1
|
Tian J, Liu C, Forberich K, Barabash A, Xie Z, Qiu S, Byun J, Peng Z, Zhang K, Du T, Sathasivam S, Macdonald TJ, Dong L, Li C, Zhang J, Halik M, Le Corre VM, Osvet A, Heumüller T, Li N, Zhou Y, Lüer L, Brabec CJ. Overcoming optical losses in thin metal-based recombination layers for efficient n-i-p perovskite-organic tandem solar cells. Nat Commun 2025; 16:154. [PMID: 39747017 PMCID: PMC11696673 DOI: 10.1038/s41467-024-55376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell. Here, we demonstrate an efficient strategy to mitigate optical losses in Au-embedded ICLs by tailoring the shape and size distribution of Au nanoparticles via manipulating the underlying surface property. Achieving fewer, smaller, and more uniformly spherical Au nanoparticles significantly minimizes localized surface plasmon resonance absorption, while maintaining efficient electron-hole recombination within ICLs. Consequently, optimized P-O-TSCs combining CsPbI2Br with various organic cells benefit from a substantial current gain of >1.5 mA/cm2 in organic rear cells, achieving a champion efficiency of 25.34%. Meanwhile, optimized ICLs contribute to improved long-term device stability.
Collapse
Affiliation(s)
- Jingjing Tian
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Chao Liu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany.
| | - Karen Forberich
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany
| | - Anastasia Barabash
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zhiqiang Xie
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shudi Qiu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jiwon Byun
- Organic Materials & Devices, Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany
| | - Zijian Peng
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Kaicheng Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tian Du
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany
| | | | - Thomas J Macdonald
- Department of Electronic & Electrical Engineering, University College London, London, UK
| | - Lirong Dong
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Chaohui Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Jiyun Zhang
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany
| | - Marcus Halik
- Organic Materials & Devices, Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany
| | - Vincent M Le Corre
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany
| | - Andres Osvet
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany
| | - Ning Li
- Institute of Polymer Optoelectronic Materials & Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, PR China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, PR China
| | - Larry Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Erlangen, Germany.
| |
Collapse
|
2
|
Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022; 51:7662-7681. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum nanoparticles (Pt NPs) have a well-established role as a classic heterogeneous catalyst. Also, Pt has traditionally been employed as a component of organometallic drug formulations for chemotherapy. However, a new role in cancer therapy is emerging thanks to its outstanding catalytic properties, enabling novel approaches that are surveyed in this review. Herein, we critically discuss results already obtained and attempt to ascertain future perspectives for Pt NPs as catalysts able to modify key processes taking place in the tumour microenvironment (TME). In addition, we explore relevant parameters affecting the cytotoxicity, biodistribution and clearance of Pt nanosystems. We also analyze pros and cons in terms of biocompatibility and potential synergies that emerge from combining the catalytic capabilities of Pt with other agents such as co-catalysts, external energy sources (near-infrared light, X-ray, electric currents) and conventional therapies.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Bonet-Aleta
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
3
|
Pini F, Pilot R, Ischia G, Agnoli S, Amendola V. Au-Ag Alloy Nanocorals with Optimal Broadband Absorption for Sunlight-Driven Thermoplasmonic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28924-28935. [PMID: 35713483 PMCID: PMC9247974 DOI: 10.1021/acsami.2c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 05/02/2023]
Abstract
Noble metal nanoparticles are efficient converters of light into heat but typically cover a limited spectral range or have intense light scattering, resulting in unsuited for broadband thermoplasmonic applications and sunlight-driven heat generation. Here, Au-Ag alloy nanoparticles were deliberately molded with an irregular nanocoral (NC) shape to obtain broadband plasmon absorption from the visible to the near-infrared yet at a lower cost compared to pure Au nanostructures. The Au-Ag NCs are produced through a green and scalable methodology that relies on pulsed laser fragmentation in a liquid, without chemicals or capping molecules, leaving the particles surface free for conjugation with thiolated molecules and enabling full processability and easy inclusion in various matrixes. Numerical calculations showed that panchromism, i.e., the occurrence of a broadband absorption from the visible to the near-infrared region, is due to the special morphology of Au-Ag alloy NCs and consists of a purely absorptive behavior superior to monometallic Au or Ag NCs. The thermoplasmonic properties were assessed by multiwavelength light-to-heat conversion experiments and exploited for the realization of a cellulose-based solar-steam generation device with low-cost, simple design but competitive performances. Overall, here it is shown how laser light can be used to harvest solar light. Besides, the optimized broadband plasmon absorption, the green synthetic procedure, and the other set of positive features for thermoplasmonic applications of Au-Ag NCs will contribute to the development of environmentally friendly devices of practical utility in a sustainable world.
