Sun Q. Non-covalent binding of chlorogenic acid to myofibrillar protein improved its bio-functionality properties and metabolic fate. Food Chem 2024; 440:138208. [PMID: 38159322 DOI: 10.1016/j.foodchem.2023.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
As natural antioxidants added to meat products, polyphenols can interact with proteins, and the acid-base environment influenced the extent of non-covalent and covalent interactions between them. This study compared the bio-functional characteristics and metabolic outcomes of the myofibrillar protein-chlorogenic acid (MP-CGA) complexes binding in different environments (pH 6.0 and 8.5). The results showed that CGA bound with MP significantly enhanced its antioxidant activity and inhibitory effect on metabolism enzymes. CGA bound deeply into the MP structure hydrophobic cavity at pH 6.0, which reduced its degradation by digestive enzymes, thus increasing its bio-accessibility from 59.5% to 71.6%. The digestion products of the two complexes exhibited significant differences, with the non-covalent MP-CGA complexes formed at pH 6.0 showing significantly higher concentrations of rhetsinine and piplartine, two well-known compounds to modulate diabetes. This study demonstrated that non-covalent binding between protein and polyphenol in the acidic environment held greater promising prospects for improving health.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Wei Liu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Weicai Zeng
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos str. 26., 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary.
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
4
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
5
|
Zhou Z, Wang D, Xu X, Dai J, Lao G, Zhang S, Xu X, Dinnyés A, Xiong Y, Sun Q. Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model. Food Chem 2023; 409:135195. [PMID: 36571901 DOI: 10.1016/j.foodchem.2022.135195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that polyphenols could mitigate type 2 diabetes mellitus (T2DM). The glucose-regulatory effects of protein-bound polyphenols, however, have been rarely studied. In this study, macrogenomic and metabolomic analyses were applied to investigate the modulation of myofibrillar protein-chlorogenic acid (MP-CGA) complexes on T2DM rats from the gut microbiota perspective. Results showed that MP-CGA improved hyperglycemia and hyperlipidemia, decreased intestinal inflammation, and reduced intestinal barrier injury. MP-CGA reconstructed gut microbiota in T2DM rats, elevating the abundance of probiotics Bacteroides, Akkermansia, and Parabacteroides while suppressing opportunistic pathogens Enterococcus and Staphylococcus. MP-CGA significantly elevated the concentrations of intestinal metabolites like butyric acid that positively regulate T2DM and reduced the secondary bile acids contents. Therefore, MP-CGA modulated the gut microbiota and related metabolites to maintain stable blood glucose in T2DM rats, providing new insights into the application of protein-polyphenol complexes in foods.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Dan Wang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Sichuan 610500, PR China
| | - Xinyi Xu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jin Dai
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Guangjie Lao
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Senlin Zhang
- Department of Food Engineering, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xiaofang Xu
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - András Dinnyés
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China; BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Youling Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
6
|
Andersen J, Bosetti M, Mancini A, Solovyev P, Nardin T, Bontempo L, Larcher R, Franciosi E. Improvement of Caciotta-like cheese nutritional value by means of enrichment with blackcurrant ( Ribes nigrum) and Cornelian cherry ( Cornus mas). Front Nutr 2023; 9:1023490. [PMID: 36846023 PMCID: PMC9950642 DOI: 10.3389/fnut.2022.1023490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 02/12/2023] Open
Abstract
Introduction In this study, we supplemented models of Caciotta-like cheese with blackcurrant (Ribes nigrum) and Cornelian cherry (Cornus mas), as they have a high content of polyphenols, known as phytochemicals associated with health benefits. We evaluated the microbial composition, organoleptic aspects, total phenolic content, and chemical composition of model cheeses enriched with blackcurrant and Cornelian cherry. Methods Two different suppliers have been tested: a conventional and an organic one. Two different conditions of preparation (freeze-dried and not freeze-dried) were tested in two different amounts (0.3 and 0.6% dry weight w/v milk volume). Polyphenols were determined using Folin-Ciocalteu reaction and spectrometry; microbial community was determined with selective 24 media and plate counts; composition was determined using nuclear magnetic resonance spectrometry. Organoleptic tests with an untrained panel have been performed. Results The enrichments with blackcurrant and Cornelian cherry increased the total polyphenol content in model cheeses, in particular, when blackcurrant and Cornelian cherry were from conventional farming. Blackcurrant-enriched cheeses showed higher counts of lactic acid bacteria, higher levels of organic acids, amino acids, gamma-aminobutyric acid, histamine, and lower amount of monosaccharides deriving from bacterial lactose fermentation in cheese, suggesting a positive effect of blackcurrant compounds on the growth and activity of lactic acid bacteria. The enrichments did not affect the acceptance of the cheese, neither by blackcurrant nor by Cornelian cherry incorporation, with the exception of the appearance. Discussion Overall, we showed that cheeses enriched with blackcurrant or Cornelian cherry from conventional farming increased the bioactive potential of the dairy product without having an adverse effect on the microbial community, physiochemical properties, or organoleptic properties.
