1
|
Yang B, Zhong Z, Zhang C, Jiang Y, Zhao Z, Wang X, Li Y, Zheng H. Identification of novel xanthine oxidase inhibitory peptides from Takifugu obscurus: Peptidomic analysis, molecular docking, and dynamics simulation. Food Chem 2025; 472:142935. [PMID: 39826518 DOI: 10.1016/j.foodchem.2025.142935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Hyperuricemia, caused by abnormal purine metabolism, is commonly treated with xanthine oxidase (XOD) inhibitors, uricosuric, and dietary adjustments. Recently, marine-derived bioactive peptides have gained attention as potential functional food ingredients due to their therapeutic potential. Takifugu obscurus, an economically significant offshore fish rich in crude proteins was explored in this study as a source of XOD inhibitory peptides. Enzyme hydrolysis combined with computer simulation identified TOH-A > 1 kDa and TOH-P > 1 kDa hydrolysates with high XOD inhibition rates, which were further selected for peptidomics characterization. After screening, seven peptides were synthesized, four of which (W11, DD7, WY7, and GA9) had inhibitory activity, with W11 showing the lowest IC50. The combination of molecular docking positions with molecular dynamics simulations explains that W11, DD7, and WY7 have the potential to be used to alleviate hyperuricemia. This study provides new insights into the structural mechanism and screening strategy of novel bioactive peptides in the future.
Collapse
Affiliation(s)
- Bingkun Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Chunqing Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuxin Jiang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zehan Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China..
| |
Collapse
|
2
|
Zhou F, Li D, Hou Y, Cong Z, Li K, Gu X, Xiao G. Exploration of hypoglycemic peptides from porcine collagen based on network pharmacology and molecular docking. PLoS One 2024; 19:e0298674. [PMID: 38470866 DOI: 10.1371/journal.pone.0298674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, the extraction of hypoglycemic peptides from food proteins has gained increasing attention. Neuropeptides, hormone peptides, antimicrobial peptides, immune peptides, antioxidant peptides, hypoglycemic peptides and antihypertensive peptides have become research hotspots. In this study, bioinformatic methods were used to screen and predict the properties of pig collagen-derived hypoglycemic peptides, and their inhibitory effects on α-glucosidase were determined in vitro. Two peptides (RL and NWYR) were found to exhibit good water solubility, adequate ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties, potentially high biological activity, and non-toxic. After synthesizing these peptides, NWYR showed the best inhibitory effect on α-glucosidase with IC50 = 0.200±0.040 mg/mL, and it can regulate a variety of biological processes, play a variety of molecular functions in different cellular components, and play a hypoglycemic role by participating in diabetic cardiomyopathy and IL-17 signaling pathway. Molecular docking results showed that NWYR had the best binding effect with the core target DPP4 (4n8d), with binding energy of -8.8 kcal/mol. NWYR mainly bonded with the target protein through hydrogen bonding, and bound with various amino acid residues such as Asp-729, Gln-731, Leu-765, etc., thus affecting the role of the target in each pathway. It is the best core target for adjuvant treatment of T2DM. In short, NWYR has the potential to reduce type 2 diabetes, providing a basis for further research or food applications as well as improved utilization of pig by-products. However, in subsequent studies, it is necessary to further verify the hypoglycemic ability of porcine collagen active peptide (NWYR), and explore the hypoglycemic mechanism of NWYR from multiple perspectives such as key target genes, protein expression levels and differences in metabolites in animal models of hyperglycemia, which will provide further theoretical support for its improvement in the treatment of T2DM.
