1
|
Yu W, Kuang J, Hu Q, Wang Z, Liao Y, Cheng Z. Ratiometric Detection of Al Based on the Mixing of D‐penicillamine‐Functionalized Copper Nanoclusters with Pyridoxal 5’‐phosphate. ChemistrySelect 2022. [DOI: 10.1002/slct.202203721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Jianhua Kuang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Qingqing Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
- Institute of Applied Chemistry China West Normal University Nanchong 637002 China
| |
Collapse
|
2
|
Zhai H, Gao M, Bai Y, Qin J, Song Q, Liu Z, Wang H, Feng F. Development of fluorescence sensors with copper-based nanoclusters via Förster resonance energy transfer and the quenching effect for vanillin detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4245-4251. [PMID: 36250613 DOI: 10.1039/d2ay01170k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two kinds of copper-based metal fluorescent nanoclusters were successfully prepared by the chemical reduction method; one of them (CuNCs) was synthesized by direct reduction of copper sulfate, and the other (CuAuNCs) was synthesized by the stepwise addition of copper salt and chloroauric acid. CuNCs were used to establish the fluorescence resonance energy transfer (FRET) system with neutral red (NR) due to the supramolecular effect of β-cyclodextrin (β-CD) modified on the surface of CuNCs. NR could enter the hydrophobic cavity of β-CD and narrow the distance between CuNCs and NR, which could lead to FRET. Fluorescence was transferred from CuNCs to NR, resulting in amplification of the NR fluorescence signal, which could be used to detect vanillin. In addition, CuAuNCs with strong fluorescence were used as fluorescent probes to detect vanillin through the quenching mechanism. By comparison, the simplicity of CuNC synthesis and the high selectivity of β-CD made the FRET method more practical, which may provide a new strategy for assaying vanillin.
Collapse
Affiliation(s)
- Hong Zhai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Mengmeng Gao
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Yunfeng Bai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Jun Qin
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Qing Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Zhixiong Liu
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
3
|
Quijada-Garrido I, García O. How a family of nanostructured amphiphilic block copolymers synthesized by RAFT-PISA take advantage of thiol groups to direct the in situ assembly of high luminescent CuNCs within their thermo-responsive core. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Han B, Yan Q, Xin Z, Yan Q, Jiang J. Ionic
Liquids‐Assisted
Highly Luminescent Copper Nanoclusters with Triangle Supramolecular Nanostructures. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bingyan Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qin Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Ze Xin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qifang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Jingmei Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| |
Collapse
|
5
|
Bai Y, Liu J, Feng F, Yang X. Synthesis of folic acid-mediated copper nanoclusters for the detection of sulfadiazine sodium. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Yuan J, Wang L, Wang Y, Hao J. Stimuli‐Responsive Fluorescent Nanoswitches: Solvent‐Induced Emission Enhancement of Copper Nanoclusters. Chemistry 2020; 26:3545-3554. [DOI: 10.1002/chem.201905094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jin Yuan
- Key Laboratory of Colloid and Interface Chemistry, (Ministry of Education)&State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 P.R. China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry, (Ministry of Education)&State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 P.R. China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry, (Ministry of Education)&State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, (Ministry of Education)&State Key Laboratory of Crystal MaterialsShandong University Jinan 250100 P.R. China
| |
Collapse
|
7
|
Benavides J, Quijada-Garrido I, García O. The synthesis of switch-off fluorescent water-stable copper nanocluster Hg 2+ sensors via a simple one-pot approach by an in situ metal reduction strategy in the presence of a thiolated polymer ligand template. NANOSCALE 2020; 12:944-955. [PMID: 31840709 DOI: 10.1039/c9nr08439h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fabrication of stable fluorescent copper nanoclusters (CuNCs) in aqueous media is still challenging, despite the low price and potential biomedical applications. Herein, we report a facile and efficient strategy for assembling CuNCs using multifunctional thiolated copolymers with pH and thermoresponsive features. The new nanohybrids are formed via a simple one-pot approach through the reduction of a copper salt with hydrazine in the presence of a multithiolated polymer, which provides a template during nanocluster assembly and further efficient protection against oxidation and aggregation. Furthermore, the thermo- and pH-responsive properties of the pristine copolymers endow the nanohybrids with these stimuli-responsive features. The thiol content and the macromolecular size of the polymer ligands exert strong influences on the final photophysical properties of these new hybrid luminescent nanoclusters. The existence of stable bright greenish-yellow emission in water over long periods of time, the high photostability under UV irradiation and the strong oxidation resistance toward hydrogen peroxide of the hybrid CuNCs suggest that they have great promise for nanomedicine, bioassay and nanosensor use. Furthermore, the polymeric CuNCs obtained have been successfully tested as optical switch-off sensors for the sensitive and highly selective detection of Hg2+ in the presence of other metal ions in liquid and solid states. Finally, we demonstrate the practical application of the new hybrid to Hg2+ detection in human urine.
