1
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
In vitro cell stretching devices and their applications: From cardiomyogenic differentiation to tissue engineering. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
3
|
Palomarez A, Jha M, Medina Romero X, Horton RE. Cardiovascular consequences of sickle cell disease. BIOPHYSICS REVIEWS 2022; 3:031302. [PMID: 38505276 PMCID: PMC10903381 DOI: 10.1063/5.0094650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 03/21/2024]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a single point mutation within the beta globin gene. As a result of this mutation, hemoglobin polymerizes under low oxygen conditions causing red blood cells to deform, become more adhesive, and increase in rigidity, which affects blood flow dynamics. This process leads to enhanced red blood cell interactions with the endothelium and contributes to vaso-occlusion formation. Although traditionally defined as a red blood cell disorder, individuals with SCD are affected by numerous clinical consequences including stroke, painful crisis episodes, bone infarctions, and several organ-specific complications. Elevated cardiac output, endothelium activation along with the sickling process, and the vaso-occlusion events pose strains on the cardiovascular system. We will present a review of the cardiovascular consequences of sickle cell disease and show connections with the vasculopathy related to SCD. We will also highlight biophysical properties and engineering tools that have been used to characterize the disease. Finally, we will discuss therapies for SCD and potential implications on SCD cardiomyopathy.
Collapse
Affiliation(s)
- Alexis Palomarez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manisha Jha
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ximena Medina Romero
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Renita E. Horton
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
4
|
Pan C, Gao Q, Kim BS, Han Y, Gao G. The Biofabrication of Diseased Artery In Vitro Models. MICROMACHINES 2022; 13:mi13020326. [PMID: 35208450 PMCID: PMC8874977 DOI: 10.3390/mi13020326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models.
Collapse
Affiliation(s)
- Chen Pan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Korea
- Correspondence: (B.-S.K.); (G.G.)
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (B.-S.K.); (G.G.)
| |
Collapse
|
5
|
Atcha H, Meli VS, Davis CT, Brumm KT, Anis S, Chin J, Jiang K, Pathak MM, Liu WF. Crosstalk Between CD11b and Piezo1 Mediates Macrophage Responses to Mechanical Cues. Front Immunol 2021; 12:689397. [PMID: 34630381 PMCID: PMC8493066 DOI: 10.3389/fimmu.2021.689397] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022] Open
Abstract
Macrophages are versatile cells of the innate immune system that perform diverse functions by responding to dynamic changes in their microenvironment. While the effects of soluble cues, including cytokines and chemokines, have been widely studied, the effects of physical cues, including mechanical stimuli, in regulating macrophage form and function are less well understood. In this study, we examined the effects of static and cyclic uniaxial stretch on macrophage inflammatory and healing activation. We found that cyclic stretch altered macrophage morphology and responses to IFNγ/LPS and IL4/IL13. Interestingly, we found that both static and cyclic stretch suppressed IFNγ/LPS induced inflammation. In contrast, IL4/IL13 mediated healing responses were suppressed with cyclic but enhanced with static stretch conditions. Mechanistically, both static and cyclic stretch increased expression of the integrin CD11b (αM integrin), decreased expression of the mechanosensitive ion channel Piezo1, and knock down of either CD11b or Piezo1 through siRNA abrogated stretch-mediated changes in inflammatory responses. Moreover, we found that knock down of CD11b enhanced the expression of Piezo1, and conversely knock down of Piezo1 enhanced CD11b expression, suggesting the potential for crosstalk between integrins and ion channels. Finally, stretch-mediated differences in macrophage activation were also dependent on actin, since pharmacological inhibition of actin polymerization abrogated the changes in activation with stretch. Together, this study demonstrates that the physical environment synergizes with biochemical cues to regulate macrophage morphology and function, and suggests a role for CD11b and Piezo1 crosstalk in mechanotransduction in macrophages.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Chase T. Davis
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Kyle T. Brumm
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Sara Anis
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Jessica Chin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Kevin Jiang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
| | - Medha M. Pathak
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
A Novel Tension Machine Promotes Bone Marrow Mesenchymal Stem Cell Osteoblastic and Fibroblastic Differentiation by Applying Cyclic Tension. Stem Cells Int 2021; 2021:6647651. [PMID: 34422062 PMCID: PMC8371653 DOI: 10.1155/2021/6647651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are intraosseous stem cells, and the effects of tensile strain on BMSC differentiation mediate several bone-related treatments. To study the response of BMSCs under tension, we designed and developed a small cellular tension instrument, iStrain. When iStrain applied tension on BMSCs, these cells exhibited convergence in the alignment direction and lengthening of the cell processes and cell body. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting demonstrated that iStrain-mediated cyclic tension promotes the differentiation of BMSCs toward osteogenesis and fibrogenesis. And the mRNA and protein expression of differentiation-related genes changes with the extension of tension time.
