1
|
Wen J, Lin Z, Cheng J, Li C, Wang L, Zou Y, Wan X, Liu J, Wu J. Heat acclimation alleviates the heat stress-induced impairment of vascular endothelial cells. Tissue Cell 2024; 90:102520. [PMID: 39137536 DOI: 10.1016/j.tice.2024.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Heat acclimation (HA) is found to help decrease the incidence of heat-related illnesses such as heat syncope and exertional heat stroke. However, the response of vascular endothelial cells to HA remain to be elucidated. In this study, mouse brain microvascular endothelial cells (bEnd.3), human umbilical vein endothelial cells (HUVEC), and human aortic endothelial cells (HAEC) were selected. The cells were first subjected to HA at 40 ℃ for 2 h per day for 3 days, and then subjected to heat stress at 43 ℃ for 2 h or 4 h. After heat stress, HA-pretreated cells showed a significant increase in cell viability, cell integrity, a decrease in the proportion of S phase cells, cell apoptosis, and cytoskeletal shrinkage compared with the cells without HA pretreatment. Additionally, the expression of VEGF, ICAM-1, iNOS and EPO in HA-pretreated cells significantly increased. We also presented evidence that HA upregulated HSP70 and bcl-2, while downregulated p-p53 and bax. Notably, the suppression of HSP70 expression attenuated the protective role of heat acclimation. Furthermore, HA mitigated injuries in vital organs of mice exposed to heat stress. Conclusively, these findings indicated the HA can increase the vitality of vascular endothelial cells after heat stress, partially restore the function of vascular endothelial cells, and this protective effect may be related to the upregulation of HSP70 expression.
Collapse
Affiliation(s)
- Jirui Wen
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Zhengdong Lin
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Juan Cheng
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Can Li
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Ling Wang
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Yuhao Zou
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Xuehong Wan
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| | - Jiang Wu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| |
Collapse
|
2
|
Sakurai Y, Hardy ET, Lam WA. Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding. Platelets 2023; 34:2185453. [PMID: 36872890 PMCID: PMC10197822 DOI: 10.1080/09537104.2023.2185453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant in vitro models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.
Collapse
Affiliation(s)
- Yumiko Sakurai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Elaissa T. Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
3
|
Iba T, Helms J, Levi M, Levy JH. The role of platelets in heat-related illness and heat-induced coagulopathy. Thromb Res 2023; 231:152-158. [PMID: 35989192 DOI: 10.1016/j.thromres.2022.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 12/31/2022]
Abstract
Heat-related illness is becoming more problematic due to ongoing global warming. Heat-related injury causes systemic inflammation and coagulopathy, due to leukocyte, platelet, and vascular endothelial cell activation and injury. Hyperthermia directly modulates platelet function and can induce cellular damage. Meanwhile, heat also affects platelet function via activated coagulation, excess inflammation, production of cytokines, and heat shock proteins. Aberrant hyperthermia-induced interactions between leukocytes and endothelial cells are also involved in platelet regulation. Heat-induced coagulopathy commonly progresses to disseminated intravascular coagulation (DIC), leading to multiple organ failure and in some cases enhanced bleeding. Consequently, platelet count, prothrombin time, and DIC score are useful for evaluating the severity of heat-related illness in addition to other organ damage markers such as Glasgow Coma Scale, creatinine, and bilirubin. Despite the increasing risk, therapeutic modalities targeting platelets are limited and no established therapy exists. In this review, we summarize the current knowledge about the role of platelets in the pathogenesis, diagnosis, and management of heat-related illness.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg, France; Strasbourg University Hospital, Medical Intensive Care Unit - NHC, Strasbourg, France; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC, London, UK
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Deal HE, Brown AC, Daniele MA. Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J Mater Chem B 2020; 8:7062-7075. [PMID: 32756718 PMCID: PMC7460719 DOI: 10.1039/d0tb00544d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wound healing is a multivariate process involving the coordinated response of numerous proteins and cell types. Accordingly, biomedical research has seen an increased adoption of the use of in vitro wound healing assays with complexity beyond that offered by traditional well-plate constructs. These microphysiological systems (MPS) seek to recapitulate one or more physiological features of the in vivo microenvironment, while retaining the analytical capacity of more reductionist assays. Design efforts to achieve relevant wound healing physiology include the use of dynamic perfusion over static culture, the incorporation of multiple cell types, the arrangement of cells in three dimensions, the addition of biomechanically and biochemically relevant hydrogels, and combinations thereof. This review provides a brief overview of the wound healing process and in vivo assays, and we critically review the current state of MPS and supporting technologies for modelling and studying wound healing. We distinguish between MPS that seek to inform a particular phase of wound healing, and constructs that have the potential to inform multiple phases of wound healing. This distinction is a product of whether analysis of a particular process is prioritized, or a particular physiology is prioritized, during design. Material selection is emphasized throughout, and relevant fabrication techniques discussed.