Collapse
Affiliation(s)
- Fating Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Di Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihui Cong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Kaifeng Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xin Gu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
3
|
Zou L, Zhou Y, Yu X, Chen C, Xiao G. Angiotensin I-Converting Enzyme Inhibitory Activity of Two Peptides Derived from In Vitro Digestion Products of Pork Sausage with Partial Substitution of NaCl by KCl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406188 DOI: 10.1021/acs.jafc.3c01149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 μM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| |
Collapse
|
4
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
5
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
6
|
Hu Y, Xiao N, Ye Y, Shi W. Fish proteins as potential precursors of taste-active compounds: an in silico study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6404-6413. [PMID: 35562847 DOI: 10.1002/jsfa.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fish protein is a good source of amino acids and peptides with sensory properties. Theoretically, the type of protein affects the taste quality of the protein hydrolysates. To better use fish protein in the food ingredients industry, an in silico approach was adopted to evaluate the potential of fish protein to release taste-active compounds. RESULTS Six types of protein from seven commercial fishes were screened from the Uniprot knowledge base. The results showed that a remarkable number of umami fragments presented in myosin and parvalbumin (PB), such as glutamic acid (Glu), aspartic acid (Asp), and Asp- and Glu- containing peptides, whereas sweet amino acids and bitter peptides (e.g., Pro- and Gly- containing peptides) were mainly found in collagen (CGI) in all fish samples. After the in silico proteolysis by papain, a difference in the profile of taste-active fragments was observed among the six types of proteins. Amino acids were the main hydrolysis products of these proteins, especially umami, sweet, and bitter amino acids, significantly contributing to the taste formation of protein hydrolysates. Besides, the myosin and CGI hydrolysates were abundant in taste active peptides both in types and quantities. CONCLUSION Myosin is a promising protein source for producing umami fragments, and CGI seems to be a good precursor of sweet and bitter fragments. Different types of protein have an essential effect on the taste of protein hydrolysates. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiting Ye
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
7
|
HERES A, YOKOYAMA I, GALLEGO M, TOLDRÁ F, ARIHARA K, MORA L. Impact of oxidation on the cardioprotective properties of the bioactive dipeptide AW in dry-cured ham. Food Res Int 2022; 162:112128. [DOI: 10.1016/j.foodres.2022.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
8
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Sansi MS, Iram D, Zanab S, Vij S, Puniya AK, Singh A, Ashutosh, Meena S. Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis. J Food Biochem 2022; 46:e14311. [PMID: 35789493 DOI: 10.1111/jfbc.14311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023]
Abstract
The main goal of this study was to assess the potential proteins of goat milk (i.e. α-s1-casein, α-s2-casein, β-casein, κ-casein, α-lactoglobulin and β-lactalbumin) as precursors of antimicrobial peptides (AMPs). Bioinformatics tools such as BIOPEP-UWM (enzyme action) were used for the in silico gastrointestinal digestion via a cocktail of pepsin, trypsin, and chymotrypsin A. The antimicrobial activity of peptides was predicted by using four algorithms, including Random Forest, Support Vector Machines, Artificial Neural Network and Discriminant Analysis on CAMPR3 online server, which works on Hidden Markov Models. Different online tools predicted the physiochemical properties, allergenicity, and toxicity of peptides as well. In silico gastrointestinal digestion simulation of proteins by enzymes cocktail yielded a total of 83 potential AMPs, with thirteen peptides being confident by all four algorithms. More AMPs were released from β-casein (21) than from β-lactoglobulin (16), α-s1-casein (15), α-s2-casein (12), κ-casein (11) and α-lactalbumin (9). A total of 17 peptides were cationic, and the majority of the peptides were extended AMPs. These peptides were released from α-s1-casein (SGK, IQK), α-s2-casein (SIR, AIH, TQPK), β-casein (GPVR, AVPQR, AIAR, GVPK, SQPK, PVPQK, IH, VPK), k-casein (AIPPK, QQR, IAK, TVPAK). All of the AMPs were anticipated to be non-toxic, and 54 of the 83 peptides were confirmed to be non-allergic, with the remaining 29 suspected of being allergenic and 31 to be predicted to have good water solubility. Further the molecular docking was used to evaluate the potent dihydropteroate synthase (DHPS) inhibitors. On the basis of ligand binding energy, 17 predicted AMPs were selected and then analyzed by AutoDock tools. Among the 17 AMPs, 3 AMPs were predicted as high-potent antimicrobial. Based on these findings, in silico investigations reveal that proteins of goat milk are a potential source of AMPs. These peptides can be synthesized and improved for use in the food sector. PRACTICAL APPLICATIONS: Goat milk is regarded as a high-quality milk protein source. According to this study, goat milk protein is a possible source of AMPs, and therefore, most important AMPs can be synthesized and developed for use in the food sector.
