1
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Karunatilleke NC, Brickenden A, Choy WY. Molecular basis of the interactions between the disordered Neh4 and Neh5 domains of Nrf2 and CBP/p300 in oxidative stress response. Protein Sci 2024; 33:e5137. [PMID: 39150085 PMCID: PMC11328122 DOI: 10.1002/pro.5137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor that functions in maintaining redox homeostasis in cells. It mediates the transcription of cytoprotective genes in response to environmental and endogenous stresses to prevent oxidative damage. Thus, Nrf2 plays a significant role in chemoprevention. However, aberrant activation of Nrf2 has been shown to protect cancer cells from apoptosis and contribute to their chemoresistance. The interaction between Nrf2 and CBP is critical for the gene transcription activation. CBP and its homologue p300 interact with two transactivation domains in Nrf2, Neh4, and Neh5 domains through their TAZ1 and TAZ2 domains. To date, the molecular basis of this crucial interaction is not known, hindering a more detailed understanding of the regulation of Nrf2. To close this knowledge gap, we have used a set of biophysical experiments to dissect the Nrf2-CBP/p300 interactions. Structural properties of Neh4 and Neh5 and their binding with the TAZ1 and TAZ2 domains of CBP/p300 were characterized. Our results show that the Neh4 and Neh5 domains of Nrf2 are intrinsically disordered, and they both can bind the TAZ1 and TAZ2 domains of CBP/p300 with micromolar affinities. The findings provide molecular insight into the regulation of Nrf2 by CBP/p300 through multi-domain interactions.
Collapse
Affiliation(s)
- Nadun C Karunatilleke
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Anne Brickenden
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Sumikawa T, Nakakido M, Matsunaga R, Kuroda D, Nagatoishi S, Tsumoto K. Generation of antibodies to an extracellular region of the transporters Glut1/Glut4 by immunization with a designed antigen. J Biol Chem 2024; 300:105640. [PMID: 38199569 PMCID: PMC10862009 DOI: 10.1016/j.jbc.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Monoclonal antibodies are one of the fastest growing class of drugs. Nevertheless, relatively few biologics target multispanning membrane proteins because of technical challenges. To target relatively small extracellular regions of multiple membrane-spanning proteins, synthetic peptides, which are composed of amino acids corresponding to an extracellular region of a membrane protein, are often utilized in antibody discovery. However, antibodies to these peptides often do not recognize parental membrane proteins. In this study, we designed fusion proteins in which an extracellular helix of the membrane protein glucose transporter 1 (Glut1) was grafted onto the scaffold protein Adhiron. In the initial design, the grafted fragment did not form a helical conformation. Molecular dynamics simulations of full-length Glut1 suggested the importance of intramolecular interactions formed by surrounding residues in the formation of the helical conformation. A fusion protein designed to maintain such intramolecular interactions did form the desired helical conformation in the grafted region. We then immunized an alpaca with the designed fusion protein and obtained VHH (variable region of heavy-chain antibodies) using the phage display method. The binding of these VHH antibodies to the recombinant Glut1 protein was evaluated by surface plasmon resonance, and their binding to Glut1 on the cell membrane was further validated by flow cytometry. Furthermore, we also succeeded in the generation of a VHH against another integral membrane protein, glucose transporter 4 (Glut4) with the same strategy. These illustrates that our combined biochemical and computational approach can be applied to designing other novel fusion proteins for generating site-specific antibodies.