Collapse
Affiliation(s)
- Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA. and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, USA and Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Faralli JA, Filla MS, Peters DM. Role of Fibronectin in Primary Open Angle Glaucoma. Cells 2019; 8:E1518. [PMID: 31779192 PMCID: PMC6953041 DOI: 10.3390/cells8121518] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023] Open
Abstract
Primary open angle glaucoma (POAG) is the most common form of glaucoma and the 2nd most common cause of irreversible vision loss in the United States. Nearly 67 million people have the disease worldwide including >3 million in the United States. A major risk factor for POAG is an elevation in intraocular pressure (IOP). The increase in IOP is believed to be caused by an increase in the deposition of extracellular matrix proteins, in particular fibronectin, in a region of the eye known as the trabecular meshwork (TM). How fibronectin contributes to the increase in IOP is not well understood. The increased density of fibronectin fibrils is thought to increase IOP by altering the compliance of the trabecular meshwork. Recent studies, however, also suggest that the composition and organization of fibronectin fibrils would affect IOP by changing the cell-matrix signaling events that control the functional properties of the cells in the trabecular meshwork. In this article, we will discuss how changes in the properties of fibronectin and fibronectin fibrils could contribute to the regulation of IOP.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
7
|
Provenzale I, Brouns SLN, van der Meijden PEJ, Swieringa F, Heemskerk JWM. Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis. MICROMACHINES 2019; 10:mi10110787. [PMID: 31744132 PMCID: PMC6915499 DOI: 10.3390/mi10110787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Microfluidic assays are versatile tests which, using only small amounts of blood, enable high throughput analyses of platelet function in several minutes. In combination with fluorescence microscopy, these flow tests allow real-time visualisation of platelet activation with the possibility of examining combinatorial effects of wall shear rate, coagulation and modulation by endothelial cells. In particular, the ability to use blood and blood cells from healthy subjects or patients makes this technology promising, both for research and (pre)clinical diagnostic purposes. In the present review, we describe how microfluidic devices are used to assess the roles of platelets in thrombosis and haemostasis. We place emphasis on technical aspects and on experimental designs that make the concept of "blood-vessel-component-on-a-chip" an attractive, rapidly developing technology for the study of the complex biological processes of blood coagulability in the presence of flow.
Collapse
Affiliation(s)
- Isabella Provenzale
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| | | | | | | | - Johan W. M. Heemskerk
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| |
Collapse
|
8
|
Varma S, Voldman J. Caring for cells in microsystems: principles and practices of cell-safe device design and operation. LAB ON A CHIP 2018; 18:3333-3352. [PMID: 30324208 PMCID: PMC6254237 DOI: 10.1039/c8lc00746b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic device designers and users continually question whether cells are 'happy' in a given microsystem or whether they are perturbed by micro-scale technologies. This issue is normally brought up by engineers building platforms, or by external reviewers (academic or commercial) comparing multiple technological approaches to a problem. Microsystems can apply combinations of biophysical and biochemical stimuli that, although essential to device operation, may damage cells in complex ways. However, assays to assess the impact of microsystems upon cells have been challenging to conduct and have led to subjective interpretation and evaluation of cell stressors, hampering development and adoption of microsystems. To this end, we introduce a framework that defines cell health, describes how device stimuli may stress cells, and contrasts approaches to measure cell stress. Importantly, we provide practical guidelines regarding device design and operation to minimize cell stress, and recommend a minimal set of quantitative assays that will enable standardization in the assessment of cell health in diverse devices. We anticipate that as microsystem designers, reviewers, and end-users enforce such guidelines, we as a community can create a set of essential principles that will further the adoption of such technologies in clinical, translational and commercial applications.