Collapse
Affiliation(s)
- Federico Pini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberto Pilot
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Consorzio
INSTM, via G. Giusti
9, 50121 Firenze, Italy
| | - Gloria Ischia
- Department
of Industrial Engineering, University of
Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefano Agnoli
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Vincenzo Amendola
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Kostopoulou A, Brintakis K, Sygletou M, Savva K, Livakas N, Pantelaiou MA, Dang Z, Lappas A, Manna L, Stratakis E. Laser-Induced Morphological and Structural Changes of Cesium Lead Bromide Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:703. [PMID: 35215031 PMCID: PMC8879588 DOI: 10.3390/nano12040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
Metal halide perovskite nanocrystals, an emerging class of materials for advanced photonic and optoelectronic applications, are mainly fabricated with colloidal chemistry routes. On the quest for new properties according to application needs, new perovskite systems of various morphologies and levels of doping and alloying have been developed, often also involving post-synthesis reactions. Recently, laser irradiation in liquids has been utilized as a fast method to synthesize or transform materials and interesting laser-induced transformations on nanocrystals were induced. These studies in general have been limited to small nanocrystals (~15 nm). In the case of halide perovskites, fragmentation or anion exchange have been observed in such laser-based processes, but no crystal structure transformations were actually observed or deliberately studied. Nanocrystals are more sensitive to light exposure compared to the corresponding bulk crystals. Additional factors, such as size, morphology, the presence of impurities, and others, can intricately affect the photon absorption and heat dissipation in nanocrystal suspensions during laser irradiation. All these factors can play an important role in the final morphologies and in the time required for these transformations to unfold. In the present work, we have employed a 513 nm femtosecond (fs) laser to induce different transformations in large nanocrystals, in which two phases coexist in the same particle (Cs4PbBr6/CsPbBr3 nanohexagons of ~100 nm), dispersed in dichlorobenzene. These transformations include: (i) the exfoliation of the primary nanohexagons and partial anion exchange; (ii) fragmentation in smaller nanocubes and partial anion exchange; (iii) side-by-side-oriented attachment, fusion, and formation of nanoplatelets and complete anion exchange; (iv) side-by-side attachment, fusion, and formation of nanosheets. Partial or complete Br-Cl anion exchange in the above transformations was triggered by the partial degradation of dichlorobenzene. In addition to the detailed analysis of the various nanocrystal morphologies observed in the various transformations, the structure-photoluminescence relationships for the different samples were analyzed and discussed.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Konstantinos Brintakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Maria Sygletou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Kyriaki Savva
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Nikolaos Livakas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Michaila Akathi Pantelaiou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Zhiya Dang
- Nanochemistry, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (Z.D.); (L.M.)
| | - Alexandros Lappas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (Z.D.); (L.M.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece; (M.S.); (K.S.); (N.L.); (M.A.P.); (A.L.)
- Department of Physics, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Coletta G, Amendola V. Numerical Modelling of the Optical Properties of Plasmonic and Latex Nanoparticles to Improve the Detection Limit of Immuno-Turbidimetric Assays. NANOMATERIALS 2021; 11:nano11051147. [PMID: 33924972 PMCID: PMC8145499 DOI: 10.3390/nano11051147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Turbidimetric assays with latex nanoparticles are widely applied for the detection of biological analytes, because of their rapidity, low cost, reproducibility, and automatization. However, the detection limit can be lowered only at the price of a reduced dynamic range, due to the rapid saturation of the light scattering signal at high analyte concentration. Here, we use numerical calculations to investigate the possibility of increasing the performance of immuno-turbidimetric assays without compromising the measurement dynamic range, by combining plasmonic (gold, silver) and latex nanoparticles. Our modelling results show that plasmonic nanoparticles are compatible with a large signal change even when small aggregates are formed, i.e., at low analyte concentration. The working principle relies on the remarkable modification of the surface plasmon band when noble metal nanoparticles form oligomers, and also when latex particles are included in the aggregate. At high analyte concentration, when larger aggregates form, the latex particles can provide the required linear response of standard immuno-turbidimetric assays. Thus, the combination of the two components can be a successful strategy to improve the detection limit and the dynamic range, while maintaining all the advantages of the homogeneous immuno-turbidimetric assays.