Collapse
Affiliation(s)
- Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sameena Zanab
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ajeet Singh
- Quality and Basic Sciences, Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ashutosh
- Animal Physiology Division, Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
10
|
Du X, Jing H, Wang L, Huang X, Wang X, Wang H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Kęska P, Stadnik J. Dipeptidyl Peptidase IV Inhibitory Peptides Generated in Dry-Cured Pork Loin during Aging and Gastrointestinal Digestion. Nutrients 2022; 14:nu14040770. [PMID: 35215420 PMCID: PMC8878428 DOI: 10.3390/nu14040770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
The ability of peptides from an aqueous and salt-soluble protein extract of dry-cured pork loins to inhibit the action of dipeptidyl peptidase IV was determined. This activity was assessed at different times of the production process, i.e., 28, 90, 180, 270 and 360 days. The resistance of the biological property during the simulated digestive process was also assessed. For this, the extracts were hydrolyzed with pepsin and pancreatin as a simulated digestion step of the gastrointestinal tract and fractionated (>7 kDa) as an intestinal absorption step. The results indicate that dried-pork-loin peptides may have potential as functional food ingredients in the prevention and treatment of type 2 diabetes mellitus. In particular, the APPPPAEV, APPPPAEVH, KLPPLPL, RLPLLP, VATPPPPPPK, VPIPVPLPM and VPLPVPVPI sequences show promise as natural food compounds helpful in maintaining good health.
Collapse
|
13
|
Trends in In Silico Approaches to the Prediction of Biologically Active Peptides in Meat and Meat Products as an Important Factor for Preventing Food-Related Chronic Diseases. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increasing awareness of modern consumers regarding the nutritional and health value of food has changed their preferences, as well their requirements, for food products, including meat and meat products. Expanding the knowledge on the impact of food on human health is currently one of the most important research areas for scientists worldwide, and it is also of interest to consumers who want to consciously compose their daily diets. New research methods, such as in silico techniques, offer solutions to these new challenges. These research methods are preferred over food evaluation, e.g., from meat, because of their advantages, such as low costs, shorter analysis times, and general availability (e.g., online databases), and are often used to design in vitro and, subsequently, in vivo tests. This review focuses on the possible use of in silico computerized methods to assess the potential of food as a source of these health-relevant biomolecules by using examples from the literature on meat and meat products. This review also provides information and important suggestions for analyzing peptides in terms of assessing their best sources, and screening those resistant to digestive factors and that show biological activity. The information provided in this review could contribute to the development of new sources of foods as biomolecules important for preventing or treating food-related chronic diseases, such as obesity, hypertension, and diabetes.
Collapse
|
14
|
Polak-Berecka M, Michalak-Tomczyk M, Skrzypczak K, Michalak K, Rachwał K, Waśko A. Potential Biological Activities of Peptides Generated during Casein Proteolysis by Curly Kale ( Brassica oleracea L. var. sabellica L.) Leaf Extract: An In Silico Preliminary Study. Foods 2021; 10:foods10112877. [PMID: 34829159 PMCID: PMC8625700 DOI: 10.3390/foods10112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study is a brief report on the proteolytic activity of curly kale leaf extract against casein. Casein degradation products and an in silico analysis of the biological activity of the peptides obtained was performed. The efficiency of casein hydrolysis by curly kale extract was determined using SDS-PAGE and by peptide concentration determination. The pattern of the enzymatic activity was determined by MALDI-TOF MS analysis. The results showed that α- and β-casein were more resistant to curly kale extract hydrolysis, whereas κ-casein was absent in the protein profile after 8 h of proteolysis, and all casein fractions were completely hydrolyzed after 24 h of incubation. Based on sequence analysis, seven peptides were identified, with molecular mass in the range of 1151-3024 Da. All the peptides were products of β-casein hydrolysis. The identified amino acid sequences were analyzed in BIOPEP, MBPDB, and FeptideDB databases in order to detect the potential activities of the peptides. In silico analysis suggests that the β-casein-derived peptides possess sequences of peptides with ACE inhibitory, antioxidant, dipeptidyl peptidase IV inhibitory, antithrombotic, immunomodulatory, and antiamnesic bioactivity. Our study was first to evaluate the possibility of applying curly kale leaf extract to generate biopeptides through β-casein hydrolysis.