Collapse
Affiliation(s)
- Sarvesh Varma
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| |
Collapse
|
9
|
Filla MS, Dimeo KD, Tong T, Peters DM. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells. Exp Eye Res 2017; 165:7-19. [PMID: 28860021 PMCID: PMC5705399 DOI: 10.1016/j.exer.2017.08.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 08/27/2017] [Indexed: 10/19/2022]
Abstract
Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Kaylee D Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
10
|
Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood 2017; 130:2819-2828. [PMID: 29018081 DOI: 10.1182/blood-2017-04-780825] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Traditionally, in vitro flow chamber experiments and in vivo arterial thrombosis studies have been proved to be of vital importance to elucidate the mechanisms of platelet thrombus formation after vessel wall injury. In recent years, it has become clear that platelets also act as modulators of inflammatory processes, such as atherosclerosis. A key element herein is the complex cross talk between platelets, the coagulation system, leukocytes, and the activated endothelium. This review provides insight into the platelet-endothelial interface, based on in vitro flow chamber studies and cross referenced with in vivo thrombosis studies. The main mechanisms of platelet interaction with the activated endothelium encompass (1) platelet rolling via interaction of platelet glycoprotein Ib-IX-V with endothelial-released von Willebrand factor with a supporting role for the P-selectin/P-selectin glycoprotein ligand 1 axis, followed by (2) firm platelet adhesion to the endothelium via interaction of platelet αIIbβ3 with endothelial αvβ3 and intercellular adhesion molecule 1, and (3) a stimulatory role for thrombin, the thrombospondin-1/CD36 axis and cyclooxygenase 1 in subsequent platelet activation and stable thrombus formation. In addition, the molecular mechanisms underlying the stimulatory effect of platelets on leukocyte transendothelial migration, a key mediator of atheroprogression, are discussed. Throughout the review, emphasis is placed on recommendations for setting up, reporting, interpreting, and comparing endothelial-lined flow chamber studies and suggestions for future studies.
Collapse
|
11
|
Schoeman RM, Lehmann M, Neeves KB. Flow chamber and microfluidic approaches for measuring thrombus formation in genetic bleeding disorders. Platelets 2017; 28:463-471. [PMID: 28532218 PMCID: PMC6131111 DOI: 10.1080/09537104.2017.1306042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelet adhesion and aggregation, coagulation, fibrin formation, and fibrinolysis are regulated by the forces and flows imposed by blood at the site of a vascular injury. Flow chambers designed to observe these events are an indispensable part of doing hemostasis and thrombosis research, especially with human blood. Microfluidic methods have provided the flexibility to design flow chambers with complex geometries and features that more closely mimic the anatomy and physiology of blood vessels. Additionally, microfluidic systems with integrated optics and/or pressure sensors and on-board signal processing could transform what have been primarily research tools into clinical assays. Here, we describe a historical review of how flow-based approaches have informed biophysical mechanisms in genetic bleeding disorders, challenges and potential solutions for developing models of bleeding in vitro, and outstanding issues that need to be addressed prior to their use in clinical settings.
