1
|
Xian J, Ni L, Liu C, Li J, Cao Y, Qin J, Liu D, Wang X. Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. J Fungi (Basel) 2024; 10:492. [PMID: 39057376 PMCID: PMC11277898 DOI: 10.3390/jof10070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Mercury (Hg) is a global pollutant and a bioaccumulative toxin that seriously affects the environment. Though increasing information has been obtained on the mechanisms involved in mercury toxicity, there is still a knowledge gap between the adverse effects and action mechanisms, especially at the molecular level. In the current study, we screened a diploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify the nonessential genes associated with increased sensitivity to mercury ions. By genome-scale screening, we identified 64 yeast single-gene deletion mutants. These genes are involved in metabolism, transcription, antioxidant activity, cellular transport, transport facilitation, transport routes, and the cell cycle, as well as in protein synthesis, folding, modification, and protein destination. The concentration of mercury ions was different in the cells of yeast deletion mutants. Moreover, the disruption of antioxidant systems may play a key role in the mercurial toxic effects. The related functions of sensitive genes and signal pathways were further analyzed using bioinformatics-related technologies. Among 64 sensitive genes, 37 genes have human homologous analogs. Our results may provide a meaningful reference for understanding the action mode, cellular detoxification, and molecular regulation mechanisms of mercury toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (J.X.); (L.N.); (C.L.); (J.L.); (Y.C.); (J.Q.); (D.L.)
| |
Collapse
|
2
|
Kaur J, Tiwari N, Asif MH, Dharmesh V, Naseem M, Srivastava PK, Srivastava S. Integrated genome-transcriptome analysis unveiled the mechanism of Debaryomyces hansenii-mediated arsenic stress amelioration in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133954. [PMID: 38484657 DOI: 10.1016/j.jhazmat.2024.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.
Collapse
Affiliation(s)
- Jasvinder Kaur
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Dharmesh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Kumar Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Fierling N, Billard P, Bauda P, Blaudez D. Global deletome profile of Saccharomyces cerevisiae exposed to lithium. Metallomics 2024; 16:mfad073. [PMID: 38142127 DOI: 10.1093/mtomcs/mfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically resistant to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.
Collapse
|
4
|
Grosjean N, Le Jean M, Ory J, Blaudez D. Yeast Deletomics to Uncover Gadolinium Toxicity Targets and Resistance Mechanisms. Microorganisms 2023; 11:2113. [PMID: 37630673 PMCID: PMC10459663 DOI: 10.3390/microorganisms11082113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Among the rare earth elements (REEs), a crucial group of metals for high-technologies. Gadolinium (Gd) is the only REE intentionally injected to human patients. The use of Gd-based contrasting agents for magnetic resonance imaging (MRI) is the primary route for Gd direct exposure and accumulation in humans. Consequently, aquatic environments are increasingly exposed to Gd due to its excretion through the urinary tract of patients following an MRI examination. The increasing number of reports mentioning Gd toxicity, notably originating from medical applications of Gd, necessitates an improved risk-benefit assessment of Gd utilizations. To go beyond toxicological studies, unravelling the mechanistic impact of Gd on humans and the ecosystem requires the use of genome-wide approaches. We used functional deletomics, a robust method relying on the screening of a knock-out mutant library of Saccharomyces cerevisiae exposed to toxic concentrations of Gd. The analysis of Gd-resistant and -sensitive mutants highlighted the cell wall, endosomes and the vacuolar compartment as cellular hotspots involved in the Gd response. Furthermore, we identified endocytosis and vesicular trafficking pathways (ESCRT) as well as sphingolipids homeostasis as playing pivotal roles mediating Gd toxicity. Finally, tens of yeast genes with human orthologs linked to renal dysfunction were identified as Gd-responsive. Therefore, the molecular and cellular pathways involved in Gd toxicity and detoxification uncovered in this study underline the pleotropic consequences of the increasing exposure to this strategic metal.
Collapse
Affiliation(s)
- Nicolas Grosjean
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France;
| | - Jordan Ory
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| |
Collapse
|
5
|
Isik E, Balkan Ç, Karl V, Karakaya HÇ, Hua S, Rauch S, Tamás MJ, Koc A. Identification of novel arsenic resistance genes in yeast. Microbiologyopen 2022; 11:e1284. [PMID: 35765185 PMCID: PMC9055376 DOI: 10.1002/mbo3.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.