Collapse
Affiliation(s)
- Jonas Andersen
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Maddalena Bosetti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Andrea Mancini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Pavel Solovyev
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Roberto Larcher
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy,*Correspondence: Elena Franciosi ✉
| |
Collapse
|
7
|
Feng Y, Gu J, Zhu T, Li Z, Gu Z, Xu S, Ban X, Li C. Enzymatic cyclodextrin synthesis-tributyrin inclusion complex: Properties, structural characterization and release behaviors in vitro. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Phenolic Compounds and Antioxidant Activity of Rice–Tartary Buckwheat Composite as Affected by In Vitro Digestion. J CHEM-NY 2022. [DOI: 10.1155/2022/2472513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to evaluate the phenolic compounds and antioxidant activity of rice–tartary buckwheat composite (RTBC) as affected by in vitro digestion to explore the structure-activity relationship of the release of total phenolic content (TPC) and total flavonoid content (TFC) with the antioxidant activity of RTBC during in vitro oral, gastric, and intestinal digestion stages. The release of TPC and TFC from RTBC increased significantly after in vitro digestion (
), and the change of antioxidant activity was consistent with that of TPC and TFC. Compared with the initial stage of digestion, the antioxidant activity of RTBC was increased after digestion (
), and there was a strong correlation between antioxidant activity and the release of TPC and TFC (0.954 < R < 0.997;
). The phenolic compounds released in the oral, gastric, and intestinal digestion stages varied, and eight phenolic compounds were identified by UPLC-Triple-TOF/MS, namely, quercetin-3-O-robinoside-7-O-sophoroside, quercetin-3-O-neohesperidoside-7-O-glucoside, forsythobiflavone A, forsythobiflavone B, quercetin-3-O-rutinoside-7-O-glucoside, rutin, isoquercetin, and ferulic acid. These results indicated that in vitro digestion significantly increases the release of phenolic compounds and flavonoids from RTBC and there is a higher antioxidant activity after digestion than before digestion. The phenolic compounds released after digestion of RTBC are beneficial to health protection.
Collapse
|
9
|
Bioaccessibility and bioavailability changes of phenolic compounds in pumpkins (Cucurbita moschata): A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ahmad N, Qamar M, Yuan Y, Nazir Y, Wilairatana P, Mubarak MS. Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092831. [PMID: 35566182 PMCID: PMC9104150 DOI: 10.3390/molecules27092831] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Fruits, vegetables, and other edible plants in our diet have numerous health benefits, due to the bioactive compounds in these food items, including polyphenols. These plants are a rich and promising source of natural products and phytochemicals that can be used to treat and prevent numerous diseases and prevent the progression of cancer. Dietary polyphenols exhibit chemo-preventive and therapeutic effects against various ailments, including several types of cancer. The current study focuses on polyphenol’s traditional and advanced extraction methods, with supercritical extraction as a novel approach. It also deals with their identification, bioavailability, and role in preventing and treating colorectal and prostate cancers. Additionally, the article covers the literature that deals with the anticancer activities of polyphenols, as well as their potential use as anticancer agents.
Collapse
Affiliation(s)
- Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical and Dental College, Multan 60000, Pakistan
- Correspondence: (N.A.); (P.W.); (M.S.M.); Tel.: +962-791016126 (M.S.M.)
