1
|
Morais S, Vidal E, Cario A, Marre S, Ranchou-Peyruse A. Microfluidics for studying the deep underground biosphere: from applications to fundamentals. FEMS Microbiol Ecol 2024; 100:fiae151. [PMID: 39544108 DOI: 10.1093/femsec/fiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
In this review, selected examples are presented to demonstrate how microfluidic approaches can be utilized for investigating microbial life from deep geological environments, both from practical and fundamental perspectives. Beginning with the definition of the deep underground biosphere and the conventional experimental techniques employed for these studies, the use of microfluidic systems for accessing critical parameters of deep life in geological environments at the microscale is subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial behavior and interactions in subsurface ecosystems, such as simulations of porous systems, interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating pore-scale analysis. Finally, the current challenges and opportunities to expand the use of microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep underground conditions are discussed.
Collapse
Affiliation(s)
- Sandy Morais
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Emeline Vidal
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Anaïs Cario
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | - Samuel Marre
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, F-33600 Pessac Cedex, France
| | | |
Collapse
|
2
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
3
|
Chumakova A, Steegemans T, Baburin IA, Mistonov A, Dubitskiy IS, Schlotheuber J, Kirner F, Sturm S, Lubk A, Müller-Caspary K, Wimmer I, Fonin M, Sturm EV, Bosak A. Multiscale Reciprocal Space Mapping of Magnetite Mesocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207130. [PMID: 36305045 DOI: 10.1002/adma.202207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Mesocrystals are a class of nanostructured material, where a multiple-length-scale structure is a prerequisite of many interesting phenomena. Resolving the mesocrystal structure is quite challenging due to their structuration on different length scales. The combination of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques offers the possibility of non-destructively probing mesocrystalline structures simultaneously, over multiple length scales to reveal their microscopic structure. This work describes how high dynamical range of modern detectors sheds light on the weak features of scattering, significantly increasing the information content. The detailed analysis of X-ray diffraction (XRD) from the magnetite mesocrystals with different particle sizes and shapes is described, in tandem with electron microscopy. The revealed features provide valuable input to the models of mesocrystal growth and the choice of structural motif; the impact on magnetic properties is discussed.
Collapse
Affiliation(s)
- Aleksandra Chumakova
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000, France
- Outstation at Heinz Maier-Leibnitz Zentrum (MLZ), Institute of Crystallography (IfK), RWTH Aachen University, Lichtenbergstrasse 1, 85747, Garching, Germany
| | - Tristan Steegemans
- Julian Schlotheuber and Elena V. Sturm, Department of Chemistry, University of Konstanz, Universitaetsstraße 10, 78457, Konstanz, Germany
| | - Igor A Baburin
- Department of Chemistry, TU Dresden, Bergstraße 66b, 01062, Dresden, Germany
| | - Alexander Mistonov
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Ilya S Dubitskiy
- Julian Schlotheuber and Elena V. Sturm, Department of Chemistry, University of Konstanz, Universitaetsstraße 10, 78457, Konstanz, Germany
| | - Julian Schlotheuber
- Julian Schlotheuber and Elena V. Sturm, Department of Chemistry, University of Konstanz, Universitaetsstraße 10, 78457, Konstanz, Germany
| | - Felizitas Kirner
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000, France
- Department of Earth and Environmental Sciences, Section of Crystallography, Ludwig-Maximilians-Universität München (LMU), Theresienstr. 41C, 80333, Munich, Germany
| | - Sebastian Sturm
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
- Fakultät für Chemie und Pharmazie - Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Axel Lubk
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Knut Müller-Caspary
- Fakultät für Chemie und Pharmazie - Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ilona Wimmer
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Mikhail Fonin
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elena V Sturm
- Department of Earth and Environmental Sciences, Section of Crystallography, Ludwig-Maximilians-Universität München (LMU), Theresienstr. 41C, 80333, Munich, Germany
| | - Alexeï Bosak
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000, France
| |
Collapse
|
4
|
Micheal Raj P, Barbe L, Andersson M, De Albuquerque Moreira M, Haase D, Wootton J, Nehzati S, Terry AE, Friel RJ, Tenje M, Sigfridsson Clauss KGV. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Adv 2021; 11:29859-29869. [PMID: 35479529 PMCID: PMC9040903 DOI: 10.1039/d1ra05270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023] Open
Abstract
Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L 3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.