Collapse
Affiliation(s)
- Taichi Sumikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Doi T, Umedera K, Miura K, Morita T, Nakamura H. Synthesis of the diazatricycloundecane scaffold via gold(I)-catalysed Conia-ene-type 5- exo-dig cyclization and stepwise substituent assembly for the construction of an sp 3-rich compound library. Org Biomol Chem 2023; 21:8716-8726. [PMID: 37869769 DOI: 10.1039/d3ob01534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The bridged diazatricycloundecane sp3-rich scaffold was synthesised via the gold(I)-catalysed Conia-ene reaction. The electron-donating property of the siloxymethyl group on alkyne 1 enabled 6-endo-dig cyclization, whereas the ethoxy carbonyl group on alkyne 4 led to 5-exo-dig cyclization with complete regioselectivity in the Conia-ene reaction. The resulting bridged diazatricycloundecane scaffold 5 allowed the construction of a library of sp3-rich compounds. Among the compounds synthesised, compounds 6e and 6f inhibited the hypoxia inducible factor 1 (HIF-1) downstream signaling pathway without affecting HIF-1α mRNA expression.
Collapse
Affiliation(s)
- Tomoya Doi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
| | - Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
| | - Kazuki Miura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
5
|
Hóbor F, Hegedüs Z, Ibarra AA, Petrovicz VL, Bartlett GJ, Sessions RB, Wilson AJ, Edwards TA. Understanding p300-transcription factor interactions using sequence variation and hybridization. RSC Chem Biol 2022; 3:592-603. [PMID: 35656479 PMCID: PMC9092470 DOI: 10.1039/d2cb00026a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100...
Collapse
Affiliation(s)
- Fruzsina Hóbor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Amaurys Avila Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Vencel L Petrovicz
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Gail J Bartlett
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
6
|
POLArIS, a versatile probe for molecular orientation, revealed actin filaments associated with microtubule asters in early embryos. Proc Natl Acad Sci U S A 2021; 118:2019071118. [PMID: 33674463 DOI: 10.1073/pnas.2019071118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Biomolecular assemblies govern the physiology of cells. Their function often depends on the changes in molecular arrangements of constituents, both in the positions and orientations. While recent advancements of fluorescence microscopy including super-resolution microscopy have enabled us to determine the positions of fluorophores with unprecedented accuracy, monitoring the orientation of fluorescently labeled molecules within living cells in real time is challenging. Fluorescence polarization microscopy (FPM) reports the orientation of emission dipoles and is therefore a promising solution. For imaging with FPM, target proteins need labeling with fluorescent probes in a sterically constrained manner, but because of difficulties in the rational three-dimensional design of protein connection, a universal method for constrained tagging with fluorophore was not available. Here, we report POLArIS, a genetically encoded and versatile probe for molecular orientation imaging. Instead of using a direct tagging approach, we used a recombinant binder connected to a fluorescent protein in a sterically constrained manner that can target specific biomolecules of interest by combining with phage display screening. As an initial test case, we developed POLArISact, which specifically binds to F-actin in living cells. We confirmed that the orientation of F-actin can be monitored by observing cells expressing POLArISact with FPM. In living starfish early embryos expressing POLArISact, we found actin filaments radially extending from centrosomes in association with microtubule asters during mitosis. By taking advantage of the genetically encoded nature, POLArIS can be used in a variety of living specimens, including whole bodies of developing embryos and animals, and also be expressed in a cell type/tissue specific manner.
Collapse
|
7
|
Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22115703. [PMID: 34071836 PMCID: PMC8199012 DOI: 10.3390/ijms22115703] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.
Collapse
|
8
|
Tang AAS, Tiede C, McPherson MJ, Tomlinson DC. Isolation of Artificial Binding Proteins (Affimer Reagents) for Use in Molecular and Cellular Biology. Methods Mol Biol 2021; 2247:105-121. [PMID: 33301114 DOI: 10.1007/978-1-0716-1126-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Artificial binding proteins have been validated as alternatives to antibodies in their use as research reagents in molecular and cellular biology. For example, they have been used as inhibitors of protein-protein interactions to modulate activity, to facilitate crystallization, and as probes for cellular imaging.Phage display is a widely used approach for isolating target-specific binding reagents, and it has even been used to isolate isoform-specific binding proteins and binders that can distinguish between highly homologous protein domains.Here, we describe methods that have been employed in isolating highly specific artificial binding proteins against a wide range of target proteins.