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yasir Nazir
- Department of Chemistry, Faculty of Sciences, University of Sialkot, Sialkot 51300, Pakistan;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (N.A.); (P.W.); (M.S.M.); Tel.: +962-791016126 (M.S.M.)
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Correspondence: (N.A.); (P.W.); (M.S.M.); Tel.: +962-791016126 (M.S.M.)
| |
Collapse
|
11
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
12
|
Chew HC, Tang PL, Tan XY, Tan HY. Effect of mulberry leaf extract fortification and probiotic fermentation on the bioactivities of cottage cheese. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
14
|
Papagianni O, Argyri K, Loukas T, Magkoutis A, Biagki T, Skalkos D, Kafetzopoulos D, Dimou C, Karantonis HC, Koutelidakis AE. Postprandial Bioactivity of a Spread Cheese Enriched with Mountain Tea and Orange Peel Extract in Plasma Oxidative Stress Status, Serum Lipids and Glucose Levels: An Interventional Study in Healthy Adults. Biomolecules 2021; 11:1241. [PMID: 34439907 PMCID: PMC8395019 DOI: 10.3390/biom11081241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Postprandial lipemia, glycemia and oxidative stress may affect the occurrence of cardiovascular disease. The purpose of the present intervention study was to investigate the effect of a spread cheese enriched with mountain tea (Sideritis sp.) and orange peel (Citrus sinensis) extract on postprandial metabolic biomarkers in healthy volunteers. In a cross-over design, 14 healthy subjects 20-30 years old were consumed either a meal rich in fat and carbohydrates (80 g white bread, 40 g butter and 30 g full fat spread cheese) or a meal with the spread cheese enriched with 6% mountain tea-orange peel extract. Differences in postprandial total plasma antioxidant capacity, resistance of plasma to oxidation, serum lipids, glucose and uric acid levels were evaluated at 0, 1.5 and 3 h after consumption. Plasma total antioxidant capacity was significantly increased 3 h after the consumption of the meal in the presence of the extract-enriched cheese, compared to the conventional cheese (p = 0.05). Plasma resistance to oxidation was increased at 30 min in the Functional meal compared with the Control meal. A tendency to decrease the postprandial rise in glucose and triglyceride levels, 1.5 h and 3 h, respectively, after the intake of the meal with the extract-enriched cheese was observed (p = 0.062). No significant changes in the concentrations of the remaining biomarkers studied were observed (p > 0.05). Further studies with a larger sample are needed in both healthy adults and patients with cardiovascular disease to draw safer conclusions about the postprandial effect of the extracts on metabolic biomarkers that predict cardiovascular risk.
Collapse
Affiliation(s)
- Olga Papagianni
- Laboratory of Nutrition and Public Health, Human Nutrition Unit, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece; (O.P.); (K.A.); (T.B.); (C.D.)
| | - Konstantina Argyri
- Laboratory of Nutrition and Public Health, Human Nutrition Unit, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece; (O.P.); (K.A.); (T.B.); (C.D.)
| | - Thomas Loukas
- Outpatιent Clinic, 81400 Myrina, Lemnos, Greece; (T.L.); (A.M.)
| | | | - Theodora Biagki
- Laboratory of Nutrition and Public Health, Human Nutrition Unit, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece; (O.P.); (K.A.); (T.B.); (C.D.)
| | - Dimitrios Skalkos
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | | | - Charalampia Dimou
- Laboratory of Nutrition and Public Health, Human Nutrition Unit, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece; (O.P.); (K.A.); (T.B.); (C.D.)
| | - Haralampos C. Karantonis
- Laboratory of Food Chemistry, Biochemistry and Technology, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece;
| | - Antonios E. Koutelidakis
- Laboratory of Nutrition and Public Health, Human Nutrition Unit, Department of Food Science and Nutrition, University of the Aegean, 81400 Myrina, Lemnos, Greece; (O.P.); (K.A.); (T.B.); (C.D.)