Collapse
|
7
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scirè S, Compagnini G, Reichenberger S, Barcikowski S. Room-Temperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chemistry 2020; 26:9206-9242. [PMID: 32311172 PMCID: PMC7497020 DOI: 10.1002/chem.202000686] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Indexed: 11/06/2022]
Abstract
Although oxide nanoparticles are ubiquitous in science and technology, a multitude of compositions, phases, structures, and doping levels exist, each one requiring a variety of conditions for their synthesis and modification. Besides, experimental procedures are frequently dominated by high temperatures or pressures and by chemical contaminants or waste. In recent years, laser synthesis of colloids emerged as a versatile approach to access a library of clean oxide nanoparticles relying on only four main strategies running at room temperature and ambient pressure: laser ablation in liquid, laser fragmentation in liquid, laser melting in liquid and laser defect-engineering in liquid. Here, established laser-based methodologies are reviewed through the presentation of a panorama of oxide nanoparticles which include pure oxidic phases, as well as unconventional structures like defective or doped oxides, non-equilibrium compounds, metal-oxide core-shells and other anisotropic morphologies. So far, these materials showed several useful properties that are discussed with special emphasis on catalytic, biomedical and optical application. Yet, given the endless number of mixed compounds accessible by the laser-assisted methodologies, there is still a lot of room to expand the library of nano-crystals and to refine the control over products as well as to improve the understanding of the whole process of nanoparticle formation. To that end, this review aims to identify the perspectives and unique opportunities of laser-based synthesis and processing of colloids for future studies of oxide nanomaterial-oriented sciences.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131ParovaItaly
| | - David Amans
- CNRSInstitut Lumière MatièreUniv Lyon, Université Claude Bernard Lyon 1
| | - Yoshie Ishikawa
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Central 5, 1-1-1 HigashiTsukubaIbaraki305-8565Japan
| | - Naoto Koshizaki
- Graduate School of EngineeringHokkaido UniversityKita 13 Nishi 8, Kita-kuSapporoHokkaido060-8628Japan
| | - Salvatore Scirè
- Department of Chemical SciencesUniversity of CataniaViale A. Doria 6Catania95125Italy
| | - Giuseppe Compagnini
- Department of Chemical SciencesUniversity of CataniaViale A. Doria 6Catania95125Italy
| | - Sven Reichenberger
- Technical Chemistry I andCenter for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenUniversitätstr. 745141EssenGermany
| | - Stephan Barcikowski
- Technical Chemistry I andCenter for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenUniversitätstr. 745141EssenGermany
| |
Collapse
|
9
|
Dey P, Tabish TA, Mosca S, Palombo F, Matousek P, Stone N. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906780. [PMID: 31997560 DOI: 10.1002/smll.201906780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Optical theranostic applications demand near-infrared (NIR) localized surface plasmon resonance (LSPR) and maximized electric field at nanosurfaces and nanojunctions, aiding diagnosis via Raman or optoacoustic imaging, and photothermal-based therapies. To this end, multiple permutations and combinations of plasmonic nanostructures and molecular "glues" or linkers are employed to obtain nanoassemblies, such as nanobranches and core-satellite morphologies. An advanced nanoassembly morphology comprising multiple linear tentacles anchored onto a spherical core is reported here. Importantly, this core-multi-tentacle-nanoassembly (CMT) benefits from numerous plasmonic interactions between multiple 5 nm gold nanoparticles (NPs) forming each tentacle as well as tentacle to core (15 nm) coupling. This results in an intense LSPR across the "biological optical window" of 650-1100 nm. It is shown that the combined interactions are responsible for the broadband LSPR and the intense electric field, otherwise not achievable with core-satellite morphologies. Further the sub 80 nm CMTs boosted NIR-surface-enhanced Raman scattering (SERS), with detection of SERS labels at 47 × 10-9 m, as well as lower toxicity to noncancerous cell lines (human fibroblast Wi38) than observed for cancerous cell lines (human breast cancer MCF7), presents itself as an attractive candidate for use as biomedical theranostics agents.