Collapse
Affiliation(s)
- Jesús Benavides
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, E-28006-Madrid, Spain.
| | | | | |
Collapse
|
8
|
Determination of iron(II) and iron(III) via static quenching of the fluorescence of tryptophan-protected copper nanoclusters. Mikrochim Acta 2020; 187:81. [DOI: 10.1007/s00604-019-4067-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
9
|
Meng X, Zare I, Yan X, Fan K. Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1602. [PMID: 31724330 DOI: 10.1002/wnan.1602] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Protein-protected metal nanoclusters (MNCs), typically consisting of several to a hundred metal atoms with a protein outer layer used for protecting clusters from aggregation, are excellent fluorescent labels for biomedical applications due to their extraordinary photoluminescence, facile synthesis and good biocompatibility. Interestingly, many protein-protected MNCs have also been reported to exhibit intrinsic enzyme-like activities, namely peroxidase, oxidase and catalase activities, and are consequently used for biological analysis and environmental treatment. These findings have extended the horizon of protein-protected MNCs' properties as well as their application in various fields. Furthermore, in the field of nanozymes, protein-protected MNCs have emerged as an outstanding new addition. Due to their ultra-small size (<2 nm), they usually have higher catalytic activity, more suitable size for in vivo application, better biocompatibility and photoluminescence in comparison with large size nanozymes. In this review, we will systematically introduce the significant advances in this field and critically discuss the challenges that lie ahead. Ultra-small nanozymes based on protein-protected MNCs are on the verge of attracting great interest across various disciplines and will stimulate research in the fields of nanotechnology and biology. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Xiangqin Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Iman Zare
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Xiyun Yan
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review. Mikrochim Acta 2019; 186:749. [DOI: 10.1007/s00604-019-3842-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
11
|
Lin YS, Chiu TC, Hu CC. Fluorescence-tunable copper nanoclusters and their application in hexavalent chromium sensing. RSC Adv 2019; 9:9228-9234. [PMID: 35517680 PMCID: PMC9062047 DOI: 10.1039/c9ra00916g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
Generally, metal nanoclusters are synthesized using only a single ligand. Thus, the properties and applications of these nanomaterials are limited by the nature of the ligand used. In this study, we have developed a new synthetic strategy to prepare bi-ligand copper nanoclusters (Cu NCs). These bi-ligand Cu NCs are synthesized from copper ions, thiosalicylic acid, and cysteamine by a simple one-pot method, and they exhibit high quantum yields (>18.9%) and good photostability. Most interestingly, the fluorescence intensities and surface properties of the Cu NCs can be tailored by changing the ratio of the two ligands. Consequently, the bi-ligand Cu NCs show great promise as fluorescent probes. Accordingly, the Cu NCs were applied to the inner-filter-effect-based detection of hexavalent chromium in water. A wide linear range of 0.1–1000 μM and a low detection limit (signal-to-noise ratio = 3) of 0.03 μM was obtained. The recoveries for the real sample analysis were between 98.3 and 105.0% and the relative standard deviations were below 4.54%, demonstrating the repeatability and practical utility of this assay. Generally, metal nanoclusters are synthesized using only a single ligand.![]()
Collapse
Affiliation(s)
- Yu-Syuan Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| | - Tai-Chia Chiu
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung
- Republic of China
| |
Collapse
|
12
|
Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Noble metal nanoclusters (NCs) are a new class of nanomaterials which are considered being a missing link between isolated metal atoms and metal nanoparticles (NPs). The sizes of the NCs are comparable to the Fermi wavelength of the conduction electrons, and this renders them to be luminescent in nature. They exhibit size-dependent fluorescence properties spanning almost the entire breath of the visible spectrum. Among all the noble metal NCs being explored, copper NCs (CuNCs) are the most rarely investigated primarily because of their propensity of getting oxidised. In this chapter, we have given a comprehensive understanding as to why these NCs are luminescent in nature. We have also given a detailed overview regarding the various templates used for the synthesis of these CuNCs along with the respective protocols being followed. The various instrumental techniques used to characterize these CuNCs are discussed which provides an in-depth understanding as to how these CuNCs can be properly examined. Finally, we have highlighted some of the most recent applications of these CuNCs which make them unique to serve as the next-generation fluorophores.