Collapse
Affiliation(s)
| | - Laurent Barbe
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | - Martin Andersson
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | | | | | | | | - Ann E Terry
- MAX IV Laboratory, Lund University Lund Sweden
| | - Ross J Friel
- School of Information Technology, Halmstad University Halmstad Sweden
| | - Maria Tenje
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | |
Collapse
|
5
|
Rolley N, Bonnin M, Lefebvre G, Verron S, Bargiel S, Robert L, Riou J, Simonsson C, Bizien T, Gimel JC, Benoit JP, Brotons G, Calvignac B. Galenic Lab-on-a-Chip concept for lipid nanocapsules production. NANOSCALE 2021; 13:11899-11912. [PMID: 34190298 DOI: 10.1039/d1nr00879j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The continuous production of drug delivery systems assisted by microfluidics has drawn a growing interest because of the high reproducibility, low batch-to-batch variations, narrow and controlled particle size distributions and scale-up ease induced by this kind of processes. Besides, microfluidics offers opportunities for high throughput screening of process parameters and the implementation of process characterization techniques as close to the product as possible. In this context, we propose to spotlight the GALECHIP concept through the development of an instrumented microfluidic pilot considered as a Galenic Lab-on-a-Chip to formulate nanomedicines, such as lipid nanocapsules (LNCs), under controlled process conditions. In this paper we suggest an optimal rational development in terms of chip costs and designs. First, by using two common additive manufacturing techniques, namely fused deposition modelling and multi-jet modelling to prototype customized 3D microfluidic devices (chips and connectors). Secondly, by manufacturing transparent Silicon (Si)/Glass chips with similar channel geometries but obtained by a new approach of deep reactive ion etching (DRIE) technology suitable with in situ small angle X-ray scattering characterizations. LNCs were successfully produced by a phase inversion composition (PIC) process with highly monodispersed sizes from 25 nm to 100 nm and formulated using chips manufactured by 3D printing and DRIE technologies. The transparent Si/Glass chip was also used for the small angle X-ray scattering (SAXS) analysis of the LNC formulation with the PIC process. The 3D printing and DRIE technologies and their respective advantages are discussed in terms of cost, easiness to deploy and process developments in a GALECHIP point of view.
Collapse
Affiliation(s)
- Nicolas Rolley
- MINT Lab, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Monolithically Integrated Diffused Silicon Two-Zone Heaters for Silicon-Pyrex Glass Microreactors for Production of Nanoparticles: Heat Exchange Aspects. MICROMACHINES 2020; 11:mi11090818. [PMID: 32872382 PMCID: PMC7569776 DOI: 10.3390/mi11090818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
We present the design, simulation, fabrication and characterization of monolithically integrated high resistivity p-type boron-diffused silicon two-zone heaters in a model high temperature microreactor intended for nanoparticle fabrication. We used a finite element method for simulations of the heaters’ operation and performance. Our experimental model reactor structure consisted of a silicon wafer anodically bonded to a Pyrex glass wafer with an isotropically etched serpentine microchannels network. We fabricated two separate spiral heaters with different temperatures, mutually thermally isolated by barrier apertures etched throughout the silicon wafer. The heaters were characterized by electric measurements and by infrared thermal vision. The obtained results show that our proposed procedure for the heater fabrication is robust, stable and controllable, with a decreased sensitivity to random variations of fabrication process parameters. Compared to metallic or polysilicon heaters typically integrated into microreactors, our approach offers improved control over heater characteristics through adjustment of the Boron doping level and profile. Our microreactor is intended to produce titanium dioxide nanoparticles, but it could be also used to fabricate nanoparticles in different materials as well, with various parameters and geometries. Our method can be generally applied to other high-temperature microsystems.
Collapse
|
7
|
Levenstein MA, Kim YY, Hunter L, Anduix-Canto C, González Niño C, Day SJ, Li S, Marchant WJ, Lee PA, Tang CC, Burghammer M, Meldrum FC, Kapur N. Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes. LAB ON A CHIP 2020; 20:2954-2964. [PMID: 32666988 DOI: 10.1039/d0lc00239a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization.
Collapse
Affiliation(s)
- Mark A Levenstein
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E752. [PMID: 32041363 PMCID: PMC7040635 DOI: 10.3390/ma13030752] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.
Collapse
|
9
|
Morais S, Cario A, Liu N, Bernard D, Lecoutre C, Garrabos Y, Ranchou-Peyruse A, Dupraz S, Azaroual M, Hartman RL, Marre S. Studying key processes related to CO 2 underground storage at the pore scale using high pressure micromodels. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00023j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micromodels experimentation for studying and understanding CO2 geological storage mechanisms at the pore scale.
