1
|
de Oliveira GV, Soares MV, Cordeiro LM, da Silva AF, Venturini L, Ilha L, Baptista FBO, da Silveira TL, Soares FAA, Iglesias BA. Toxicological assessment of photoactivated tetra-cationic porphyrin molecules under white light exposure in a Caenorhabditis elegans model. Toxicology 2024; 504:153793. [PMID: 38574843 DOI: 10.1016/j.tox.2024.153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.
Collapse
Affiliation(s)
- Gabriela Vitória de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcell Valandro Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Marafiga Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luiza Venturini
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Ilha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fabiane Bicca Obetine Baptista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Jayakodi S, Senthilnathan R, Swaminathan A, Shanmugam VK, Shanmugam RK, Krishnan A, Ponnusamy VK, Tsai PC, Lin YC, Chen YH. Bio-inspired nanoparticles mediated from plant extract biomolecules and their therapeutic application in cardiovascular diseases: A review. Int J Biol Macromol 2023:125025. [PMID: 37245774 DOI: 10.1016/j.ijbiomac.2023.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.
Collapse
Affiliation(s)
- Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Raghul Senthilnathan
- Global Business School for Health, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Akila Swaminathan
- Clinical Virology, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Venkat Kumar Shanmugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Rajesh Kumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu 600077, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
3
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
4
|
Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:885-907. [PMID: 34675754 PMCID: PMC8525934 DOI: 10.1080/14686996.2021.1978801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.
Collapse
Affiliation(s)
- Nur Ameera Rosli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Research Centre for Sustainable Process Technology (Cespro), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
5
|
Silva LB, Castro KADF, Botteon CEA, Oliveira CLP, da Silva RS, Marcato PD. Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:679128. [PMID: 34604182 PMCID: PMC8484888 DOI: 10.3389/fbioe.2021.679128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a potential non-invasive approach for application in oncological diseases, based on the activation of a photosensitizer (PS) by light at a specific wavelength in the presence of molecular oxygen to produce reactive oxygen species (ROS) that trigger the death tumor cells. In this context, porphyrins are interesting PS because they are robust, have high chemical, photo, thermal, and oxidative stability, and can generate singlet oxygen (1O2). However, porphyrins exhibit low solubility and a strong tendency to aggregate in a biological environment which limits their clinical application. To overcome these challenges, we developed hybrid nanostructures to immobilize 5,10,15,20-tetrakis[(4-carboxyphenyl) thio-2,3,5,6-tetrafluorophenyl] (P), a new third-generation PS. The biological effect of this system was evaluated against bladder cancer (BC) cells with or without light exposition. The nanostructure composed of lipid carriers coated by porphyrin-chitosan (P-HNP), presented a size of ca. 130 nm and low polydispersity (ca. 0.25). The presence of the porphyrin-chitosan (P-chitosan) on lipid nanoparticle surfaces increased the nanoparticle size, changed the zeta potential to positive, decreased the recrystallization index, and increased the thermal stability of nanoparticles. Furthermore, P-chitosan incorporation on nanoparticles increased the stability and enhanced the self-organization of the system and the formation of spherical structures, as observed by small-angle X-ray scattering (SAXS) analysis. Furthermore, the immobilization process maintained the P photoactivity and improved the photophysical properties of PS, minimizing its aggregation in the cell culture medium. In the photoinduction assays, the P-HNP displayed high phototoxicity with IC50 3.2-folds lower than free porphyrin. This higher cytotoxic effect can be correlated to the high cellular uptake of porphyrin immobilized, as observed by confocal images. Moreover, the coated nanoparticles showed mucoadhesive properties interesting to its application in vivo. Therefore, the physical and chemical properties of nanoparticles may be relevant to improve the porphyrin photodynamic activity in BC cells.