Collapse
Affiliation(s)
- Priyanka Dey
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Tanveer A Tabish
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot, OX11 0QX, UK
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, Didcot, OX11 0QX, UK
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| |
Collapse
|
10
|
Cai Y, Zhang Y, Ji S, Ye Y, Wu S, Liu J, Chen S, Liang C. Laser ablation in liquids for the assembly of Se@Au chain-oligomers with long-term stability for photothermal inhibition of tumor cells. J Colloid Interface Sci 2020; 566:284-295. [PMID: 32007739 DOI: 10.1016/j.jcis.2020.01.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
For the potential use of Au nanoparticles (NPs) in photothermal therapy, it is important and effective to achieve the uniaxial assembly of Au NPs to allow enhanced absorption in the near infrared (NIR) region. Herein, we first presented the construction of amorphous selenium encapsulated gold (Se@Au) chain-oligomers by successive laser ablation of Au and Se targets in sodium chloride solution without other toxic precursors, stabilizers, or templating molecules. Se@Au chain-oligomers showed evidently enhanced NIR absorption and excellent photothermal transduction efficiency (η), which was higher than 47% at 808 nm. After being stored for 1 year, the Se@Au colloids still exhibited outstanding photothermal performance. The cytotoxicity assay demonstrated that there is negligible toxicity of Se@Au chain-oligomers in cells, but cell viability declined to only 1% in phototherapeutic experiments that were implemented in vitro. In intracellular Reactive Oxygen Species (ROS) generation measurements, Se@Au chain-oligomers could trigger a 35.9% increment of ROS upon laser irradiation. The possible synergetic effects between the anticancer function of Se and photothermal behaviors of Se@Au oligomers were intended to increase ROS level in cells. Therefore, such designed Se@Au chain-oligomers of high stability exhibit promising potential for their use as in vivo photothermal therapeutic agents.
Collapse
Affiliation(s)
- Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Yajun Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sihan Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Shouliang Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
11
|
Kumari Y, Kaur G, Kumar R, Singh SK, Gulati M, Khursheed R, Clarisse A, Gowthamarajan K, Karri VVSNR, Mahalingam R, Ghosh D, Awasthi A, Kumar R, Yadav AK, Kapoor B, Singh PK, Dua K, Porwal O. Gold nanoparticles: New routes across old boundaries. Adv Colloid Interface Sci 2019; 274:102037. [PMID: 31655366 DOI: 10.1016/j.cis.2019.102037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
In recent years, gold nanoparticles have emerged as unique non-invasive drug carriers for targeting drugs to their site of action. Their site specificity has helped in increasing drugs' efficacy at lower dose as well as reduction in their side effects. Moreover, their excellent optical properties and small size offer their utilization as diagnostic tools to diagnose tumors as well as other diseases. This review focuses on various approaches that have been used in last several years for preparation of gold nanoparticles, their characterization techniques and theranostic applications. Their toxicity related aspects are also highlighted. Gold nanoparticles are useful as theranostic agents, owing to their small size, biocompatible nature, size dependent physical, chemical and optical properties etc. However, the challenges associated with these nanoparticles such as scale up, cost, low drug payload, toxicity and stability have been the major impediments in their commercialization. The review looks into all these critical issues and identifies the possibilities to overcome these challenges for successful positioning of metallic nanoparticles in market.
Collapse
Affiliation(s)
- Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - K Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | - V V S Narayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | | | - Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| |
Collapse
|
12
|
Cavigli L, Centi S, Borri C, Tortoli P, Panettieri I, Streit I, Ciofini D, Magni G, Rossi F, Siano S, Ratto F, Pini R. 1064-nm-resonant gold nanorods for photoacoustic theranostics within permissible exposure limits. JOURNAL OF BIOPHOTONICS 2019; 12:e201900082. [PMID: 31155855 DOI: 10.1002/jbio.201900082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 05/07/2023]
Abstract
Therapeutic and diagnostic methods based on photomechanical effects are attracting much current attention in contexts as oncology, cardiology and vascular surgery, for such applications as photoacoustic imaging or microsurgery. Their underlying mechanism is the generation of ultrasound or cavitation from the interaction of short optical pulses with endogenous dyes or targeted contrast agents. Among the latter, gold nanorods are outstanding candidates, but their use has mainly been reported for photoacoustic imaging and photothermal treatments. Conversely, much less is still known about their value as a precision tool for photomechanical manipulations, such as to impart local damage with high spatial resolution through the expansion and collapse of microbubbles. Here, we address the feasibility of gold nanorods exhibiting a distribution of surface plasmon resonances between about 900 to above 1100 nm as a contrast agent for photoacoustic theranostics. After testing their cytotoxicity and cellular uptake, we discuss their photostability and use to mediate cavitation and the photomechanical destruction of targeted cells. We find that the choice of a plasmonic band peaking around 1064 nm is key to enhance the translational potential of this approach. With respect to the standard alternative of 800 nm, at 1064 nm, relevant regulations on optical exposure are less restrictive and the photonic technology is more mature.