| |
Collapse
|
15
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Marinea M, Ellis A, Golding M, Loveday SM. Soy Protein Pressed Gels: Gelation Mechanism Affects the In Vitro Proteolysis and Bioaccessibility of Added Phenolic Acids. Foods 2021; 10:foods10010154. [PMID: 33450925 PMCID: PMC7828434 DOI: 10.3390/foods10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
In this study, a model system of firm tofu (pressed gel) was prepared to study how the coagulation mechanism-acidification with glucono δ-lactone (GDL) or coagulation with magnesium sulphate (MgSO4)-affected the physical properties of the gels along with their in vitro proteolysis (or extent of proteolysis). The two types of gels were also fortified with 3.5 mM protocatechuic (PCA) and coumaric acid (CMA) to test whether they can be used as bioactive delivery systems. Texture analysis showed that all MgSO4-induced gels (fortified and control) had a higher hydration capacity and a weaker texture than the GDL-induced gels (p < 0.05). MgSO4 gels had almost double proteolysis percentages throughout the in vitro digestion and showed a significantly higher amino acid bioaccessibility than the GDL gels (essential amino acid bioaccessibility of 56% versus 31%; p < 0.05). Lastly, both gel matrices showed a similar phenolic acid release profile, on a percentage basis (~80% for PCA and ~100% for CMA). However, GDL gels delivered significantly higher masses of bioactives under simulated intestinal conditions because they could retain more of the bioactives in the gel after pressing. It was concluded that the coagulation mechanism affects both the macro- and microstructure of the soy protein pressed gels and as a result their protein digestibility. Both pressed gel matrices are promising delivery systems for bioactive phenolic acids.
Collapse
Affiliation(s)
- Marina Marinea
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Correspondence:
| | - Ashling Ellis
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Matt Golding
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Simon M. Loveday
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand
| |
Collapse
|
17
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
18
|
Plante AM, McCarthy AL, O'Halloran F. Cheese as a functional food for older adults: comparing the bioactive properties of different cheese matrices following simulated gastrointestinal in vitro digestion. Int J Food Sci Nutr 2020; 72:456-469. [PMID: 32967486 DOI: 10.1080/09637486.2020.1825644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related changes to the gastrointestinal tract (GIT) can impact how food is digested. Studying the effects of these changes can help identify functional foods for older adults. Cheese was digested using two simulated gastrointestinal in vitro digestion (SGID) models representing adult and elderly gastro-intestinal conditions. Antioxidant capacity was measured using DPPH, FRAP and TPC assays. The ability of cheese to inhibit digestive enzymes was determined by the α-glucosidase and lipase inhibition assays. Digestive aging influenced the bioactivity of cheese, as elderly digestates had significantly lower (p < 0.05) antioxidant, α-glucosidase and lipase inhibitory properties compared to adult digestates. However, soft cheese (feta, goats', brie) demonstrated greatest potential with comparable radical scavenging properties and lipase inhibition, greatest FRAP and α-glucosidase inhibitory potential. Despite age-related changes, the bioactive properties of cheese were evident following digestion with an older adult SGID model, suggesting cheese has potential as a functional food for older adults.
Collapse
Affiliation(s)
- Aimee M Plante
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Aoife L McCarthy
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Fiona O'Halloran
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
19
|
Agnolucci M, Daghio M, Mannelli F, Secci G, Cristani C, Palla M, Giannerini F, Giovannetti M, Buccioni A. Use of chitosan and tannins as alternatives to antibiotics to control mold growth on PDO Pecorino Toscano cheese rind. Food Microbiol 2020; 92:103598. [PMID: 32950139 DOI: 10.1016/j.fm.2020.103598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 02/02/2023]
Abstract
The fungal microbiota usually growing on the cheese surface during ripening processes promote rind formation and the development of organoleptic characteristics, imparting positive sensory attributes to cheeses. As cheese contamination may also occur by undesirable molds, specific actions for preventing their growth are usually realized in dairy industries by using the antibiotic natamycin, which may represent a risk factor for human health and environmental sustainability. Here, agroindustrial by-products with natural antimicrobial properties, i.e. tannins and chitosan, were tested in a cheese-making trial producing PDO Tuscan pecorino cheese. Morphological and molecular methods revealed that the main components of rind fungal communities of PDO Tuscan pecorino cheese were represented by P. solitum, P. discolour and P. verrucosum. The use of chitosan on cheese rinds did not significantly affect the composition of rind fungal communities developing during the whole ripening process compared with controls treated with natamycin, whose numbers ranged from 3.4 ± 1.3 × 103 to 3.2 ± 1.8 × 104 and from 6.3 ± 3.5 × 102 to 4.0 ± 1.5 × 104, respectively. Overall, grape marc tannins and chitosan did not significantly affect the number and composition of fungal communities developing during PDO Pecorino Toscano cheese ripening, as well as its physical, chemical and nutritional profiles, showing that they may represent effective alternatives to the antibiotic natamycin.