Collapse
Affiliation(s)
- Rogier M. Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
| | - Marcus Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
| | - Keith B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
- Pediatrics, University of Colorado, Denver, CO, USA
| |
Collapse
|
12
|
Cheng Q, Zhao Y, Li J. Sodium tanshinone IIA sulfonate suppresses heat stress-induced endothelial cell apoptosis by promoting NO production through upregulating the PI3K/AKT/eNOS pathway. Mol Med Rep 2017. [PMID: 28627664 DOI: 10.3892/mmr.2017.6760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock is a life-threatening disease involving systematic inflammation that is closely related to endothelial injury and can lead to multiple organ dysfunction syndrome. Sodium tanshinone IIA sulfonate (STS) has various functions in the vascular endothelium. In the present study, STS is presented to suppress heat stress‑induced apoptosis of human umbilical vein endothelial cells (HUVECs) and high ambient temperature‑induced systematic inflammation in Sprague Dawley rats. In addition, the STS apoptosis‑suppression mechanism was explored. The results presented in the present study demonstrated that the PI3K/AKT pathway was stimulated by STS treatment and that eNOS phosphorylation at Ser‑1177 was also upregulated, resulting in increased nitric oxide production in HUVECs under heat stress. Using specific inhibitors, the authors confirmed that STS‑induced endothelial nitric oxide synthase (eNOS) phosphorylation at Ser‑1177 was activated by protein kinase B phosphorylation at Ser‑473, involving activation of phosphatidylinositol‑3 kinase (PI3K). The results suggested that STS suppresses heat stress‑induced apoptosis of HUVECs via the PI3K/AKT/eNOS pathway and may be used in heat shock treatment as a vascular endothelial protection mechanism.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Emergency, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Zhao
- Department of Emergency, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jianguo Li
- Department of Emergency, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
13
|
Zilberman-Rudenko J, Sylman JL, Garland KS, Puy C, Wong AD, Searson PC, McCarty OJT. Utility of microfluidic devices to study the platelet-endothelium interface. Platelets 2017; 28:449-456. [PMID: 28358586 DOI: 10.1080/09537104.2017.1280600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Kathleen S Garland
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| | - Cristina Puy
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Andrew D Wong
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Peter C Searson
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
14
|
Zhu S, Herbig BA, Li R, Colace TV, Muthard RW, Neeves KB, Diamond SL. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices. Biorheology 2016; 52:303-18. [PMID: 26600269 DOI: 10.3233/bir-15065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s(-1) to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Collapse
Affiliation(s)
- Shu Zhu
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley A Herbig
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruizhi Li
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas V Colace
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Muthard
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith B Neeves
- Department of Chemical and Biomolecular Engineering, Colorado School of Mines, Golden, CO, USA
| | - Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Schoeman RM, Rana K, Danes N, Lehmann M, Di Paola JA, Fogelson AL, Leiderman K, Neeves KB. A microfluidic model of hemostasis sensitive to platelet function and coagulation. Cell Mol Bioeng 2016; 10:3-15. [PMID: 28529666 DOI: 10.1007/s12195-016-0469-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hemostasis is the process of sealing a vascular injury with a thrombus to arrest bleeding. The type of thrombus that forms depends on the nature of the injury and hemodynamics. There are many models of intravascular thrombus formation whereby blood is exposed to prothrombotic molecules on a solid substrate. However, there are few models of extravascular thrombus formation whereby blood escapes into the extravascular space through a hole in the vessel wall. Here, we describe a microfluidic model of hemostasis that includes vascular, vessel wall, and extravascular compartments. Type I collagen and tissue factor, which support platelet adhesion and initiate coagulation, respectively, were adsorbed to the wall of the injury channel and act synergistically to yield a stable thrombus that stops blood loss into the extravascular compartment in ~7.5 min. Inhibiting factor VIII to mimic hemophilia A results in an unstable thrombus that was unable to close the injury. Treatment with a P2Y12 antagonist to reduce platelet activation prolonged the closure time two-fold compared to controls. Taken together, these data demonstrate a hemostatic model that is sensitive to both coagulation and platelet function and can be used to study coagulopathies and platelet dysfunction that result in excessive blood loss.
Collapse
Affiliation(s)
- R M Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - K Rana
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - N Danes
- Applied Mathematics and Statistics Department, Colorado School of Mines, Golden, CO
| | - M Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO
| | - J A Di Paola
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - A L Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah
| | - K Leiderman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO
| | - K B Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO.,Department of Pediatrics, University of Colorado Denver, Aurora, CO
| |
Collapse
|