Collapse
Affiliation(s)
- Lucia Cavigli
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Sonia Centi
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Claudia Borri
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Paolo Tortoli
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Ilaria Panettieri
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Torino, Italy
| | | | - Daniele Ciofini
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Giada Magni
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Francesca Rossi
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Salvatore Siano
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| | - Roberto Pini
- Istituto di Fisica Applicata 'Nello Carrara', Consiglio Nazionale delle Ricerche IFAC-CNR, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312:170-189. [PMID: 31472191 DOI: 10.1016/j.jconrel.2019.08.032] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Frias Batista LM, Meader VK, Romero K, Kunzler K, Kabir F, Bullock A, Tibbetts KM. Kinetic Control of [AuCl4]− Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. J Phys Chem B 2019; 123:7204-7213. [DOI: 10.1021/acs.jpcb.9b04643] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laysa M. Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Victoria Kathryn Meader
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katherine Romero
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Karli Kunzler
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Fariha Kabir
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Amazin Bullock
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
15
|
Mansour Y, Battie Y, En Naciri A, Chaoui N. Mechanisms and advanced photothermal modelling of laser-induced shape transformations of colloidal gold nanorods by nanosecond laser pulses. NANOSCALE 2019; 11:11679-11686. [PMID: 31179482 DOI: 10.1039/c9nr01206k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We propose an advanced photothermal model based on a modified Takami model (MTM) to explain the mechanisms of shape changes of colloidal gold nanorods (NRs) induced by nanosecond laser pulses. This model takes into account the orientation of NRs, the radiative and convective losses, and the phase transitions of NRs. It was applied to the determination of the evolution of temperature and the shape and size transformations of NRs during the laser exposure. A series of measurements arising from the interaction between Au NRs and nanosecond laser pulses were analyzed by TEM measurements and the MTM model. We have demonstrated that the fragmentation and reshaping processes govern the nanoparticle (NP) shape. At high laser fluence, the complete fragmentation leads to a population of nearly spherical NPs, while at a moderate laser fluence, the partial fragmentation and reshaping processes generate a bimodal distribution. At low laser fluence, uncommon φ-shape NPs were produced as a result of the competition of cooling and reshaping processes. We also demonstrated that it is possible by the MTM model to determine the laser fluence required to suppress some specific NR shapes and to predict the NP size and shape distributions obtained after the laser exposure.
Collapse
Affiliation(s)
- Yehia Mansour
- LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France.
| | | | | | | |
Collapse
|
16
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
17
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Martínez Á, Lyu Y, Mancin F, Scrimin P. Glucosamine Phosphate Induces AuNPs Aggregation and Fusion into Easily Functionalizable Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E622. [PMID: 30999571 PMCID: PMC6523341 DOI: 10.3390/nano9040622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
The challenge to obtain plasmonic nanosystems absorbing light in the near infrared is always open because of the interest that such systems pose in applications such as nanotherapy or nanodiagnostics. Here we describe the synthesis in an aqueous solution devoid of any surfactant of Au-nanowires of controlled length and reasonably narrow dimensional distribution starting from Au-nanoparticles by taking advantage of the properties of glucosamine phosphate under aerobic conditions and substoichiometric nanoparticle passivation. Oxygen is required to enable the process where glucosamine phosphate is oxidized to glucosaminic acid phosphate and H2O2 is produced. The process leading to the nanosystems comprises nanoparticles growth, their aggregation into necklace-like aggregates, and final fusion into nanowires. The fusion requires the consumption of H2O2. The nanowires can be passivated with an organic thiol, lyophilized, and resuspended in water without losing their dimensional and optical properties. The position of the broad surface plasmon band of the nanowires can be tuned from 630 to >1350 nm.
Collapse
Affiliation(s)
- Álvaro Martínez
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| | - Yanchao Lyu
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy.