Collapse
Affiliation(s)
| | - Anaïs Cario
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | - Na Liu
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | | | | | | | | | | | | | - Ryan L. Hartman
- Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | | |
Collapse
|
10
|
Xu Y, Musumeci V, Aymonier C. Chemistry in supercritical fluids for the synthesis of metal nanomaterials. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00290a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supercritical flow synthesis of metal nanomaterials is sustainable and scalable for the efficient production of materials.
Collapse
Affiliation(s)
- Yu Xu
- CNRS
- Univ. Bordeaux
- 33600 Pessac
- France
| | | | | |
Collapse
|
11
|
Lopez CG, Watanabe T, Adamo M, Martel A, Porcar L, Cabral JT. Microfluidic devices for small-angle neutron scattering. J Appl Crystallogr 2018; 51:570-583. [PMID: 29896054 PMCID: PMC5988002 DOI: 10.1107/s1600576718007264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
A comparative examination is presented of materials and approaches for the fabrication of microfluidic devices for small-angle neutron scattering (SANS). Representative inorganic glasses, metals, and polymer materials and devices are evaluated under typical SANS configurations. Performance criteria include neutron absorption, scattering background and activation, as well as spatial resolution, chemical compatibility and pressure resistance, and also cost, durability and manufacturability. Closed-face polymer photolithography between boron-free glass (or quartz) plates emerges as an attractive approach for rapidly prototyped microfluidic SANS devices, with transmissions up to ∼98% and background similar to a standard liquid cell (I ≃ 10-3 cm-1). For applications requiring higher durability and/or chemical, thermal and pressure resistance, sintered or etched boron-free glass and silicon devices offer superior performance, at the expense of various fabrication requirements, and are increasingly available commercially.
Collapse
Affiliation(s)
- Carlos G. Lopez
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Takaichi Watanabe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Marco Adamo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - João T. Cabral
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
12
|
Aymonier C, Philippot G, Erriguible A, Marre S. Playing with chemistry in supercritical solvents and the associated technologies for advanced materials by design. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
14
|
Morais S, Liu N, Diouf A, Bernard D, Lecoutre C, Garrabos Y, Marre S. Monitoring CO2 invasion processes at the pore scale using geological labs on chip. LAB ON A CHIP 2016; 16:3493-3502. [PMID: 27494277 DOI: 10.1039/c6lc00830e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.
Collapse
Affiliation(s)
- S Morais
- CNRS, Univ. Bordeaux, ICMCB, Pessac, F-33600, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kehres J, Pedersen T, Masini F, Andreasen JW, Nielsen MM, Diaz A, Nielsen JH, Hansen O, Chorkendorff I. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:455-63. [PMID: 26917133 PMCID: PMC5297905 DOI: 10.1107/s1600577516001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles.
Collapse
Affiliation(s)
- Jan Kehres
- Center for Individual Nanoparticle Functionality, Department of Physics, Technical University of Denmark (DTU), Fysikvej, 2800 Kgs Lyngby, Denmark
| | - Thomas Pedersen
- Department of Micro and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads, 2800 Kgs Lyngby, Denmark
| | - Federico Masini
- Center for Individual Nanoparticle Functionality, Department of Physics, Technical University of Denmark (DTU), Fysikvej, 2800 Kgs Lyngby, Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Frederiksborgvej 399, PO Box 49, 4000 Roskilde, Denmark
| | - Martin Meedom Nielsen
- Department of Physics, Technical University of Denmark (DTU), Fysikvej, 2800 Kgs Lyngby, Denmark
| | - Ana Diaz
- Paul Scherrer Institute, 5232 Villingen PSI, Switzerland
| | - Jane Hvolbæk Nielsen
- Center for Individual Nanoparticle Functionality, Department of Physics, Technical University of Denmark (DTU), Fysikvej, 2800 Kgs Lyngby, Denmark
| | - Ole Hansen
- Department of Micro and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads, 2800 Kgs Lyngby, Denmark
| | - Ib Chorkendorff
- Center for Individual Nanoparticle Functionality, Department of Physics, Technical University of Denmark (DTU), Fysikvej, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
16
|
Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00127k] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review outlines the combination of infrared spectroscopy and continuous microfluidic processes.
Collapse
Affiliation(s)
- Adeline Perro
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Gwenaelle Lebourdon
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Sarah Henry
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Sophie Lecomte
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Laurent Servant
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | | |
Collapse
|
17
|
Patabadige DEW, Jia S, Sibbitts J, Sadeghi J, Sellens K, Culbertson CT. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal Chem 2015; 88:320-38. [DOI: 10.1021/acs.analchem.5b04310] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Damith E. W. Patabadige
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jay Sibbitts
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jalal Sadeghi
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
- Laser & Plasma Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| | - Kathleen Sellens
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Christopher T. Culbertson
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| |
Collapse
|