Collapse
Affiliation(s)
- Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health" University of Pisa, Italy.
| | - Matteo Daghio
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Federica Mannelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Giulia Secci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Fabiola Giannerini
- Caseificio Sociale di Manciano Soc. Agr. Coop Località Piano di Cirignano, 58014, Manciano, GR, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health" University of Pisa, Italy
| | - Arianna Buccioni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy; Centro Interdipartimentale di Ricerca per la Valorizzazione degli Alimenti (Ce.R.A.), Viale Pieraccini 6, 50139, Firenze, Italy
| |
Collapse
|
20
|
In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. Int J Biol Macromol 2020; 154:380-389. [DOI: 10.1016/j.ijbiomac.2020.03.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
|
21
|
Chen H, Zheng H, Anne Brennan M, Chen W, Guo X, Brennan CS. Effect of Black Tea Infusion on Physicochemical Properties, Antioxidant Capacity and Microstructure of Acidified Dairy Gel during Cold Storage. Foods 2020; 9:E831. [PMID: 32630369 PMCID: PMC7353655 DOI: 10.3390/foods9060831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
The impacts of black tea infusion on physicochemical properties, antioxidant capacity and microstructure of stirred acidified dairy gel (ADG) system have not been fully explored. These impacts were studied during a 28-day cold storage (4 °C) period to explore the feasibility and technical boundaries of making acidified dairy gels in which black tea infusion (BTI) is incorporated. Reconstituted skim milks containing different proportions of BTI were acidified by GDL (glucono-δ-lactone) at 35 °C for making ADG systems. Both textural properties and structural features were characterized; antioxidant capacity was determined through three assays. They are (1) free radical scavenging ability by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay; (2) ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)] assay and (3) ferric reducing antioxidant power (FRAP) assay. The microstructure of the ADGs was observed using SEM (scanning electron microscopy) and CLSM (confocal laser scanning microscopy). Results showed that BTI significantly increased the antioxidant capacity of the gel systems and the gel containing 15% BTI was as stable as the control gel in terms of syneresis rate. However lower phase stability (higher syneresis rate) was observed in the ADG with a higher portion of BTI (30% to 60%). The microstructure of the ADGs observed may explain to the phase stability and textural attributes. The results suggested that tea polyphenols (TPs) improved antioxidant capacity in all samples and the interactions between BTI and dairy components significantly altered the texture of ADGs. Such alterations were more pronounced in the samples with higher proportion of BTI (60%) and/or longer storage time (28 days).
Collapse
Affiliation(s)
- Han Chen
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand; (H.C.); (M.A.B.)
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Dairy Innovation Institute, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand; (H.C.); (M.A.B.)
| | - Wenpin Chen
- Tea Science Department, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Xinbo Guo
- School of Food Science of Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Charles Stephen Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand; (H.C.); (M.A.B.)