Collapse
Affiliation(s)
- Letícia B. Silva
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline E. A. Botteon
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roberto S. da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Priscyla D. Marcato
- Department of Pharmaceutical Science, GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Dong Y, Kumar P, Maity P, Kurganskii I, Li S, Elmali A, Zhao J, Escudero D, Wu H, Karatay A, Mohammed OF, Fedin M. Twisted BODIPY derivative: intersystem crossing, electron spin polarization and application as a novel photodynamic therapy reagent. Phys Chem Chem Phys 2021; 23:8641-8652. [PMID: 33876025 DOI: 10.1039/d1cp00948f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The photophysical properties of a heavy atom-free BODIPY derivative with a twisted π-conjugated framework were studied. Efficient intersystem crossing (ISC quantum yield: 56%) and an exceptionally long-lived triplet state were observed (4.5 ms in solid polymer film matrix and 197.5 μs in solution). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy and DFT computations confirmed the delocalization of the triplet state on the whole twisted π-conjugated framework and the zero-field-splitting (ZFS) D parameter of D = -69.5 mT, which is smaller than that of 2,6-diiodoBODIPY (D = -104.6 mT). The electron spin polarization (ESP) phase pattern of the triplet state TREPR spectrum of the twisted BODIPY is (a, a, e, a, e, e), which is different from that of 2,6-diiodo BODIPY (e, e, e, a, a, a), indicating that the electron spin selectivity of the ISC of the twisted structure is different from that of the spin orbital coupling effect. According to the computed spin-orbit coupling matrix elements (0.154-1.964 cm-1), together with the matched energy of the S1/Tn states, ISC was proposed to occur via S1→T2/T3. The computational results were consistent with TREPR results on the electron spin selectivity (the overpopulation of the TY sublevel of the T1 state). The advantage of the long-lived triplet state of the twisted BODIPY was demonstrated by its efficient singlet oxygen (1O2) photosensitizing (ΦΔ = 50.0%) even under a severe hypoxia atmosphere (pO2 = 0.2%, v/v). A high light toxicity (EC50 = 1.0 μM) and low dark toxicity (EC50 = 78.5 μM) were observed for the twisted BODIPY, and thus the cellular studies demonstrate its potential as a novel potent heavy atom-free photodynamic therapy (PDT) agent.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen Y, Sa Y, Wang G, Pan X, Zhen Y, Cheng X, Zhang K, Fu L, Wang H, Liu B. The protective effects of citrullus colocynthis on inhibiting oxidative damage and autophagy-associated cell death in Parkinson's disease. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Yu Y, Xu Q, He S, Xiong H, Zhang Q, Xu W, Ricotta V, Bai L, Zhang Q, Yu Z, Ding J, Xiao H, Zhou D. Recent advances in delivery of photosensitive metal-based drugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Castillo RR, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 2019; 16:415-439. [PMID: 30897978 PMCID: PMC6667337 DOI: 10.1080/17425247.2019.1598375] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. AREAS COVERED This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. EXPERT OPINION The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
11
|
Harrison RP, Chauhan VM, Onion D, Aylott JW, Sottile V. Intracellular processing of silica-coated superparamagnetic iron nanoparticles in human mesenchymal stem cells. RSC Adv 2019; 9:3176-3184. [PMID: 30774937 PMCID: PMC6350623 DOI: 10.1039/c8ra09089k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Silica-coated superparamagnetic iron nanoparticles (SiMAGs) are an exciting biomedical technology capable of targeted delivery of cell-based therapeutics and disease diagnosis. However, in order to realise their full clinical potential, their intracellular fate must be determined. The analytical techniques of super-resolution fluorescence microscopy, particle counting flow cytometry and pH-sensitive nanosensors were applied to elucidate mechanisms of intracellular SiMAG processing in human mesenchymal stem cell (hMSCs). Super-resolution microscopy showed SiMAG fluorescently-tagged nanoparticles are endocytosed and co-localised within lysosomes. When exposed to simulated lysosomal conditions SiMAGs were solubilised and exhibited diminishing fluorescence emission over 7 days. The in vitro intracellular metabolism of SiMAGs was monitored in hMSCs using flow cytometry and co-localised pH-sensitive nanosensors. A decrease in SiMAG fluorescence emission, which corresponded to a decrease in lysosomal pH was observed, mirroring ex vivo observations, suggesting SiMAG lysosomal exposure degrades fluorescent silica-coatings and iron cores. These findings indicate although there is a significant decrease in intracellular SiMAG loading, sufficient particles remain internalised (>50%) to render SiMAG treated cells amenable to long-term magnetic cell manipulation. Our analytical approach provides important insights into the understanding of the intracellular fate of SiMAG processing, which could be readily applied to other particle therapeutics, to advance their clinical translation.
Collapse
Affiliation(s)
- Richard P Harrison
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, Nottingham, NG7 2RD, UK. .,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, UK
| | - Veeren M Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, NG7 2RD, UK. ;
| | - David Onion
- University of Nottingham Flow Cytometry Facility, School of Life Sciences, University of Nottingham, NG7 2UH, UK
| | - Jonathan W Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, NG7 2RD, UK. ;
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, Nottingham, NG7 2RD, UK.