Collapse
Affiliation(s)
- Anna A S Tang
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christian Tiede
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Michael J McPherson
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Mylonis I, Chachami G, Simos G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers (Basel) 2021; 13:cancers13030410. [PMID: 33499237 PMCID: PMC7865418 DOI: 10.3390/cancers13030410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cells in solid tumors often experience lack of oxygen (hypoxia), which they overcome with the help of hypoxia inducible transcription factors (HIFs). When HIFs are activated, they stimulate the expression of many genes and cause the production of proteins that help cancer cells grow and migrate even in the presence of very little oxygen. Many experiments have shown that agents that block the activity of HIFs (HIF inhibitors) can prevent growth of cancer cells under hypoxia and, subsequently, hinder formation of malignant tumors or metastases. Most small chemical HIF inhibitors lack the selectivity required for development of safe anticancer drugs. On the other hand, peptides derived from HIFs themselves can be very selective HIF inhibitors by disrupting specific associations of HIFs with cellular components that are essential for HIF activation. This review discusses the nature of available peptide HIF inhibitors and their prospects as effective pharmaceuticals against cancer. Abstract Reduced oxygen availability (hypoxia) is a characteristic of many disorders including cancer. Central components of the systemic and cellular response to hypoxia are the Hypoxia Inducible Factors (HIFs), a small family of heterodimeric transcription factors that directly or indirectly regulate the expression of hundreds of genes, the products of which mediate adaptive changes in processes that include metabolism, erythropoiesis, and angiogenesis. The overexpression of HIFs has been linked to the pathogenesis and progression of cancer. Moreover, evidence from cellular and animal models have convincingly shown that targeting HIFs represents a valid approach to treat hypoxia-related disorders. However, targeting transcription factors with small molecules is a very demanding task and development of HIF inhibitors with specificity and therapeutic potential has largely remained an unattainable challenge. Another promising approach to inhibit HIFs is to use peptides modelled after HIF subunit domains known to be involved in protein–protein interactions that are critical for HIF function. Introduction of these peptides into cells can inhibit, through competition, the activity of endogenous HIFs in a sequence and, therefore also isoform, specific manner. This review summarizes the involvement of HIFs in cancer and the approaches for targeting them, with a special focus on the development of peptide HIF inhibitors and their prospects as highly-specific pharmacological agents.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Correspondence: (I.M.); (G.S.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence: (I.M.); (G.S.)
| |
Collapse
|
10
|
Selection and characterisation of Affimers specific for CEA recognition. Sci Rep 2021; 11:744. [PMID: 33436840 PMCID: PMC7804248 DOI: 10.1038/s41598-020-80354-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is the only blood based protein biomarker at present, used for preoperative screening of advanced colorectal cancer (CRC) patients to determine the appropriate curative treatments and post-surveillance screening for tumour recurrence. Current diagnostics for CRC detection have several limitations and development of a highly sensitive, specific and rapid diagnostic device is required. The majority of such devices developed to date are antibody-based and suffer from shortcomings including multimeric binding, cost and difficulties in mass production. To circumvent antibody-derived limitations, the present study focused on the development of Affimer proteins as a novel alternative binding reagent for CEA detection. Here, we describe the selection, from a phage display library, of Affimers specific to CEA protein. Characterization of three anti-CEA Affimers reveal that these bind specifically and selectively to protein epitopes of CEA from cell culture lysate and on fixed cells. Kinetic binding analysis by SPR show that the Affimers bind to CEA with high affinity and within the nM range. Therefore, they have substantial potential for used as novel affinity reagents in diagnostic imaging, targeted CRC therapy, affinity purification and biosensor applications.