Collapse
Affiliation(s)
- Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
- Correspondence:
| | - Magdalena Michalak-Tomczyk
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
- Department of Animal Physiology and Toxicology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
| | - Katarzyna Skrzypczak
- Department of Plant Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
| |
Collapse
|
15
|
In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi J Biol Sci 2021; 28:5480-5489. [PMID: 34588858 PMCID: PMC8459155 DOI: 10.1016/j.sjbs.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Flaxseed (Linum usitatissimum), commonly known as linseed is an oilseed crop, emerging as an important and functional ingredient of food and has been paid more attention due to its nutritional value as well as beneficial effects. It is mainly rich in is α-linolenic acid (ALA, omega-3 fatty acid), fibres and lignans that have potential health benefits in reducing cardiovascular diseases, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological and autoimmune disorders. Due to its richness in omega-3 fatty acid, a group of enzymes known as fatty acid desaturases (FADs) mainly introduce double bonds into fatty acids’ (FAs) hydrocarbon chains that produce unsaturated fatty acids. Fatty acid desaturase 3 (FAD3), the commonest microsomal enzyme of omega-3 fatty acid, synthesizes linolenic acid (C18:3) from linoleic acid located in endoplasmic reticulum (ER) facing towards the cytosol. The emerging field of bioinformatics and large number of databases of bioactive peptides, helps in providing time-saving and efficient method for identification of potential bioactivities of any protein. In this study, 10 unique sequences of FAD3 from flaxseed protein have been used for in silico proteolysis and releasing of various bioactive peptides using three plant proteases, namely ficin, papain and stem bromelain, that are evaluated with the help of BIOPEP database. Overall, 20 biological activities were identified from these proteins. The results showed that FAD3 protein is a potential source of peptides with angiotensin-I-converting enzyme (ACE) inhibitory and dipeptidyl peptidase-IV (DPP-IV) activities, and also various parameters such as ∑A, ∑B, AE, W, BE, V and DHt were also calculated. Furthermore, PeptideRanker have been used for screening of novel promising bioactive peptides. Various bioinformatics tools also used to study protein’s physicochemical properties, peptide’s score, toxicity, allergenicity aggregation, water solubility, and drug likeliness. The present work suggests that flaxseed protein can be a good source of bioactive peptides for the synthesis of good quality and quantity of oil, and in silico method helps in investigating and production of functional peptides.
Collapse
|
16
|
Chen J, Yu X, Chen Q, Wu Q, He Q. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem 2021; 370:131070. [PMID: 34537424 DOI: 10.1016/j.foodchem.2021.131070] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive peptides derived from food proteins have various physiological roles and have attracted increasing attention in recent years. In this study, two novel ACE inhibitory peptides (EACF and CDF), screened from rabbit meat proteins using in silico methods, exhibited strong inhibitory effects in vitro. EACF and CDF were competitive and non-competitive inhibitors with half-maximal inhibitory concentrations of 41.06 ± 0.82 µM and 192.17 ± 2.46 µM, respectively. Molecular docking experiments revealed that EACF established eight H-bond interactions in the S1 and S2 pockets, and a metal-acceptor interaction with Zn 701. CDF shared four H-bond interactions in the S1 pocket of ACE. The results suggested that rabbit meat proteins could be a suitable material for the preparation of ACE inhibitory peptides, and that virtual screening is an effective, accurate and promising method for the discovery of novel active peptides.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyun Wu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
17
|
Heres A, Mora L, Toldrá F. Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00058-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractHigh cholesterolemia is a key risk factor for the development of cardiovascular diseases, which are the main cause of mortality in developed countries. Most therapies are focused on the modulation of its biosynthesis through 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR) inhibitors. In this sense, food-derived bioactive peptides might act as promising health alternatives through their ability to interact with crucial enzymes involved in metabolic pathways, avoiding the adverse effects of synthetic drugs. Dry-cured ham has been widely described as an important source of naturally-generated bioactive peptides exerting ACEI-inhibitory activity, antioxidant activity, and anti-inflammatory activity between others. Based on these findings, the aim of this work was to assess, for the first time, the in vitro inhibitory activity of HMG-CoAR exerted by dipeptides generated during the manufacturing of dry-cured ham, previously described with relevant roles on other bioactivities.The in vitro inhibitory activity of the dipeptides was assessed by measuring the substrate consumption rate of the 3-hydroxy-3-methylglutaryl CoA reductase in their presence, with the following pertinent calculations.Further research was carried out to estimate the possible interactions of the most bioactive dipeptides with the enzyme by performing in silico analysis consisting of molecular docking approaches.Main findings showed DA, DD, EE, ES, and LL dipeptides as main HMG-CoAR inhibitors. Additionally, computational analysis indicated statin-like interactions of the dipeptides with HMG-CoAR.This study reveals, for the first time, the hypocholesterolemic potential of dry-cured ham-derived dipeptides and, at the same time, converges in the same vein as many reports that experimentally argue the cardiovascular benefits of dry-cured ham consumption due to its bioactive peptide content.
