1
|
Barhoumi Z. Photosynthesis, ionomics and metabolomics of the host-hemiparasite association Acacia gerrardii- Viscum schimperi. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38035483 DOI: 10.1071/fp23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Viscum schimperi is an evergreen hemiparasitic plant that can grow on stems and branches of several tree species. It penetrates the host tissues and forms a vascular bridge (haustorium) to withdraw the nutritive resources. Its relationships with hosts remain unknown. This study aimed to investigate the physiological and biochemical attributes of the host-hemiparasite association Acacia gerrardii -Viscum schimperi . The hemiparasite exhibited 2.4- and 3.0-fold lower photosynthetic activity and water use efficiency, and 1.2- and 4.1-fold higher transpiration rate and stomatal conductance. Equally, it displayed 4.9- and 2.6-fold greater water potential and osmotic potential, and in least 3.0times more accumulated 39 K, 85 Rb and 51 V, compared to the host. Nevertheless, it had no detrimental effect on photosynthetic activity, water status and multi-element accumulations in the host. Based on metabolome profiling, V. schimperi could use xanthurenic acid and propylparaben to acquire potassium from the host, and N -1-naphthylacetamide and N -Boc-hydroxylamine to weaken or kill the distal part of the infected branch and to receive the total xylem contents. In contrast, A. gerrardii could used N -acetylserotonin, arecoline, acetophenone and 6-methoxymellein to defend against V. schimperi infection.
Collapse
Affiliation(s)
- Zouhaier Barhoumi
- Biology Department, King Khalid University, P.O. Box-9004, Abha 61413, Saudi Arabia; and Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, University Tunis El Manar, B.P. 901, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
2
|
Fan D, Fang Q. Siderophores for medical applications: Imaging, sensors, and therapeutics. Int J Pharm 2021; 597:120306. [PMID: 33540031 DOI: 10.1016/j.ijpharm.2021.120306] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023]
Abstract
Siderophores are low-molecular-weight chelators produced by microorganisms to scavenge iron from the environment and deliver it to cells via specific receptors. Tremendous researches on the molecular basis of siderophore regulation, synthesis, secretion, and uptake have inspired their diverse applications in the medical field. Replacing iron with radionuclides in siderophores, such as the most prominent Ga-68 for positron emission tomography (PET), carves out ways for targeted imaging of infectious diseases and cancers. Additionally, the high affinity of siderophores for metal ions or microorganisms makes them a potent detecting moiety in sensors that can be used for diagnosis. As for therapeutics, the notable Trojan horse-inspired siderophore-antibiotic conjugates demonstrate enhanced toxicity against multi-drug resistant (MDR) pathogens. Besides, siderophores can tackle iron overload diseases and, when combined with moieties such as hydrogels and nanoparticles, a wide spectrum of iron-induced diseases and even cancers. In this review, we briefly outline the related mechanisms, before summarizing the siderophore-based applications in imaging, sensors, and therapeutics.
Collapse
Affiliation(s)
- Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; Sino-Danish Center for Education and Research, Beijing 101408, PR China.
| |
Collapse
|
3
|
Sahoo J, Jaiswar S, Chatterjee PB, Subramanian PS, Jena HS. Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. NANOMATERIALS 2020; 11:nano11010053. [PMID: 33379340 PMCID: PMC7824681 DOI: 10.3390/nano11010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42−, SO42−, CH3COO−, I−, Br−, Cl−, F−, NO3−, CO32−/HCO3−, and HSO4− at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42− showed an excellent luminescence change with all three complexes. Job’s plot and ESI-MS support the 1:2 association between the receptors and HPO42−. Systematic spectrophotometric titrations of 1–3 against HPO42− demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42− in the range 0.01–1 equiv and 0.01–2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42− by complexes 1 and 2 were determined as 0.1–4 mM and 0.4–3.2 mM, respectively, while complex 3 covered 0.2–100 μM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42−.
Collapse
Affiliation(s)
- Jashobanta Sahoo
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Department of Chemistry, Hindol College, Khajuriakata, Higher Education Department, State Government of Odisha, Bhubaneswar, Odisha 751001, India
| | - Santlal Jaiswar
- Discipline of Marine Biotechnology and Ecology, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
| | - Pabitra B. Chatterjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Analytical Discipline and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Correspondence: or (P.S.S.); or (H.S.J.)
| | - Himanshu Sekhar Jena
- Department of Chemistry, Ghent University, Krijgslaan 281-S3 B, 9000 Ghent, Belgium
- Correspondence: or (P.S.S.); or (H.S.J.)