Collapse
|
11
|
Miles JA, Hobor F, Trinh CH, Taylor J, Tiede C, Rowell PR, Jackson BR, Nadat FA, Ramsahye P, Kyle HF, Wicky BIM, Clarke J, Tomlinson DC, Wilson AJ, Edwards TA. Selective Affimers Recognise the BCL-2 Family Proteins BCL-x L and MCL-1 through Noncanonical Structural Motifs*. Chembiochem 2021; 22:232-240. [PMID: 32961017 PMCID: PMC7821230 DOI: 10.1002/cbic.202000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/26/2022]
Abstract
The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jennifer A. Miles
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fruzsina Hobor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Chi H. Trinh
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - James Taylor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Christian Tiede
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Philip R. Rowell
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Brian R. Jackson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fatima A. Nadat
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Pallavi Ramsahye
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Hannah F. Kyle
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Basile I. M. Wicky
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jane Clarke
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Darren C. Tomlinson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
12
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
13
|
Ruiz-Ortiz I, De Sancho D. Competitive binding of HIF-1α and CITED2 to the TAZ1 domain of CBP from molecular simulations. Phys Chem Chem Phys 2020; 22:8118-8127. [DOI: 10.1039/d0cp00328j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many intrinsically disordered proteins (IDPs) are involved in complex signalling networks inside the cell.
Collapse
Affiliation(s)
- Irene Ruiz-Ortiz
- Donostia International Physics Center
- Donostia-San Sebastián
- Spain
| | - David De Sancho
- Donostia International Physics Center
- Donostia-San Sebastián
- Spain
- University of the Basque Country
- Faculty of Chemistry
| |
Collapse
|
14
|
Adamson H, Nicholl A, Tiede C, Tang AA, Davidson A, Curd H, Wignall A, Ford R, Nuttall J, McPherson MJ, Johnson M, Tomlinson DC. Affimers as anti-idiotypic affinity reagents for pharmacokinetic analysis of biotherapeutics. Biotechniques 2019; 67:261-269. [DOI: 10.2144/btn-2019-0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Therapeutic antibodies are the fastest growing class of drugs in the treatment of cancer, and autoimmune and inflammatory diseases that require the concomitant development of assays to monitor therapeutic antibody levels. Here, we demonstrate that the use of Affimer nonantibody binding proteins provides an advantage over current antibody-based detection systems. For four therapeutic antibodies, we used phage display to isolate highly specific anti-idiotypic Affimer reagents, which selectively bind to the therapeutic antibody idiotype. For each antibody target the calibration curves met US Food and Drug Administration criteria and the dynamic range compared favorably with commercially available reagents. Affimer proteins therefore represent promising anti-idiotypic reagents that are simple to select and manufacture, and that offer the sensitivity, specificity and consistency required for pharmacokinetic assays.
Collapse
Affiliation(s)
- Hope Adamson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amanda Nicholl
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Christian Tiede
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna A Tang
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex Davidson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Helen Curd
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Alex Wignall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Robert Ford
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - James Nuttall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Michael J McPherson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matt Johnson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Darren C Tomlinson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
Berlow RB, Martinez-Yamout MA, Dyson HJ, Wright PE. Role of Backbone Dynamics in Modulating the Interactions of Disordered Ligands with the TAZ1 Domain of the CREB-Binding Protein. Biochemistry 2019; 58:1354-1362. [PMID: 30775911 DOI: 10.1021/acs.biochem.8b01290] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The intrinsically disordered transactivation domains of HIF-1α and CITED2 compete for binding of the TAZ1 domain of the CREB-binding protein by a unidirectional allosteric mechanism involving direct competition for shared binding sites, ternary complex formation, and TAZ1 conformational changes. To gain insight into the mechanism by which CITED2 displaces HIF-1α from TAZ1, we used nuclear magnetic resonance spin relaxation methods to obtain an atomic-level description of the picosecond to nanosecond backbone dynamics that contribute to TAZ1 binding and competition. We show that HIF-1α and CITED2 adopt different dynamics in their complexes with TAZ1, with flexibility observed for HIF-1α in regions