Collapse
|
18
|
Xu SQ, Han YT, Yan JN, Jiang XY, Du YN, Wu HT. In silico-screened cationic dipeptides from scallop with synergistic gelation effect on ι-carrageenan. Food Funct 2021; 12:5407-5416. [PMID: 33988217 DOI: 10.1039/d1fo00570g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, some cationic dipeptides from scallop (Patinopecten yessoensis) male gonads (SMGs), which can synergistically gel with ι-carrageenan (ι-C), were screened by the in silico approach. Fourteen protein sequences of SMGs were obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nano liquid chromatography-mass spectrometry/mass spectrometry (nanoLC-MS/MS) analysis and were then hydrolyzed via in silico simulation. A total of 414 sequences were obtained with 56 duplicates, half of which were positively charged at pH 7. Among the cation sequences, 171 had good water solubility, including two amino acids (Lys and Arg). The molecular weight analysis of the cationic water-soluble sequences showed that 0.2-0.3 kDa accounted for the highest proportion. Based on the obvious synergistic effect of Lys and ι-C, 11 Lys-containing dipeptides, including Ser-Lys (SK), Thr-Lys (TK), Trp-Lys (WK), Ala-Lys (AK), Leu-Lys (LK), Gly-Lys (GK), Val-Lys (VK), Cys-Lys (CK), Asn-Lys (NK), Phe-Lys (FK), and Met-Lys (MK), were finally screened out to study gelation with ι-C. It was found that the dipeptides/ι-C formed firm gels except WK/ι-C. The values of the storage modulus (G') of 11 dipeptides/ι-C were investigated by a rheometer. The G' of 8 dipeptides/ι-C was higher than 1000 Pa. These results indicated that the in silico-screened dipeptides from SMGs can form composite gels with ι-C, which can be used for the design and development of functional hydrogels.
Collapse
Affiliation(s)
- Shi-Qi Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China.
| | - Yi-Tong Han
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China.
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China.
| | - Xin-Yu Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China.
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China.
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian Liaoning 116034, China. and National Engineering Research Center of Seafood, Dalian Liaoning 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China
| |
Collapse
|
19
|
Kęska P, Rohn S, Halagarda M, M. Wójciak K. Peptides from Different Carcass Elements of Organic and Conventional Pork-Potential Source of Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9090835. [PMID: 32906682 PMCID: PMC7554766 DOI: 10.3390/antiox9090835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
The growing consumer interest in organic foods, as well as, in many cases, the inconclusiveness of the research comparing organic and conventional foods, indicates a need to study this issue further. The aim of the study was to compare the effects of meat origin (conventional vs. organic) and selected elements of the pork carcass (ham, loin, and shoulder) on the meat proteome and the antioxidant potential of its peptides. The peptidomic approach was used, while the ability of antioxidants to scavenge 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS), to chelate Fe(II) ions, and to reduce Fe(III) was determined. Most peptides were derived from myofibrillary proteins. The meat origin and the element of the pork carcass did not have a significant effect on the proteome. On the other hand, the pork origin and the carcass element significantly affected the iron ion-chelating capacity (Fe(II)) and the reducing power of peptides. In particular, pork ham from conventional rearing systems had the best antioxidant properties in relation to potential antioxidant peptides. This could be a factor for human health, as well as for stabilized meat products (e.g., toward lipid oxidation).