| |
Collapse
|
22
|
Rotta EM, Giroux HJ, Lamothe S, Bélanger D, Sabik H, Visentainer JV, Britten M. Use of passion fruit seed extract (Passiflora edulis Sims) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Ashkezary MR, Bonanno A, Todaro M, Settanni L, Gaglio R, Todaro A, Alabiso M, Maniaci G, Mazza F, Grigoli AD. Effects of adding solid and molten chocolate on the physicochemical, antioxidant, microbiological, and sensory properties of ewe's milk cheese. J Food Sci 2020; 85:556-566. [PMID: 32067252 DOI: 10.1111/1750-3841.15045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
A novel dairy product, namely "chocolate cheese", was produced with two typical Sicilian food products: Pecorino cheese, processed from ewe's milk, and Modica chocolate. The cheese, manufactured with 0%, 5%, 10%, and 15% (w/w) solid or molten chocolate, was evaluated after 0, 2, 4, and 6 weeks of vacuum storage for its nutritional and health properties. The addition of chocolate reduced the pH, protein, fat, and ash; the addition of 5% or 10% molten chocolate reduced hardness (N/mm2 ). The addition of either solid or molten chocolate resulted in a slight increase (P < 0.1038) in the total polyphenol content, a higher oleic acid content, and less oxidative stability. The microbiological profile showed that the total mesophilic count and the number of mesophilic coccus lactic acid bacteria (LAB) were approximately equal (about 108 CFU/g) in all cheese. The survival of the microorganisms was affected by both the chocolate added and the storage time. Chocolate cheese stored for 6 weeks had less Enterobacteriaceae than control cheese, whereas yeasts were detected at higher cell densities in the former cheese. Filamentous fungi were undetectable in some cheese. Differences were also observed in the number of mesophilic rod LAB, which increased progressively over time in all cheese, and in Enterobacteriaceae, yeasts, and filamentous fungi, which decreased during storage. Descriptive and hedonic sensory tests and principal component analysis showed that fresh cheese and cheese stored for 2 weeks, including 5% molten chocolate, were the most preferred by evaluators. Based on these results, chocolate cheese has the potential to be appreciated in the market for its nutritional, health, and sensory properties. PRACTICAL APPLICATION: Chocolate cheese, made by combining two typical Sicilian foods, Pecorino cheese and Modica chocolate, is proposed as a novel dairy product. The highest sensory acceptance was obtained with the addition of 5% molten chocolate and storage for 2 weeks. Given its improved antioxidant properties, healthier fat, and sensory properties, chocolate cheese has the potential to be appreciated in the market, especially by young consumers.
Collapse
Affiliation(s)
- Mansour Rabie Ashkezary
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Aldo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Marco Alabiso
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Giuseppe Maniaci
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Francesca Mazza
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| |
Collapse
|
24
|
Quan W, Tao Y, Qie X, Zeng M, Qin F, Chen J, He Z. Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103633] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Lamothe S, Guérette C, Dion F, Sabik H, Britten M. Antioxidant activity of milk and polyphenol-rich beverages during simulated gastrointestinal digestion of linseed oil emulsions. Food Res Int 2019; 122:149-156. [PMID: 31229066 DOI: 10.1016/j.foodres.2019.03.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are associated with health benefits. However, high PUFA intake increases the risk of lipid oxidation and formation of potentially toxic lipid oxidation species. The objective of this study was to determine the antioxidant activity of milk fractions (whole milk, skim milk, acid whey, ultrafiltration (UF) permeate) and polyphenol-rich beverages (green tea, grape juice) during simulated gastrointestinal digestion. We also determined the effect of milk and polyphenol-rich beverages on the formation of advanced oxidation species during in vitro digestion of PUFA-rich emulsion. Antioxidant activity during digestion of milk fractions emphasized the important role of proteins (more specifically caseins) and the contribution of fat to the antioxidant capacity of milk. In comparison to milk, the antioxidant activity of polyphenol-rich beverages was at least four times higher. During digestion of a PUFA-rich emulsion, the formation of 4-hydroxyhexanal (4-HHE) and 4-hydroxynonenal (4-HNE) in the intestinal phase were respectively reduced by 60% and 75%, in the presence of milk or polyphenol-rich beverages. Further reduction was observed when the emulsion was co-digested with both, milk and polyphenol-rich beverages (89% for 4-HHE and 93% for 4-HNE). These results suggest that the combination of milk and polyphenol-rich beverages increases the antioxidant activity and synergistically reduces the formation of toxic lipid oxidation species during simulated digestion of PUFA-rich foods.