Collapse
|
7
|
Sorba F, Poulin A, Ischer R, Shea H, Martin-Olmos C. Integrated elastomer-based device for measuring the mechanics of adherent cell monolayers. LAB ON A CHIP 2019; 19:2138-2146. [PMID: 31115420 DOI: 10.1039/c9lc00075e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cells in the body collectively sustain mechanical deformations in almost all physiological functions. From the morphogenesis stage, cells' ability to sustain stress is essential for the body's well-being. Several pathologies have been associated with abnormal mechanical properties, thus suggesting the Young's modulus as a biomarker to diagnose diseases and determine their progression. Advancements in the field are quite slow because current techniques for measuring cell and tissue mechanics rely on complex and bulky measurement platforms that have low repeatability rates and limited measurement time-scales. We present the first miniaturized system that allows accurate quantification of the Young's modulus of adherent cell monolayers over a longer time (1-2 days). Our approach is based on tensile testing and optical read-out. Thanks to a thoughtful design and material choice, we are able to miniaturize tensile testing platforms into a 1 cm × 2 cm device. We provide highly repeatable Young's modulus measurements in the relevant range between 3 kPa and 300 kPa, over time and under physiological conditions, thus representing an interesting alternative to existing measurement platforms. Furthermore, the compatibility with standard biological equipment, continuous optical imaging and measurements on all types of adherent cells make this device highly versatile. Measurements on human sarcoma osteogenic (SaOS2) and Madin-Darby canine kidney cells (MDCK) are reported. The demonstrated capability to measure real-time changes in mechanical properties, such as after chemical treatment, opens the door for investigating the effects of drugs on cell mechanics.
Collapse
Affiliation(s)
- Francesca Sorba
- Swiss Center for Electronics and Microtechnology, CSEM SA, Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Gu X, Xie S, Hong D, Ding Y. An in vitro model of foam cell formation induced by a stretchable microfluidic device. Sci Rep 2019; 9:7461. [PMID: 31097769 PMCID: PMC6522483 DOI: 10.1038/s41598-019-43902-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Although a variety of animal models of atherosclerosis have been developed, these models are time-consuming and costly. Here, we describe an in vitro model to induce foam cell formation in the early stage of atherosclerosis. This model is based on a three-dimension co-culture system in a stretchable microfluidic device. An elastic membrane embedded in the microfluidic device is capable of delivering nonuniform strain to vascular smooth muscle cells, endothelial cells and monocytes adhering thereto, which are intended to mimic the biological environment of blood vessels. Under low-density lipoprotein and stretch treatment, foam cell formation was successfully induced in co-culture with changes in mRNA and protein expression of some related key factors. Subsequently, the model was used to assess the inhibitory effect of atorvastatin on foam cell formation. The results obtained indicate that atorvastatin has a significantly dose-dependent inhibition of foam cell formation, which can be explained by the changes in mRNA and protein expression of the related factors. In principle, the model can be used to study the role of different types of cells in the formation of foam cells, as well as the evaluation of anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Xiaoyang Gu
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shijie Xie
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Dandan Hong
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
9
|
Hu C, Chen Y, Tan MJA, Ren K, Wu H. Microfluidic technologies for vasculature biomimicry. Analyst 2019; 144:4461-4471. [DOI: 10.1039/c9an00421a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An overview of microfluidic technologies for vascular studies and fabrication of vascular structures.
Collapse
Affiliation(s)
- Chong Hu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
| | - Yangfan Chen
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Ming Jun Andrew Tan
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- China
| | - Kangning Ren
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
- HKBU Institute of Research and Continuing Education
| | - Hongkai Wu
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
- Division of Biomedical Engineering
| |
Collapse
|
10
|
Abstract
In vivo, cells of the vascular system are subjected to various mechanical stimuli and have demonstrated the ability to adapt their behavior via mechanotransduction. Recent advances in microfluidic and "on-chip" techniques have provided the technology to study these alterations in cell behavior. Contrary to traditional in vitro assays such as transwell plates and parallel plate flow chambers, these microfluidic devices (MFDs) provide the opportunity to integrate multiple mechanical cues (e.g. shear stress, confinement, substrate stiffness, vessel geometry and topography) with in situ quantification capabilities. As such, MFDs can be used to recapitulate the in vivo mechanical setting and systematically vary microenvironmental conditions for improved mechanobiological studies of the endothelium. Additionally, adequate modelling provides for enhanced understanding of disease progression, design of cell separation and drug delivery systems, and the development of biomaterials for tissue engineering applications. Here, we will discuss the advances in knowledge about endothelial cell mechanosensing resulting from the design and application of biomimetic on-chip and microfluidic platforms.
Collapse
|