that would maintain accessibility for CITED2 to bind to TAZ1 and facilitate subsequent HIF-1α dissociation. In contrast, critical regions of CITED2 adopt a rigid structure in its complex with TAZ1, minimizing the ability of HIF-1α to compete for binding. We also find that TAZ1, previously thought to be a rigid scaffold for binding of disordered protein ligands, displays altered backbone dynamics in its various bound states. TAZ1 is more rigid in its CITED2-bound state than in its free state or in complex with HIF-1α, with increased rigidity observed not only in the CITED2 binding site but also in regions of TAZ1 that undergo conformational changes between the HIF-1α- and CITED2-bound structures. Taken together, these data suggest that backbone dynamics in TAZ1, as well as in the HIF-1α and CITED2 ligands, play a role in modulating the occupancy of TAZ1 and highlight the importance of characterizing both binding partners in molecular interactions.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
16
|
Li J, Xi W, Li X, Sun H, Li Y. Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem 2019; 27:1145-1158. [PMID: 30819620 DOI: 10.1016/j.bmc.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Hypoxia is a common characteristic of many types of solid tumors and is associated with tumor propagation, malignant progression, and resistance to anti-cancer therapy. HIF-1 pathway is one of the survival pathways activated in tumor in response to hypoxia. In hypoxic condition, hypoxia-inducible factor-1α (HIF-1α) is stabilized and translocated into nucleus where it forms heterodimer with HIF-1β and regulates the expression of a plethora of genes involved in different processes, such as cell proliferation, differentiation, apoptosis, vascularization/angiogenesis, tumor invasion and metastasis. Recruitment of co-activator p300 or CBP to HIF-1α is critical to the transactivation activity of HIF-1 dimer, therefore, small molecules which can block the dimerization of HIF-1α and HIF-1β or inhibit the interaction between HIF-1α and p300 can function as inhibitors of HIF-1 and have the potential to be developed as novel therapies for the treatment of human cancers. In this review, recent progress of small molecular inhibitors of protein-protein interactions targeting HIF-1 is summarized, the mechanism of functions of these compounds and their potential usage as anti-cancer agents have also been discussed.
Collapse
Affiliation(s)
- Jia Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wanlin Xi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Discovery of bicyclo[3,3,1]non-2-ene as a novel skeleton for HIF-1 inhibitors. Bioorg Med Chem 2018; 26:3345-3351. [DOI: 10.1016/j.bmc.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
|
18
|
Zhurauski P, Arya SK, Jolly P, Tiede C, Tomlinson DC, Ko Ferrigno P, Estrela P. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens Bioelectron 2018; 108:1-8. [DOI: 10.1016/j.bios.2018.02.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 01/19/2023]
|
19
|
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, Zhang P, Feng H, Liu Z, Wang Z, Gao X, Wu H, Wang H, Su Y, Zhao M, Lu Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 2018; 128:2551-2568. [PMID: 29757188 DOI: 10.1172/jci97426] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the development of psoriasis-like inflammation in an imiquimod-induced or IL-23-induced psoriasis-like mouse model. We further showed that TGF-β and IL-23 enhance miR-210 expression by inducing HIF-1α, which recruits P300 and promotes histone H3 acetylation in the miR-210 promoter region. Our results reveal a crucial role for miR-210 in the immune imbalance of T lymphocyte subsets in psoriasis and suggest a potential therapeutic avenue.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Yuan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinjie Deng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lina Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peng Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zixin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaofei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Honglin Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Arrata I, Barnard A, Tomlinson DC, Wilson AJ. Interfacing native and non-native peptides: using Affimers to recognise α-helix mimicking foldamers. Chem Commun (Camb) 2018; 53:2834-2837. [PMID: 28217789 DOI: 10.1039/c6cc09395g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Selection methods are used to identify Affimers that recognise α-helix mimicking N-alkylated aromatic oligoamides thus demonstrating foldamer and natural α-amino acid codes are compatible.
Collapse
Affiliation(s)
- Irene Arrata
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Anna Barnard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Darren C Tomlinson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Affimer proteins inhibit immune complex binding to FcγRIIIa with high specificity through competitive and allosteric modes of action. Proc Natl Acad Sci U S A 2017; 115:E72-E81. [PMID: 29247053 DOI: 10.1073/pnas.1707856115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.