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy.
| |
Collapse
|
19
|
Zhang D, Choi W, Yazawa K, Numata K, Tateishi A, Cho SH, Lin HP, Li YK, Ito Y, Sugioka K. Two Birds with One Stone: Spontaneous Size Separation and Growth Inhibition of Femtosecond Laser-Generated Surfactant-Free Metallic Nanoparticles via ex Situ SU-8 Functionalization. ACS OMEGA 2018; 3:10953-10966. [PMID: 31459206 PMCID: PMC6645095 DOI: 10.1021/acsomega.8b01250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 06/10/2023]
Abstract
Laser ablation in liquids (LAL) offers a facile technique to develop a large variety of surfactant-free nanomaterials with high purity. However, due to the difficulty in the control of the particle synthesis process, the as-prepared nanomaterials always have a broad size distribution with a large polydispersity (σ). Surfactant-free properties can also cause problems with particle growth, which further increases the difficulty in size control of the colloids. Therefore, searching for strategies to simultaneously unify the sizes of colloids and inhibit particle growth has become significantly important for LAL-synthesized nanomaterials to be extensively used for biological, catalytic, and optical applications, in which fields particle size plays an important role. In this work, we present a facile way to simultaneously realize these two goals by ex situ SU-8 photoresist functionalization. Ag nanoparticles (NPs) synthesized by femtosecond laser ablation of silver in acetone at laser powers of 300 and 600 mW were used as starting materials. The synthesized Ag NPs have a broad size distribution between 1 and 200 nm with an average size of ca. 5.9 nm and σ of 127-207%. After ex situ SU-8 functionalization and 6 months storage, most particles larger than 10 nm become aggregates and precipitate, which makes the size distribution narrow with an average diameter of 4-5 nm and σ of 48-78%. The precipitation process is accompanied by the decrease in colloid mass from the initial ∼0.2 to 0.10-0.11 mg after ex situ SU-8 functionalization and 6 months colloid storage. Morphology analysis indicates that ex situ SU-8 functionalization inhibits the particle growth into polygonal nanocrystals. Radical polymerization of SU-8 on Ag NPs is considered to be the reason for both spontaneous size separation and growth inhibition phenomena. Benefiting from Ag NPs embedment and acetone dissolution, the glass-transition temperature of SU-8 photoresist increased from 314 to 331 °C according to thermogravimetric analysis. The universality of ex situ SU-8 functionalization-induced growth inhibition and size separation behaviors is further proved using the Au colloids generated by LAL in acetone. This work is expected to provide a new route for better size control of LAL-synthesized colloids via ex situ photoresist functionalization, although a half of colloidal mass is wasted due to radical polymerization-induced colloidal precipitation.
Collapse
Affiliation(s)
- Dongshi Zhang
- RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wonsuk Choi
- RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Nano-Mechatronics, Korea University of
Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea South Korea
- Department of Nano-Manufacturing Technology and Department of
Laser & Electron
Beam Application, Korea Institute of Machinery
and Material (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Kenjiro Yazawa
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198 Japan
| | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198 Japan
| | - Ayaka Tateishi
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198 Japan
| | - Sung-Hak Cho
- Department
of Nano-Mechatronics, Korea University of
Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea South Korea
- Department of Nano-Manufacturing Technology and Department of
Laser & Electron
Beam Application, Korea Institute of Machinery
and Material (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Hsiu-Pen Lin
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Applied Chemistry, National Chiao Tung
University, Science Building 2, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC
| | - Yaw Kuen Li
- Department
of Applied Chemistry, National Chiao Tung
University, Science Building 2, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC
| | - Yoshihiro Ito
- Emergent
Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano
Medical Engineering Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0193, Japan
| | - Koji Sugioka
- RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Spontaneous Shape Alteration and Size Separation of Surfactant-Free Silver Particles Synthesized by Laser Ablation in Acetone during Long-Period Storage. NANOMATERIALS 2018; 8:nano8070529. [PMID: 30011881 PMCID: PMC6071058 DOI: 10.3390/nano8070529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