Collapse
Affiliation(s)
- Esin Isik
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Çiğdem Balkan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Vivien Karl
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Sansan Hua
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ahmet Koc
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
- Department of Genetics, School of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
6
|
Liu C, Shi K, Lyu K, Liu D, Wang X. The toxicity of neodymium and genome-scale genetic screen of neodymium-sensitive gene deletion mutations in the yeast Saccharomyces cerevisiae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41439-41454. [PMID: 35088271 DOI: 10.1007/s11356-021-18100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The wide usage of neodymium (Nd) in industry, agriculture, and medicine has made it become an emerging pollutant in the environment. Increasing Nd pollution has potential hazards to plants, animals, and microorganisms. Thus, it is necessary to study the toxicity of Nd and the mechanism of Nd transportation and detoxification in microorganisms. Through genome-scale screening, we identified 70 yeast monogene deletion mutations sensitive to Nd ions. These genes are mainly involved in metabolism, transcription, protein synthesis, cell cycle, DNA processing, protein folding, modification, and cell transport processes. Furthermore, the regulatory networks of Nd toxicity were identified by using the protein interaction group analysis. These networks are associated with various signal pathways, including calcium ion transport, phosphate pathways, vesicular transport, and cell autophagy. In addition, the content of Nd ions in yeast was detected by an inductively coupled plasma mass spectrometry, and most of these Nd-sensitive mutants showed an increased intracellular Nd content. In all, our results provide the basis for understanding the molecular mechanisms of detoxifying Nd ions in yeast cells, which will be useful for future studies on Nd-related issues in the environment, agriculture, and human health.
Collapse
Affiliation(s)
- Chengkun Liu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Kailun Shi
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Keliang Lyu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Xue Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| |
Collapse
|
7
|
Grosjean N, Le Jean M, Chalot M, Mora-Montes HM, Armengaud J, Gross EM, Blaudez D. Genome-Wide Mutant Screening in Yeast Reveals that the Cell Wall is a First Shield to Discriminate Light From Heavy Lanthanides. Front Microbiol 2022; 13:881535. [PMID: 35663896 PMCID: PMC9162579 DOI: 10.3389/fmicb.2022.881535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The rapidly expanding utilization of lanthanides (Ln) for the development of new technologies, green energies, and agriculture has raised concerns regarding their impacts on the environment and human health. The absence of characterization of the underlying cellular and molecular mechanisms regarding their toxicity is a caveat in the apprehension of their environmental impacts. We performed genomic phenotyping and molecular physiology analyses of Saccharomyces cerevisiae mutants exposed to La and Yb to uncover genes and pathways affecting Ln resistance and toxicity. Ln responses strongly differed from well-known transition metal and from common responses mediated by oxidative compounds. Shared response pathways to La and Yb exposure were associated to lipid metabolism, ion homeostasis, vesicular trafficking, and endocytosis, which represents a putative way of entry for Ln. Cell wall organization and related signaling pathways allowed for the discrimination of light and heavy Ln. Mutants in cell wall integrity-related proteins (e.g., Kre1p, Kre6p) or in the activation of secretory pathway and cell wall proteins (e.g., Kex2p, Kex1p) were resistant to Yb but sensitive to La. Exposure of WT yeast to the serine protease inhibitor tosyl phenylalanyl chloromethyl ketone mimicked the phenotype of kex2∆ under Ln, strengthening these results. Our data also suggest that the relative proportions of chitin and phosphomannan could modulate the proportion of functional groups (phosphates and carboxylates) to which La and Yb could differentially bind. Moreover, we showed that kex2∆, kex1∆, kre1∆, and kre6∆ strains were all sensitive to light Ln (La to Eu), while being increasingly resistant to heavier Ln. Finally, shotgun proteomic analyses identified modulated proteins in kex2∆ exposed to Ln, among which several plasmalemma ion transporters that were less abundant and that could play a role in Yb uptake. By combining these different approaches, we unraveled that cell wall components not only act in Ln adsorption but are also active signal effectors allowing cells to differentiate light and heavy Ln. This work paves the way for future investigations to the better understanding of Ln toxicity in higher eukaryotes.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | - Michel Chalot
- Laboratoire Chrono-Environnement, Université de Bourgogne Franche-Comté, CNRS, Besançon, France
- Université de Lorraine, Nancy, France
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy, France
- *Correspondence: Damien Blaudez,
| |
Collapse
|
8
|
De Francisco P, Martín-González A, Rodriguez-Martín D, Díaz S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12226. [PMID: 34831982 PMCID: PMC8618186 DOI: 10.3390/ijerph182212226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Arsenic (As) is quite an abundant metalloid, with ancient origin and ubiquitous distribution, which represents a severe environmental risk and a global problem for public health. Microbial exposure to As compounds in the environment has happened since the beginning of time. Selective pressure has induced the evolution of various genetic systems conferring useful capacities in many microorganisms to detoxify and even use arsenic, as an energy source. This review summarizes the microbial impact of the As biogeochemical cycle. Moreover, the poorly known adverse effects of this element on eukaryotic microbes, as well as the As uptake and detoxification mechanisms developed by yeast and protists, are discussed. Finally, an outlook of As microbial remediation makes evident the knowledge gaps and the necessity of new approaches to mitigate this environmental challenge.