| |
Collapse
|
4
|
Rohini, Paul K, Luxami V. 8-Hydroxyquinoline Fluorophore for Sensing of Metal Ions and Anions. CHEM REC 2020; 20:1430-1473. [PMID: 33151013 DOI: 10.1002/tcr.202000082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
Among various known hydroxyquinolines, 8-hydroxyquinoline (8-HQ) is the most prevalent moiety due to excellent property for the formation of the complex with different metal ions and anions, and utilized in a wide variety of applications in pharmacological and medicinal fields. 8-Hydroxyquinoline moiety and its analogues acts as fluorophoric ligands on complex formation with alkali and alkaline as well as transition metal ions and anions, thus, considered as an ideal building block in metallo-supramolecular chemistry for recognition, separation, and quantitative investigation of cations. 8-Hydroxyquinoline moiety is also used in various applications for the advancement of novel fluorescent chemosensors in a wide variety of areas viz., material chemistry, bioorganic chemistry, molecular imaging, analytical chemistry, molecular recognition, medical and biological science communities. The present review emphasises on the progress of sensing properties of 8-HQ centred small-molecule fluorescent chemosensors towards several metal ions viz., Fe3+ , Al3+ , Ag+ , Hg2+ , Cu2+ , Pd2+ , Zn2+ , Cr3+ , Cd2+ , Mn2+ , Ca2+ , and K+ and anions such as F- , CN- and PPi, from 2008 to 2020, because of their sensitivity and selectivity in terms of diverse colour changes for different species. This critical and comprehensive review might facilitate the improvement of more prevailing chemosensors for future exciting and broad applications.
Collapse
Affiliation(s)
- Rohini
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| |
Collapse
|
5
|
Patel NP, Raju M, Haldar S, Chatterjee PB. Characterization of phenazine-1-carboxylic acid by Klebsiella sp. NP-C49 from the coral environment in Gulf of Kutch, India. Arch Microbiol 2019; 202:351-359. [PMID: 31667534 DOI: 10.1007/s00203-019-01742-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Coral-associated microbes from Marine National Park (MNP), Gulf of Kutch (GoK), Gujarat, India, were screened for siderophore production. Maximum siderophore-producing isolate NP-C49 and its compound were identified and characterized. The isolate was identified as Klebsiella sp. through 16S rRNA genes sequencing (GenBank accession nos. KY412519 and MTCC 25160). Antibiotic susceptibility profile against 20 commercial antibiotics showed its more sensitivity compared to human pathogenic strain, i.e., Klebsiella pneumonia. The compound was identified as phenazine-1-carboxylic acid (PCA) using the multinuclear ID (1H and 13C) and 2D (1H-1H COSY and 1H-13C HETCOR) NMR along with high-resolution mass spectrometry. No significant difference in the bacterial growth in the presence of PCA, FeCl3 and Fe(OH)3 indicated involvement of factors other than PCA in bacterial growth. The study first reports the identification and characterization of PCA from Klebsiella sp. both from terrestrial and marine sources.
Collapse
Affiliation(s)
- Neha P Patel
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - M Raju
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Soumya Haldar
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Mudhulkar R, Nair RR, Raval IH, Haldar S, Chatterjee PB. Visualizing Zn2+in Living Whole OrganismArtemiaby a Natural Fluorimetric Intermediate Siderophore. ChemistrySelect 2017. [DOI: 10.1002/slct.201701071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Raju Mudhulkar
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Ratish R. Nair
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Ishan H. Raval
- Marine Biotechnology and Ecology Division; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Soumya Haldar
- Marine Biotechnology and Ecology Division; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
- Academy of Scientific and Innovative Research; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Pabitra B. Chatterjee
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
- Academy of Scientific and Innovative Research; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| |
Collapse
|
7
|
Raju M, Srivastava S, Nair RR, Raval IH, Haldar S, Chatterjee PB. Siderophore coated magnetic iron nanoparticles: Rational designing of water soluble nanobiosensor for visualizing Al 3+ in live organism. Biosens Bioelectron 2017. [PMID: 28623816 DOI: 10.1016/j.bios.2017.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article aims to establish the judicious use of iron-binding chemistry of microbial chelators in order to functionalize the surface of iron nanoparticles to develop non-toxic nanobiosensor. Anchoring a simple siderophore 2,3-dihydroxybenzoylglycine (H3L), which bears catechol and carboxyl functionalities in tandem, on to the surface of Fe3O4 nanoparticles has developed a unique nanobiosensor HL-FeNPs which showed highly selective and sensitive detection of Al3+ in 100% water at physiological pH. The biosensor HL-FeNPs, with 20nM limit of detection, behaves reversibly and instantly. In-vivo bio-imaging in live brine shrimp Artemia confirmed that HL-FeNPs could be used as fluorescent biomarker for Al3+ in live whole organisms. Magnetic nature of the nanosensor enabled HL-FeNPs to remove excess Al3+ by using external magnet. To our knowledge, the possibility of microbial chelator in the practical development of Al3+ selective nanobiosensor is unprecedented.
Collapse
Affiliation(s)
- M Raju
- Analytical Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Sakshi Srivastava
- Analytical Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Ratish R Nair
- Analytical Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Ishan H Raval
- Marine Biotechnology and Ecology Division, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Soumya Haldar
- Marine Biotechnology and Ecology Division, CSIR-CSMCRI, Bhavnagar, Gujarat, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Pabitra B Chatterjee
- Analytical Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India.
| |
Collapse
|
8
|
Synthesis and unusual response to potassium of bipyridinium-benzocrown ether conjugate. Bioorg Med Chem Lett 2017; 27:2083-2086. [DOI: 10.1016/j.bmcl.2017.03.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022]
|