The technique of laser ablation in liquids (LAL) has already demonstrated its flexibility and capability for the synthesis of a large variety of surfactant-free nanomaterials with a high purity. However, high purity can cause trouble for nanomaterial synthesis, because active high-purity particles can spontaneously grow into different nanocrystals, which makes it difficult to accurately tailor the size and shape of the synthesized nanomaterials. Therefore, a series of questions arise with regards to whether particle growth occurs during colloid storage, how large the particle size increases to, and into which shape the particles evolve. To obtain answers to these questions, here, Ag particles that are synthesized by femtosecond (fs) laser ablation of Ag in acetone are used as precursors to witness the spontaneous growth behavior of the LAL-generated surfactant-free Ag dots (2–10 nm) into different polygonal particles (5–50 nm), and the spontaneous size separation phenomenon by the carbon-encapsulation induced precipitation of large particles, after six months of colloid storage. The colloids obtained by LAL at a higher power (600 mW) possess a greater ability and higher efficiency to yield colloids with sizes of <40 nm than the colloids obtained at lower power (300 mW), because of the generation of a larger amount of carbon ‘captors’ by the decomposition of acetone and the stronger particle fragmentation. Both the size increase and the shape alteration lead to a redshift of the surface plasmon resonance (SPR) band of the Ag colloid from 404 nm to 414 nm, after storage. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the Ag particles are conjugated with COO– and OH– groups, both of which may lead to the growth of polygonal particles. The CO and CO2 molecules are adsorbed on the particle surfaces to form Ag(CO)x and Ag(CO2)x complexes. Complementary nanosecond LAL experiments confirmed that the particle growth was inherent to LAL in acetone, and independent of pulse duration, although some differences in the final particle sizes were observed. The nanosecond-LAL yields monomodal colloids, whereas the size-separated, initially bimodal colloids from the fs-LAL provide a higher fraction of very small particles that are <5 nm. The spontaneous growth of the LAL-generated metallic particles presented in this work should arouse the special attention of academia, especially regarding the detailed discussion on how long the colloids can be preserved for particle characterization and applications, without causing a mismatch between the colloid properties and their performance. The spontaneous size separation phenomenon may help researchers to realize a more reproducible synthesis for small metallic colloids, without concern for the generation of large particles.
Collapse
|
21
|
Schürmann R, Bald I. Effect of adsorption kinetics on dissociation of DNA-nucleobases on gold nanoparticles under pulsed laser illumination. Phys Chem Chem Phys 2018; 19:10796-10803. [PMID: 28244511 DOI: 10.1039/c6cp08433h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits.
Collapse
Affiliation(s)
- Robin Schürmann
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Potsdam, Germany.
| | | |
Collapse
|
22
|
Litti L, Rivato N, Fracasso G, Bontempi P, Nicolato E, Marzola P, Venzo A, Colombatti M, Gobbo M, Meneghetti M. A SERRS/MRI multimodal contrast agent based on naked Au nanoparticles functionalized with a Gd(iii) loaded PEG polymer for tumor imaging and localized hyperthermia. NANOSCALE 2018; 10:1272-1278. [PMID: 29292448 DOI: 10.1039/c7nr07398d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multimodal contrast agents offer new interesting diagnostic possibilities, summing the benefits of multiple imaging techniques. Magnetic resonance and optical imaging are complementary techniques. The first allows total body screening, even though it suffers from low spatial resolution and needs high loadings, whereas the second shows lower penetration, but bright signals, and a higher spatial resolution and needs lower loadings. We present a plasmonic nanosystem as a MRI (magnetic resonance imaging) and SERRS (surface enhanced resonance Raman scattering) multimodal contrast agent. Naked gold nanoparticles, obtained by laser ablation synthesis in solution, are organized as a highly efficient SERRS substrate with a naphthalocyanine reporter and functionalized with a MRI contrast agent with a newly synthesized 3DOTA-PEG polymer, with a high GdIII loading. As a proof of concept, in vivo and ex vivo MRI and SERRS experiments are also performed. The plasmonic property of the nanosystem is then exploited to show its usefulness for localized hyperthermia.