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, University of Life Sciences in Lublin, 20033 Lublin, Poland;
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany;
| | - Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, 31510 Kraków, Poland;
| | - Karolina M. Wójciak
- Department of Animal Raw Materials Technology, University of Life Sciences in Lublin, 20033 Lublin, Poland;
- Correspondence: ; Tel.: +48-081-462-3340
| |
Collapse
|
20
|
Gallego M, Mauri L, Aristoy MC, Toldrá F, Mora L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103956] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Kartal C, Kaplan Türköz B, Otles S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00434-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Guo H, Richel A, Hao Y, Fan X, Everaert N, Yang X, Ren G. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Sci Nutr 2020; 8:1415-1422. [PMID: 32180951 PMCID: PMC7063354 DOI: 10.1002/fsn3.1423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023] Open
Abstract
Quinoa protein has been paid more and more attention because of its nutritional properties and beneficial effects. With the development of bioinformatics, bioactive peptide database and computer-assisted simulation provide an efficient and time-saving method for the theoretical estimation of potential bioactivities of protein. Therefore, the potential of quinoa protein sequences for releasing bioactive peptides was evaluated using the BIOPEP database, which revealed that quinoa protein, especially globulin, is a potential source of peptides with dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I-converting enzyme (ACE) inhibitory activities. Three plant proteases, namely papain, ficin, and stem bromelain, were employed for the in silico proteolysis of quinoa protein. Furthermore, four tripeptides (MAF, NMF, HPF, and MCG) were screened as novel promising bioactive peptides by PeptideRanker. The bioactivities of selected peptides were confirmed using chemical synthesis and in vitro assay. The present work suggests that quinoa protein can serve as a good source of bioactive peptides, and in silico approach can provide theoretical assistance for investigation and production of functional peptides.
Collapse
Affiliation(s)
- Huimin Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Aurore Richel
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Yuqiong Hao
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Fan
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Nadia Everaert
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Xiushi Yang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guixing Ren
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
23
|
Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2020; 10:6244-6266. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Livestock generates high quantities of residues, which has become a major socioeconomic issue for the meat industry. This review focuses on the identification of bioactive peptides (BPs) in animal byproducts and meat wastes. Firstly, the main bioactivities that peptides can have will be described and the methods for their evaluation will be discussed. Secondly, the various origins of these BPs will be studied. Then, the techniques and tools for the generation of BPs will be detailed in order to discuss, in the final part, how peptides could be used and assimilated. BPs possess diverse biological activities and can be strategic candidates for substituting synthetic molecules. In silico potentiality studies are a helpful tool to understand and predict BPs released from proteins and their potential activities. However, in vitro validation is often required. Although BP use is compelled by strict regulations in relation to the field of application, they are also limited by their low bioavailability and bioaccessibility. Therefore, it is important to test peptide stability during gastrointestinal digestion. Protective strategies have been discussed since their use could improve the stability and effectiveness of BPs.
Collapse
Affiliation(s)
- Julia Bechaux
- INRA, UR 370, Qualité des Produits Animaux (QuaPA), Site de Theix, 63122, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
24
|
Bechaux J, Ferraro V, Sayd T, Chambon C, Le Page JF, Drillet Y, Gatellier P, Santé-Lhoutellier V. Workflow towards the generation of bioactive hydrolysates from porcine products by combining in silico and in vitro approaches. Food Res Int 2020; 132:109123. [PMID: 32331690 DOI: 10.1016/j.foodres.2020.109123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
Food-derived bioactive peptides have generated an increasing interest in the field of health and well-being research. They can act either against the metabolic syndrome, participate in regulating the oxidation balance or act on the immune system. The aim of this study is to develop a workflow to generate bioactive peptides from three porcine offals namely, heart, liver, and lung and one muscle the Longissimus Dorsi, by combining in silico and in vitro approaches. Bioinformatics tools (e.i. BIOPEP and Uniprot) permitted to orientate the choice of enzymes for generating abundant bioactive peptides from the four studied porcine products. With papain and subtilisin, the main bioactivities potentially released were ACE inhibitors, DPP4 inhibitors and antioxidant peptides. An in vitro validation study using papain and subtilisin demonstrated high DPP4 inhibitors and antioxidant bioactivities for the generation of peptides. This work allowed: i) the identification of all proteins that composed porcine heart, liver, lung and LD muscle that could be useful for the scientific community, ii) the development of a workflow to select most abundant proteins in a product while considering abundance factors and iii) the potential of porcine meat and offals to generate DPP4 inhibitors and antioxidant peptides. However, there is still a need in developing new tools in order to face limitations of mass spectrometry for the identification of peptides with less than six amino acids. Such a work may contribute to the development of the circular economy and the innovative creation of value-added products from animal production.