Collapse
Affiliation(s)
- Sophie Lamothe
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Cassandra Guérette
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Frédéric Dion
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Hassan Sabik
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Michel Britten
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| |
Collapse
|
26
|
Wang Q, Cao J, Yu H, Zhang J, Yuan Y, Shen X, Li C. The effects of EGCG on the mechanical, bioactivities, cross-linking and release properties of gelatin film. Food Chem 2019; 271:204-210. [DOI: 10.1016/j.foodchem.2018.07.168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
27
|
Cutrim CS, Cortez MAS. A review on polyphenols: Classification, beneficial effects and their application in dairy products. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12515] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Sampaio Cutrim
- Laboratory of Technology of Dairy Products; Food Technology Department; Faculty of Veterinary Medicine; Fluminense Federal University; 24230-340 Niterói Rio de Janeiro Brazil
| | - Marco Antonio Sloboda Cortez
- Laboratory of Technology of Dairy Products; Food Technology Department; Faculty of Veterinary Medicine; Fluminense Federal University; 24230-340 Niterói Rio de Janeiro Brazil
| |
Collapse
|
28
|
Červenka L, Hájek T, Salek RN, Černíková M, Velichová H, Buňka F. Addition of rutin/quercetin mixture to spreadable processed cheese: antioxidant and textural characteristics. POTRAVINARSTVO 2018. [DOI: 10.5219/872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spreadable processed cheese is a traditional product made from a mixture of cheese, fat, water and emulsifying salts.The aim of this research was prepared spreadable processed cheese with new functional properties. Spreadable processed cheese enriched with the mixture (1:1) of rutin and quercetin (1.0 g.100g-1) was prepared at two melting temperature (80°C and 90°C) for three holding times (1, 5 and 10 min). The effect of melting temperature and holding time on the quercetin and rutin content was assessed using liquid chromatography with UV detection after ultrasonic-assissted extraction to methanol. The corresponding antioxidant characteristics were determined using spectrophotometric assays for total phenolics (TPC) and radical scavenging activities DPPH and ABTS. The extraction yield for quercetin varied from 45.8 to 66.4% and from 12.8 to 40.8% for rutin. The level of quercetin significantly descrased with the increase of holding time, while rutin content has increased with the increase of melting temperature. TPC values ranged from 10.8. to 14.8 mg GAE·g-1 in SPC sample enriched with rutin/quercetin mixture, and the increase of melting temperature resulted in the decrease of TPC values. DPPH and ABTS assays did not reveal any statistically significant pattern using Kruskal-Wallis ANOVA. The addition of the mixture of flavonoids into the processed cheese significantly reduced the complex modulus in comparison with the control sample (without flavonoids). This indicate that the structure of enriched SPC sample was more flexible than those in control processed cheese samples. Both melting temperature and holding time increased the complex modulus. Spreadable processed cheese are scarcely used as a carrier of flavonoids in scientific researches probably due to very complex matrices. Our research proved that spreadable processed cheese containing rutin/quercetin mixture can be used as a functional food.
Collapse
|
29
|
Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 2017; 58:2531-2548. [PMID: 28609142 DOI: 10.1080/10408398.2017.1331200] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.
Collapse
Affiliation(s)
- Albert Ribas-Agustí
- a Department of Food Technology, Agrotecnio Center , University of Lleida , Av. Alcalde Rovira Roure 191, Lleida , E-25198 , Spain
| | - Olga Martín-Belloso
- a Department of Food Technology, Agrotecnio Center , University of Lleida , Av. Alcalde Rovira Roure 191, Lleida , E-25198 , Spain
| | - Robert Soliva-Fortuny
- a Department of Food Technology, Agrotecnio Center , University of Lleida , Av. Alcalde Rovira Roure 191, Lleida , E-25198 , Spain
| | - Pedro Elez-Martínez
- a Department of Food Technology, Agrotecnio Center , University of Lleida , Av. Alcalde Rovira Roure 191, Lleida , E-25198 , Spain
| |
Collapse
|
30
|
Mandalari G, Vardakou M, Faulks R, Bisignano C, Martorana M, Smeriglio A, Trombetta D. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients 2016; 8:nu8090568. [PMID: 27649239 PMCID: PMC5037553 DOI: 10.3390/nu8090568] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/04/2022] Open
Abstract
The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Sal. Sperone 31, 98166 Messina, Italy.
- The Model Gut, Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | - Maria Vardakou
- The Model Gut, Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | - Richard Faulks
- The Model Gut, Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | - Carlo Bisignano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Sal. Sperone 31, 98166 Messina, Italy.
| | - Maria Martorana
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Sal. Sperone 31, 98166 Messina, Italy.
| | - Antonella Smeriglio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Sal. Sperone 31, 98166 Messina, Italy.
| | - Domenico Trombetta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Sal. Sperone 31, 98166 Messina, Italy.
| |
Collapse
|