Collapse
|
22
|
Hughes DJ, Tiede C, Penswick N, Tang AAS, Trinh CH, Mandal U, Zajac KZ, Gaule T, Howell G, Edwards TA, Duan J, Feyfant E, McPherson MJ, Tomlinson DC, Whitehouse A. Generation of specific inhibitors of SUMO-1- and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Sci Signal 2017; 10:10/505/eaaj2005. [PMID: 29138295 DOI: 10.1126/scisignal.aaj2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because protein-protein interactions underpin most biological processes, developing tools that target them to understand their function or to inform the development of therapeutics is an important task. SUMOylation is the posttranslational covalent attachment of proteins in the SUMO family (SUMO-1, SUMO-2, or SUMO-3), and it regulates numerous cellular pathways. SUMOylated proteins are recognized by proteins with SUMO-interaction motifs (SIMs) that facilitate noncovalent interactions with SUMO. We describe the use of the Affimer system of peptide display for the rapid isolation of synthetic binding proteins that inhibit SUMO-dependent protein-protein interactions mediated by SIMs both in vitro and in cells. Crucially, these synthetic proteins did not prevent SUMO conjugation either in vitro or in cell-based systems, enabling the specific analysis of SUMO-mediated protein-protein interactions. Furthermore, through structural analysis and molecular modeling, we explored the molecular mechanisms that may underlie their specificity in interfering with either SUMO-1-mediated interactions or interactions mediated by either SUMO-2 or SUMO-3. Not only will these reagents enable investigation of the biological roles of SUMOylation, but the Affimer technology used to generate these synthetic binding proteins could also be exploited to design or validate reagents or therapeutics that target other protein-protein interactions.
Collapse
Affiliation(s)
- David J Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Natalie Penswick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna Ah-San Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Upasana Mandal
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katarzyna Z Zajac
- BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thembaninskosi Gaule
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth Howell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,BioScreening Technology Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
Development of an Affimer-antibody combined immunological diagnosis kit for glypican-3. Sci Rep 2017; 7:9608. [PMID: 28852111 PMCID: PMC5575301 DOI: 10.1038/s41598-017-10083-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
Glypican-3 (GPC3) is a promising new marker for hepatocellular carcinoma, but the reported values for serum GPC3 differ markedly between currently available kits. Here we isolated Affimer non-antibody binding proteins against GPC3 by phage display and developed a new sandwich chemiluminescence immunoassay (CLIA) combining an Affimer with a monoclonal antibody (Affimer-MAb CLIA). The proposed CLIA assay demonstrated a wide linear range 0.03–600 ng/mL) with a good linear correlation coefficient (0.9999), a high detection limitation (0.03 ng/mL) and specificity (0–0.002%) for detection of GPC3. The accuracy, hook effect and stability were demonstrated to be satisfactory. The mean level of GPC3 in serum was higher (>8.5 fold, P < 0.001) in hepatocellular carcinoma patients compared to healthy and other liver disease individuals. A poor correlation (correlation coefficients ranged from −0.286 to 0.478) was observed through pairwise comparison within different kits. However, only this newly developed CLIA test showed high specificity and correlated with the “gold standard” GPC3-immunohistochemistry. This study indicates that Affimer-MAb CLIA can be used to generate a sensitive immunodiagnostic kit, which offers the potential for a highly specific clinically-relevant detection system.
Collapse
|
24
|
Bedford R, Tiede C, Hughes R, Curd A, McPherson MJ, Peckham M, Tomlinson DC. Alternative reagents to antibodies in imaging applications. Biophys Rev 2017; 9:299-308. [PMID: 28752365 PMCID: PMC5578921 DOI: 10.1007/s12551-017-0278-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Antibodies have been indispensable tools in molecular biology, biochemistry and medical research. However, a number of issues surrounding validation, specificity and batch variation of commercially available antibodies have prompted research groups to develop novel non-antibody binding reagents. The ability to select highly specific monoclonal non-antibody binding proteins without the need for animals, the ease of production and the ability to site-directly label has enabled a wide variety of applications to be tested, including imaging. In this review, we discuss the success of a number of non-antibody reagents in imaging applications, including the recently reported Affimer.