Graphical Abstract:
The Graphical Abstract highlights some of the key spectroscopic signatures of the CuNCs and their applications.
Collapse
|
13
|
Label-free photoluminescence assay for nitrofurantoin detection in lake water samples using adenosine-stabilized copper nanoclusters as nanoprobes. Talanta 2018; 179:409-413. [DOI: 10.1016/j.talanta.2017.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
|
14
|
Li D, Chen Z, Mei X. Fluorescence enhancement for noble metal nanoclusters. Adv Colloid Interface Sci 2017; 250:25-39. [PMID: 29132640 DOI: 10.1016/j.cis.2017.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/11/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023]
Abstract
Noble metal nanoclusters have attracted great attentions in the area of fluorescence related applications due to their special properties such as low toxicity, excellent photostability and bio-compatibility. However, they still describe disadvantages for low quantum yield compared to quantum dots and organic dyes though the brightness of the fluorescence play an important role for the efficiency of the applications. Attentions have been attracted for exploring strategies to enhance the fluorescence based on the optical fundamentals through various protocols. Some methods have already been successfully proposed for obtaining relative highly fluorescent nanoclusters, which will potentially describe advantages for the application. In this review, we summarize the approach for enhancement of the fluorescence of the nanoclusters based on the modification of the properties, improvement of the synthesis process and optimization of the environment. The limitation and directions for future development of the fabrication of highly fluorescent metal nanoclusters are demonstrated.
Collapse
|
15
|
Momeni S, Ahmadi R, Safavi A, Nabipour I. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Talanta 2017; 175:514-521. [DOI: 10.1016/j.talanta.2017.07.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
|
16
|
New approach for detection of chromate ion by preconcentration with mixed metal hydroxide coupled with fluorescence sensing of copper nanoclusters. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2320-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Li D, Zhao Y, Chen Z, Mei X, Qiu X. Enhancement of fluorescence brightness and stability of copper nanoclusters using Zn 2+ for ratio-metric sensing of S 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:653-657. [PMID: 28576034 DOI: 10.1016/j.msec.2017.04.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 11/29/2022]
Abstract
It is acknowledged water soluble copper nanoclusters (Cu NCs) are extremely unstable in aqueous solutions, which limit their fluorescence applications to a great extent. In this work, it is found the fluorescence intensity and stability of water soluble Cu NCs could obviously be enhanced by the introduction of Zn2+. Then, the as modified Cu NCs will be stable enough to be applied as a ratio-metric sensor for S2-. This method may provide more broaden avenues for the application of fluorescent Cu NCs in the future.
Collapse
Affiliation(s)
- Dan Li
- Jinzhou Medical University, Jinzhou, China; Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| | | | | | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China.
| | - Xiaozhong Qiu
- Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Yuan Y, Yang L, Liu S, Yang J, Zhang H, Yan J, Hu X. Enzyme-catalyzed Michael addition for the synthesis of warfarin and its determination via fluorescence quenching of l-tryptophan. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:183-188. [PMID: 28095360 DOI: 10.1016/j.saa.2017.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
A sensitive fluorescence sensor for warfarin was proposed via quenching the fluorescence of l-tryptophan due to the interaction between warfarin and l-tryptophan. Warfarin, as one of the most effective anticoagulants, was designed and synthesized via lipase from porcine pancreas (PPL) as a biocatalyst to catalyze the Michael addition of 4-hydroxycoumarin to α, β-unsaturated enones in organic medium in the presence of water. Furthermore, the spectrofluorometry was used to detect the concentration of warfarin with a linear range and detection limit (3σ/k) of 0.04-12.0μmolL-1 (R2=0.994) and 0.01μmolL-1, respectively. Herein, this was the first application of bio-catalytic synthesis and fluorescence for the determination of warfarin. The proposed method was applied to determine warfarin of the drug in tablets with satisfactory results.
Collapse
Affiliation(s)
- Yusheng Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liu Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jidong Yang
- College of Chemical and Environmental Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Hui Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingjing Yan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|