Collapse
Affiliation(s)
- Lucio Litti
- Department of Chemical Science, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:203002. [PMID: 28426435 DOI: 10.1088/1361-648x/aa60f3] [Citation(s) in RCA: 617] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last two decades, plasmon resonance in gold nanoparticles (Au NPs) has been the subject of intense research efforts. Plasmon physics is intriguing and its precise modelling proved to be challenging. In fact, plasmons are highly responsive to a multitude of factors, either intrinsic to the Au NPs or from the environment, and recently the need emerged for the correction of standard electromagnetic approaches with quantum effects. Applications related to plasmon absorption and scattering in Au NPs are impressively numerous, ranging from sensing to photothermal effects to cell imaging. Also, plasmon-enhanced phenomena are highly interesting for multiple purposes, including, for instance, Raman spectroscopy of nearby analytes, catalysis, or sunlight energy conversion. In addition, plasmon excitation is involved in a series of advanced physical processes such as non-linear optics, optical trapping, magneto-plasmonics, and optical activity. Here, we provide the general overview of the field and the background for appropriate modelling of the physical phenomena. Then, we report on the current state of the art and most recent applications of plasmon resonance in Au NPs.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy. Consorzio INSTM, UdR Padova, Italy
| | | | | | | | | |
Collapse
|
24
|
Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles. Sci Rep 2017; 7:44680. [PMID: 28300218 PMCID: PMC5353694 DOI: 10.1038/srep44680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 01/30/2023] Open
Abstract
Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water.
Collapse
|
25
|
Zhang D, Gökce B, Barcikowski S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem Rev 2017; 117:3990-4103. [PMID: 28191931 DOI: 10.1021/acs.chemrev.6b00468] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts. Accurate size control of LSPC-synthesized materials ranging from quantum dots to submicrometer spheres and recent upscaling advancement toward the multiple-gram scale are helpful for extending the applicability of LSPC-synthesized nanomaterials to various fields. By discussing key reports on both the fundamentals and the applications related to laser ablation, fragmentation, and melting in liquids, this Article presents a timely and critical review of this emerging topic.
Collapse
Affiliation(s)
- Dongshi Zhang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
26
|
Son S, Kim N, You DG, Yoon HY, Yhee JY, Kim K, Kwon IC, Kim SH. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Am J Cancer Res 2017; 7:9-22. [PMID: 28042312 PMCID: PMC5196881 DOI: 10.7150/thno.16042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 02/02/2023] Open
Abstract
Nucleic acid-directed self-assembly provides an attractive method to fabricate prerequisite nanoscale structures for a wide range of technological applications due to the remarkable programmability of DNA/RNA molecules. In this study, exquisite RNAi-AuNP nanoconstructs with various geometries were developed by utilizing anti-VEGF siRNA molecules as RNAi-based therapeutics in addition to their role as building blocks for programmed self-assembly. In particular, the anti-VEGF siRNA-functionalized AuNP nanoconstructs can take additional advantage of gold-nanoclusters for photothermal cancer therapeutic agent. A noticeable technical aspect of self-assembled RNAi-AuNP nanoconstructs in this study is the precise conjugation and separation of designated numbers of therapeutic siRNA onto AuNP to develop highly sophisticated RNA-based building blocks capable of creating various geometries of RNAi-AuNP nano-assemblies. The therapeutic potential of RNAi-AuNP nanoconstructs was validated in vivo as well as in vitro by combining heat generation capability of AuNP and anti-angiogenesis mechanism of siRNA. This strategy of combining anti-VEGF mechanism for depleting angiogenesis process at initial tumor progression and complete ablation of residual tumors with photothermal activity of AuNP at later tumor stage showed effective tumor growth inhibition and tumor ablation with PC-3 tumor bearing mice.
Collapse
|
27
|
Amendola V, Fortunati I, Marega C, Abdelhady AL, Saidaminov MI, Bakr OM. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid. Chemphyschem 2016; 18:1047-1054. [DOI: 10.1002/cphc.201600863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/31/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Ilaria Fortunati
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Carla Marega
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova Italy
| | - Ahmed L. Abdelhady
- Division of Physical Science and Engineering; KAUST Solar Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Makhsud I. Saidaminov
- Division of Physical Science and Engineering; KAUST Solar Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Science and Engineering; KAUST Solar Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Fan P, Wu H, Zhong M, Zhang H, Bai B, Jin G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. NANOSCALE 2016; 8:14617-24. [PMID: 27430171 DOI: 10.1039/c6nr03662g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
Collapse
Affiliation(s)
- Peixun Fan
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Song N, Fu J, Liu Y, Zhan X, Peng S, Yang Z, Zhu X, Chen Y, Wang Z, Yu Y, Shi Q, Fu Y, Yuan K, Zhou N, Ichim TE, Min W. Synergic therapy of melanoma using GNRs-MUA-PEI/siIDO2-FA through targeted gene silencing and plasmonic photothermia. RSC Adv 2016. [DOI: 10.1039/c6ra13297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
IDO2 siRNA synergizes GNR-mediated anti-melanoma photothermal therapy.
Collapse
|