Collapse
Affiliation(s)
- R Bedford
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - C Tiede
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - R Hughes
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - A Curd
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - M J McPherson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
25
|
Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts APE, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC. Affimer proteins are versatile and renewable affinity reagents. eLife 2017; 6:e24903. [PMID: 28654419 PMCID: PMC5487212 DOI: 10.7554/elife.24903] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.
Collapse
Affiliation(s)
- Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Bedford
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Gina Smith
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Imeshi Wijetunga
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Ross
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Danah AlQallaf
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Alexander Balls
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ruth E Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | | | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Kyle
- Avacta Life Sciences, Wetherby, United Kingdom
| | | | - Nicola Ingram
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Louise P Coletta
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Margaret Knowles
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Sandra Bell
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Raj K Prasad
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin S Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Ray J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joanne E Nettleship
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Michael E Webb
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Michael Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Darren Charles Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol 2017; 44:59-66. [PMID: 28063303 PMCID: PMC5496809 DOI: 10.1016/j.sbi.2016.12.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023]
Abstract
Protein-protein interactions are essential for almost all intracellular and extracellular biological processes. Regulation of protein-protein interactions is one strategy to regulate cell fate in a highly selective manner. Specifically, peptides are ideal candidates for inhibition of protein-protein interactions because they can mimic a protein surface to effectively compete for binding. Additionally, peptides are synthetically accessible and can be stabilized by chemical modifications. In this review, we survey screening and rational design methods for identifying peptides to inhibit protein-protein interactions, as well as methods for stabilizing peptides to effectively mimic protein surfaces. In addition, we discuss recent applications of peptides to regulate protein-protein interactions for both basic research and therapeutic purposes.
Collapse
Affiliation(s)
- Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA
| | - Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA.
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA.
| |
Collapse
|
27
|
Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 2017; 8:4188-4202. [PMID: 28878873 PMCID: PMC5576430 DOI: 10.1039/c7sc00388a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
The state of the art in identifying protein–protein interaction inhibitors of hypoxia inducible factor – a promising target for anticancer drug design – is described.
The modulation of protein–protein interactions (PPIs) represents a major challenge in modern chemical biology. Current approaches (e.g. high-throughput screening, computer aided ligand design) are recognised as having limitations in terms of identification of hit matter. Considerable success has been achieved in terms of developing new approaches to PPI modulator discovery using the p53/hDM2 and Bcl-2 family of PPIs. However these important targets in oncology might be considered as “low-hanging-fruit”. Hypoxia inducible factor (HIF) is an emerging, but not yet fully validated target for cancer chemotherapy. Its role is to regulate the hypoxic response and it does so through a plethora of protein–protein interactions of varying topology, topography and complexity: its modulation represents an attractive approach to prevent development of new vasculature by hypoxic tumours.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Adam Nelson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
28
|
Koutsoumpeli E, Tiede C, Murray J, Tang A, Bon RS, Tomlinson DC, Johnson S. Antibody Mimetics for the Detection of Small Organic Compounds Using a Quartz Crystal Microbalance. Anal Chem 2017; 89:3051-3058. [PMID: 28192970 DOI: 10.1021/acs.analchem.6b04790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conventional immunoassays rely on antibodies that provide high affinity, specificity, and selectivity against a target analyte. However, the use of antibodies for the detection of small-sized, nonimmunogenic targets, such as pharmaceuticals and environmental contaminants, presents a number of challenges. Recent advances in protein engineering have led to the emergence of antibody mimetics that offer the high affinity and specificity associated with antibodies, but with reduced batch-to-batch variability, high stability, and in vitro selection to ensure rapid discovery of binders against a wide range of targets. In this work we explore the potential of Affimers, a recent example of antibody mimetics, as suitable bioreceptors for the detection of small organic target compounds, here methylene blue. Target immobilization for Affimer characterization was achieved using long-chained alkanethiol linkers coupled with oligoethylene glycol (LCAT-OEG). Using quartz crystal microbalance with dissipation monitoring (QCM-D), we determine the affinity constant, KD, of the methylene blue Affimer to be comparable to that of antibodies. Further, we demonstrate the high selectivity of Affimers for its target in complex matrixes, here a limnetic sample. Finally, we demonstrate an Affimer-based competition assay, illustrating the potential of Affimers as bioreceptors in immunoassays for the detection of small-sized, nonimmunogenic compounds.