Collapse
Affiliation(s)
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Daniel Rodriguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain;
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| |
Collapse
|
9
|
Thakre PK, Golla U, Biswas A, Tomar RS. Identification of Histone H3 and H4 Amino Acid Residues Important for the Regulation of Arsenite Stress Signaling in Saccharomyces cerevisiae. Chem Res Toxicol 2020; 33:817-833. [PMID: 32032493 DOI: 10.1021/acs.chemrestox.9b00471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic is an environmental carcinogen that causes many diseases in humans, including cancers and organ failures, affecting millions of people in the world. Arsenic trioxide is a drug used for the treatment of acute promyelocytic leukemia (APL). In the present study, we screened the synthetic histone H3 and H4 library in the presence of arsenite to understand the role of histone residues in arsenic toxicity. We identified residues of histone H3 and H4 crucial for arsenite stress response. The residues H3T3, H3G90, H4K5, H4G13, and H4R95 are required for the activation of Hog1 kinase in response to arsenite exposure. We showed that a reduced level of Hog1 activation increases the intracellular arsenic content in these histone mutants through the Fps1 channel. We have also noticed the reduced expression of ACR3 exporter in the mutants. The growth defect of mutants caused by arsenite exposure was suppressed in hyperosmotic conditions, in a higher concentration of glucose, and upon deletion of the FPS1 gene. The arsenite sensitive histone mutants also showed a lack of H3K4 methylation and reduced H4K16 acetylation. Altogether, we have identified the key residues in histone H3 and H4 proteins important for the regulation of Hog1 signaling, Fps1 activity, and ACR3 expression during arsenite stress.
Collapse
Affiliation(s)
- Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences (EES), Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
10
|
Grosjean N, Gross EM, Le Jean M, Blaudez D. Global Deletome Profile of Saccharomyces cerevisiae Exposed to the Technology-Critical Element Yttrium. Front Microbiol 2018; 9:2005. [PMID: 30233513 PMCID: PMC6131306 DOI: 10.3389/fmicb.2018.02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/08/2018] [Indexed: 11/14/2022] Open
Abstract
The emergence of the technology-critical-element yttrium as a contaminant in the environment raises concern regarding its toxicological impact on living organisms. The molecular mechanisms underlying yttrium toxicity must be delineated. We considered the genomic phenotyping of a mutant collection of Saccharomyces cerevisiae to be of particular interest to decipher key cellular pathways involved either in yttrium toxicity or detoxification mechanisms. Among the 4733 mutants exposed to yttrium, 333 exhibited modified growth, of which 56 were sensitive and 277 were resistant. Several functions involved in yttrium toxicity mitigation emerged, primarily vacuolar acidification and retrograde transport. Conversely, functional categories overrepresented in the yttrium toxicity response included cytoskeleton organization and endocytosis, protein transport and vesicle trafficking, lipid metabolism, as well as signaling pathways. Comparison with similar studies carried out using other metals and stressors showed a response pattern similar to nickel stress. One third of the identified mutants highlighted peculiar cellular effects triggered by yttrium, specifically those affecting the pheromone-dependent signaling pathway or sphingolipid metabolic processes. Taken together, these data emphasize the role of the plasma membrane as a hotspot for yttrium toxicity. The up-to-now lack of data concerning yttrium toxicity at the cellular and molecular levels makes this pioneer study using the model S. cerevisiae an excellent first basis for the assessment of yttrium toxicity toward eukaryotes.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Nancy, France.,Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | |
Collapse
|
11
|
Rathod J, Tu HP, Chang YI, Chu YH, Tseng YY, Jean JS, Wu WS. YARG: A repository for arsenic-related genes in yeast. PLoS One 2018; 13:e0201204. [PMID: 30048518 PMCID: PMC6062094 DOI: 10.1371/journal.pone.0201204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/10/2018] [Indexed: 11/30/2022] Open
Abstract
Arsenic is a toxic metalloid. Moderate levels of arsenic exposure from drinking water can cause various human health problems such as skin lesions, circulatory disorders and cancers. Thus, arsenic toxicity is a key focus area for environmental and toxicological investigations. Many arsenic-related genes in yeast have been identified by experimental strategies such as phenotypic screening and transcriptional profiling. These identified arsenic-related genes are valuable information for studying arsenic toxicity. However, the literature about these identified arsenic-related genes is widely dispersed and cannot be easily acquired by researchers. This prompts us to develop YARG (Yeast Arsenic-Related Genes) database, which comprehensively collects 3396 arsenic-related genes in the literature. For each arsenic-related gene, the number and types of experimental evidence (phenotypic screening and/or transcriptional profiling) are provided. Users can use both search and browse modes to query arsenic-related genes in YARG. We used two case studies to show that YARG can return biologically meaningful arsenic-related information for the query gene(s). We believe that YARG is a useful resource for arsenic toxicity research. YARG is available at http://cosbi4.ee.ncku.edu.tw/YARG/.