Collapse
Affiliation(s)
- Julia Bechaux
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France; Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Vincenza Ferraro
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Thierry Sayd
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Christophe Chambon
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Plateforme exploration du métabolisme (PFEM), Site de Theix, 63122 Saint Genès Champanelle, France
| | | | - Yoan Drillet
- Cooperl Innovation, BU Ingrédients, Site de Lamballe, 22400 Lamballe, France
| | - Philippe Gatellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France
| | - Véronique Santé-Lhoutellier
- INRAE, UR 370, Qualité des produits animaux (QuaPA), Biochimie des protéines du muscle (BPM), Site de Theix, 63122 Saint Genès Champanelle, France.
| |
Collapse
|
25
|
Kęska P, Stadnik J, Bąk O, Borowski P. Meat Proteins as Dipeptidyl Peptidase IV Inhibitors and Glucose Uptake Stimulating Peptides for the Management of a Type 2 Diabetes Mellitus In Silico Study. Nutrients 2019; 11:nu11102537. [PMID: 31640215 PMCID: PMC6836043 DOI: 10.3390/nu11102537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a non-communicable disease entity currently constituting one of the most significant health problems. The development of effective therapeutic strategies for the prevention and/or treatment of diabetes mellitus based on the selection of methods to restore and maintain blood glucose homeostasis is still in progress. Among the different courses of action, inhibition of dipeptidyl peptidase IV (DPP-IV) can improve blood glucose control in diabetic patients. Pharmacological therapy offering synthetic drugs is commonly used. In addition to medication, dietary intervention may be effective in combating metabolic disturbances caused by diabetes mellitus. Food proteins as a source of biologically active sequences are a potential source of anti-diabetic peptides (DPP-IV inhibitors and glucose uptake stimulating peptides). This study showed that in silico pork meat proteins digested with gastrointestinal enzymes are a potential source of bioactive peptides with a high potential to control blood glucose levels in patients with type 2 diabetes mellitus. Analysis revealed that the sequences released during in silico digestion were small dipeptides (with an average weight of 270.07 g mol-1), and most were poorly soluble in water. The selected electron properties of the peptides with the highest bioactivity index (i.e., GF, MW, MF, PF, PW) were described using the DFT method. The contribution of hydrophobic amino acids, in particular Phe and Trp, in forming the anti-diabetic properties of peptides released from pork meat was emphasized.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Olga Bąk
- Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland.
| | - Piotr Borowski
- Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland.
| |
Collapse
|
26
|
Gallego M, Mora L, Toldrá F. The relevance of dipeptides and tripeptides in the bioactivity and taste of dry-cured ham. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0002-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K, Sawatdichaikul O. FeptideDB: A web application for new bioactive peptides from food protein. Heliyon 2019; 5:e02076. [PMID: 31372542 PMCID: PMC6656964 DOI: 10.1016/j.heliyon.2019.e02076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bioactive peptides derived from food are important sources for alternative medicine and possess therapeutic activity. Several biochemical methods have been achieved to isolate bioactive peptides from food, which are tedious and time consuming. In silico methods are an alternative process to reduce cost and time with respect to bioactive peptide production. In this paper, FeptideDB was used to collect bioactive peptide (BP) data from both published research articles and available bioactive peptide databases. FeptideDB was developed to assist in forecasting bioactive peptides from food by combining peptide cleavage tools and database matching. Furthermore, this application was able to predict the potential of cleaved peptides from 'enzyme digestion module' to identify new ACE (angiotensin converting enzyme) inhibitors using an automatic molecular docking approach. RESULTS The FeptideDB web application contains tools for generating all possible peptides cleaved from input protein by various available enzymes. This database was also used for analysis and visualization to assist in bioactive peptide discovery. One module of FeptideDB has the ability to create 3-dimensional peptide structures to further predict inhibitors for the target protein, ACE (angiotensin converting enzyme). CONCLUSIONS FeptideDB is freely available to researchers who are interested in exploring bioactive peptides. The FeptideDB interface is easy to use, allowing users to rapidly retrieve data based on desired search criteria. FeptideDB is freely available at http://www4g.biotec.or.th/FeptideDB/. Ultimately, FeptideDB is a computational aid for assessing peptide bioactivities.