Collapse
Affiliation(s)
- Eleni Koutsoumpeli
- Department of Electronics, University of York , Heslington, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | - Steven Johnson
- Department of Electronics, University of York , Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting Protein-Protein Interactions in the HIF System. ChemMedChem 2016; 11:773-86. [PMID: 26997519 PMCID: PMC4848768 DOI: 10.1002/cmdc.201600012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Indexed: 12/18/2022]
Abstract
Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia-inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase-catalysed post-translational modifications of the HIF α-subunits, which 1) signal for degradation of HIF-α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF-mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein-protein and protein-nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein-protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit.
Collapse
Affiliation(s)
- Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rebecca L Hancock
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
30
|
Burslem GM, Kyle HF, Prabhakaran P, Breeze AL, Edwards TA, Warriner SL, Nelson A, Wilson AJ. Synthesis of highly functionalized oligobenzamide proteomimetic foldamers by late stage introduction of sensitive groups. Org Biomol Chem 2016; 14:3782-6. [PMID: 27005701 PMCID: PMC4839272 DOI: 10.1039/c6ob00078a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022]
Abstract
α-Helix proteomimetics represent an emerging class of ligands that can be used to inhibit an array of helix mediated protein-protein interactions. Within this class of inhibitor, aromatic oligobenzamide foldamers have been widely and successfully used. This manuscript describes alternative syntheses of these compounds that can be used to access mimetics that are challenging to synthesize using previously described methodologies, permitting access to compounds functionalized with multiple sensitive side chains and accelerated library assembly through late stage derivatisation.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Panchami Prabhakaran
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK and Discovery Sciences, AstraZeneca R&D, Alderley Park, Cheshire, SK10 4TG, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| |
Collapse
|
31
|
Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ. Towards "bionic" proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics. Chem Commun (Camb) 2016; 52:5421-4. [PMID: 27009828 PMCID: PMC4843846 DOI: 10.1039/c6cc01812b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
Using the HIF-1α transcription factor as a model, this manuscript illustrates how an extended sequence of α-amino acids in a polypeptide can be replaced with a non-natural topographical mimic of an α-helix comprised from an aromatic oligoamide. The resultant hybrid is capable of reproducing the molecular recognition profile of the p300 binding sequence of HIF-1α from which it is derived.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK and Discovery Sciences, AstraZeneca R&D, Alderley Park, Cheshire, SK10 4TG, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| |
Collapse
|
32
|
Weckman NE, McRae C, Ko Ferrigno P, Seshia AA. Comparison of the specificity and affinity of surface immobilised Affimer binders using the quartz crystal microbalance. Analyst 2016; 141:6278-6286. [DOI: 10.1039/c6an01602b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigates the performance of surface bound Affimer proteins, comparing the affinity and specificity of different binders for closely related immunoglobulin molecules using the quartz crystal microbalance with dissipation monitoring (QCM-D).
Collapse
Affiliation(s)
| | | | | | - Ashwin A. Seshia
- Nanoscience Centre
- University of Cambridge
- Cambridge CB3 0FF
- UK
- Department of Engineering
| |
Collapse
|