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ping Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yung-I Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Chuartzman SG, Schuldiner M. Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast. Yeast 2018; 35:477-483. [PMID: 29574976 PMCID: PMC6055851 DOI: 10.1002/yea.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice (‘hits’) are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen – all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community.
Collapse
Affiliation(s)
- Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
13
|
Johnson AJ, Zaman MS, Veljanoski F, Phrakaysone AA, Li S, O'Doherty PJ, Petersingham G, Perrone GG, Molloy MP, Wu MJ. Unravelling the role of protein kinase CK2 in metal toxicity using gene deletion mutants. Metallomics 2017; 9:301-308. [PMID: 28194465 DOI: 10.1039/c6mt00230g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal ions, biologically essential or toxic, are present in the surrounding environment of living organisms. Understanding their uptake, homeostasis or detoxification is critical in cell biology and human health. In this study, we investigated the role of protein kinase CK2 in metal toxicity using gene deletion strains of Saccharomyces cerevisiae against a panel of six metal ions. The deletion of CKA2, the yeast orthologue of mammalian CK2α', leads to a pronounced resistant phenotype against Zn2+ and Al3+, whilst the deletion of CKB1 or CKB2 results in tolerance to Cr6+ and As3+. The individual deletion mutants of CK2 subunits (CKA1, CKA2, CKB1 and CKB2) did not have any benefit against Co2+ and Cd2+. The metal ion content in the treated cells was then measured by inductively coupled plasma mass spectrometry. Two contrasting findings were obtained for the CKA2 deletion mutant (cka2Δ) against Al3+ or Zn2+. Upon exposure to Al3+, cka2Δ had markedly lower Al3+ content than the wild type and other CK2 mutants, congruous to the resistant phenotype of cka2Δ against Al3+, indicating that CKA2 is responsible for Al3+ uptake. Upon zinc exposure the same mutant showed similar Zn2+ content to the wild type and cka1Δ. Strikingly, the selective inhibitor of CK2 TBB (4,5,6,7-tetrabromo-1H-benzotriazole) abolished the resistant phenotype of cka2Δ against Zn2+. Hence, the CK2 subunit CKA1 plays a key role in Zn2+ sequestration of the cell. Given that both zinc and CK2 are implicated in cancer development, the findings herein are of significance to cancer research and anticancer drug development.
Collapse
Affiliation(s)
- Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Mohammad S Zaman
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Filip Veljanoski
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Alex A Phrakaysone
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, Yunnan Province, P. R. China
| | - Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gayani Petersingham
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Mark P Molloy
- Australian Proteome Analysis Facility (APAF), Dept. Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. and Molecular Medicine Research Group, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
14
|
The New Role for an Old Kinase: Protein Kinase CK2 Regulates Metal Ion Transport. Pharmaceuticals (Basel) 2016; 9:ph9040080. [PMID: 28009816 PMCID: PMC5198054 DOI: 10.3390/ph9040080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022] Open
Abstract
The pleiotropic serine/threonine protein kinase CK2 was the first kinase discovered. It is renowned for its role in cell proliferation and anti-apoptosis. The complexity of this kinase is well reflected by the findings of past decades in terms of its heterotetrameric structure, subcellular location, constitutive activity and the extensive catalogue of substrates. With the advent of non-biased high-throughput functional genomics such as genome-wide deletion mutant screening, novel aspects of CK2 functionality have been revealed. Our recent discoveries using the model organism Saccharomyces cerevisiae and mammalian cells demonstrate that CK2 regulates metal toxicity. Extensive literature search reveals that there are few but elegant works on the role of CK2 in regulating the sodium and zinc channels. As both CK2 and metal ions are key players in cell biology and oncogenesis, understanding the details of CK2’s regulation of metal ion homeostasis has a direct bearing on cancer research. In this review, we aim to garner the recent data and gain insights into the role of CK2 in metal ion transport.
Collapse
|
15
|
Johnson AJ, Veljanoski F, O'Doherty PJ, Zaman MS, Petersingham G, Bailey TD, Münch G, Kersaitis C, Wu MJ. Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 2016; 8:542-50. [DOI: 10.1039/c6mt00039h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|