Collapse
Affiliation(s)
- Thitima Panyayai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 50 Ngam Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Department of Research and Development, Betagro Science Center Co. Ltd., Klong Luang, Pathumthani, 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wachira Limsripraphan
- Department of Computer Engineering, Faculty of Industrial Technology, Pibulsongkram Rajabhat University, 156 Mu 5 Plaichumpol Sub-district, Muang District, Phitsanulok, 65000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam, Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
28
|
Ageing-Time Dependent Changes of Angiotensin I-Converting Enzyme-Inhibiting Activity of Protein Hydrolysates Obtained from Dry-Cured Pork Loins Inoculated with Probiotic Lactic Acid Bacteria. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9765-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem 2018; 254:340-347. [DOI: 10.1016/j.foodchem.2018.02.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 01/04/2023]
|
30
|
Kęska P, Stadnik J. Stability of Antiradical Activity of Protein Extracts and Hydrolysates from Dry-Cured Pork Loins with Probiotic Strains of LAB. Nutrients 2018; 10:nu10040521. [PMID: 29690547 PMCID: PMC5946306 DOI: 10.3390/nu10040521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The application of starter cultures to improve quality and safety has become a very common practice in the meat industry. Probiotic strains of lactic acid bacteria (LAB) can also bring health benefits by releasing bioactive peptides. The aim of this work was to evaluate the stability of antiradical activity of protein extracts from LAB-inoculated dry-cured pork loins during long-term aging and evaluate their hydrolysates after simulated gastrointestinal digestion. Analyses of hydrolysates by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) were strengthened with in silico analysis. The highest antiradical activity of the protein extracts was observed after 180 days of aging. The influence of the strain used (LOCK, BAUER, or BB12) on the inactivation ability of ABTS radicals varied during long-term aging. The IC50 values indicated the higher antiradical properties of salt-soluble (SSF) compared to water-soluble fraction (WSF) of proteins. The peptides generated by in vitro digestion have MW between 700 and 4232 Da and their length ranged from 5 to 47 amino acids in a sequence where Leu, Pro, Lys, Glu, and His had the largest share. This study demonstrates that the degradation of pork muscle proteins during gastrointestinal digestion may give rise to a wide variety of peptides with antiradical properties.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| |
Collapse
|
31
|
Ibrahim MA, Bester MJ, Neitz AW, Gaspar ARM. Tuber Storage Proteins as Potential Precursors of Bioactive Peptides: An In Silico Analysis. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9688-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Shang WH, Tang Y, Su SY, Han JR, Yan JN, Wu HT, Zhu BW. In silicoassessment and structural characterization of antioxidant peptides from major yolk protein of sea urchinStrongylocentrotus nudus. Food Funct 2018; 9:6435-6443. [DOI: 10.1039/c8fo01668b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sea urchin gonads have been demonstrated to contain major yolk protein (MYP), which can be hydrolyzed by enzymes to release biologically active peptides.
Collapse
Affiliation(s)
- Wen-Hui Shang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yue Tang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Sheng-Yi Su
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jia-Run Han
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jia-Nan Yan
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hai-Tao Wu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Bei-Wei Zhu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| |
Collapse
|
33
|
Kęska P, Stadnik J. Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico
study. J SENS STUD 2017. [DOI: 10.1111/joss.12301] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paulina Kęska
- Department of Meat Technology and Food Quality Faculty of Food Science and Biotechnology; University of Life Sciences in Lublin; Lublin Poland
| | - Joanna Stadnik
- Department of Meat Technology and Food Quality Faculty of Food Science and Biotechnology; University of Life Sciences in Lublin; Lublin Poland
| |
Collapse
|
34
|
Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Res Int 2016; 89:27-38. [PMID: 28460914 DOI: 10.1016/j.foodres.2016.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides.
Collapse
|