| |
Collapse
|
12
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|
13
|
Mironov AF, Zhdanova KA, Bragina NA. Nanosized vehicles for delivery of photosensitizers in photodynamic diagnosis and therapy of cancer. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Khanehzar A, Fraire JC, Xi M, Feizpour A, Xu F, Wu L, Coronado EA, Reinhard BM. Nanoparticle-cell interactions induced apoptosis: a case study with nanoconjugated epidermal growth factor. NANOSCALE 2018; 10:6712-6723. [PMID: 29589623 PMCID: PMC6035871 DOI: 10.1039/c8nr01106k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In addition to the intrinsic toxicity associated with the chemical composition of nanoparticles (NP) and their ligands, biofunctionalized NP can perturb specific cellular processes through NP-cell interactions and induce programmed cell death (apoptosis). In the case of the epidermal growth factor (EGF), nanoconjugation has been shown to enhance the apoptotic efficacy of the ligand, but the critical aspects of the underlying mechanism and its dependence on the NP morphology remain unclear. In this manuscript we characterize the apoptotic efficacy of nanoconjugated EGF as a function of NP size (with sphere diameters in the range 20-80 nm), aspect ratio (A.R., in the range of 4.5 to 8.6), and EGF surface loading in EGFR overexpressing MDA-MB-468 cells. We demonstrate a significant size and morphology dependence in this relatively narrow parameter space with spherical NP with a diameter of approx. 80 nm being much more efficient in inducing apoptosis than smaller spherical NP or rod-shaped NP with comparable EGF loading. The nanoconjugated EGF is found to trigger an EGFR-dependent increase in cytoplasmic reactive oxygen species (ROS) levels but no indications of increased mitochondrial ROS levels or mitochondrial membrane damage are detected at early time points of the apoptosis induction. The increase in cytoplasmic ROS is accompanied by a perturbation of the intracellular glutathione homeostasis, which represents an important check-point for NP-EGF mediated apoptosis. Abrogation of the oxidative stress through the inhibition of EGFR signaling by the EGFR inhibitor AG1478 or addition of antioxidants N-acetyl cysteine (NAC) or tempol, but not trolox, successfully suppressed the apoptotic effect of nanoconjugated EGF. A model to account for the observed morphology dependence of EGF nanoconjugation enhanced apoptosis and the underlying NP-cell interactions is discussed.
Collapse
Affiliation(s)
- Ali Khanehzar
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review). Biointerphases 2017; 13:01A301. [PMID: 29246035 DOI: 10.1116/1.5013335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.
Collapse
|
16
|
Martínez-Carmona M, Lozano D, Baeza A, Colilla M, Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. NANOSCALE 2017; 9:15967-15973. [PMID: 29019495 DOI: 10.1039/c7nr05050j] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel singlet-oxygen sensitive drug delivery nanocarrier able to release its cargo after exposure to visible (Vis) light from a common lamp is presented. This nanodevice is based on mesoporous silica nanoparticles (MSN) decorated with porphyrin-caps grafted via reactive oxygen species (ROS)-cleavable linkages. In the presence of Vis light porphyrin-nanocaps produce singlet oxygen molecules that break the sensitive-linker, which triggers pore uncapping and therefore allows the release of the entrapped cargo (topotecan, TOP). This new system takes advantage of the non-toxicity and greater penetration capacity of Vis radiation and a double antitumor effect due to the drug release and the ROS production. In vitro tests with HOS osteosarcoma cancer cells reveal that TOP is able to be released in a controlled fashion inside the tumor cells. This research work constitutes a proof of concept that opens up promising expectations in the search for new alternatives for the treatment of cancer.
Collapse
Affiliation(s)
- M Martínez-Carmona
- Dpto. Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
17
|
Jalani G, Jeyachandran D, Bertram Church R, Cerruti M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. NANOSCALE 2017; 9:10161-10166. [PMID: 28702585 DOI: 10.1039/c7nr00378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Perfluorocarbon (PFC) emulsions are capable of absorbing large quantities of oxygen. They are widely used as blood alternates for quick oxygenation of tissues. However, they are unsuitable for applications where sustained oxygen supply is desired over an extended period of time. Here, we have designed a new PFC oxygen delivery system that combines perfluorodecalin with graphene oxide (GO), where GO acts both as an emulsifier and a stabilizing agent. The resulting emulsions (PFC@GO) release oxygen at least one order of magnitude slower than emulsions prepared with other common surfactants. The release rate can be controlled by varying the thickness of the GO layer. Controlled release of oxygen make these emulsions excellent oxygen carriers for applications where sustained oxygen delivery is required e.g. in tissue regeneration and vascular wound healing.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | | | - Richard Bertram Church
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| |
Collapse
|
18
|
Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials. J Mater Chem B 2017; 5:4918-4925. [DOI: 10.1039/c7tb00954b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvature-induced dipole moment can induce ROS production and mitochondrial accumulation.
Collapse
Affiliation(s)
- Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Di Lu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Xinchang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
19
|
Chauhan VM, Giuntini F, Aylott JW. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Xu C, Wan A, Gong X, Bhupathiraju NVSDK, Batteas JD, Drain CM. Reorganization of porphyrin nanoparticle morphology driven by surface energetics. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Organic nanoparticles (ONp) of an Fe(III) porphyrin appended with four [Formula: see text]-polyethyleneglyco-pyridinium moieties prepared in acetonitrile were deposited onto hydrophilic or hydrophobic Si surfaces. Self-organized by intermolecular interactions, ONp reorganize in response to environmental changes. Mechanisms for the control of nanoparticle morphologies and surface patterning by varying surface energies are discussed.
Collapse
Affiliation(s)
- Chang Xu
- Siberline, Inc. 130 Lincoln Dr., Tamaqua, PA 18252, USA
| | - Albert Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | | | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry & Biochemistry, Hunter College of The City University of New York, New York, NY 10065, USA
- PhD Programs in Chemistry and Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - James D. Batteas
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Charles Michael Drain
- Department of Chemistry & Biochemistry, Hunter College of The City University of New York, New York, NY 10065, USA
- PhD Programs in Chemistry and Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|