1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
3
|
Liu W, Kaczmarek AM, Van Der Voort P, Van Deun R. Chemical sensors based on periodic mesoporous organosilica @NaYF 4:Ln 3+ nanocomposites. Dalton Trans 2022; 51:11467-11475. [PMID: 35833424 DOI: 10.1039/d2dt01469f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, three unique organic-inorganic hybrid nanocomposite materials prepared by combining NaYF4:Yb3+,Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) and periodic mesoporous organosilica (PMO) are proposed for both metal ion sensing and solvent sensing. The luminescence properties of the developed hybrid materials, PMO@NaYF4:Yb3+,Ln3+, were studied in detail in the solid state and after dispersing in water. It is found that PMO@NaYF4:Yb3+,Er3+ showed selective "turn on" luminescence for Hg2+ with the detection limit of 24.4 μM in an aqueous solution. Additionally, the above three materials showed different luminescence emission responses towards water and organic solvents. It is worth noting that all three PMO@NaYF4:Yb3+,Ln3+ materials showed "turn on" luminescence towards alcohols. PMO@NaYF4:Yb3+,Er3+ and PMO@NaYF4:Yb3+,Ho3+ were selected and further developed into sensitive sensors for the detection of water in alcohols by taking advantage of their quenching behavior in water. The detection limit for sensing of water was determined to be 0.21%, 0.18% and 0.29%, corresponding to isopropanol (PMO@NaYF4:Yb3+,Er3+), n-butanol (PMO@NaYF4:Yb3+,Er3+) and ethanol (PMO@NaYF4:Yb3+,Ho3+), respectively. The above results illustrate the potential of these hybrid materials for applications in environmental fields as well as in chemical industries.
Collapse
Affiliation(s)
- Wanlu Liu
- L3 - Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium. .,NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium. .,Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Rik Van Deun
- L3 - Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Borse S, Rafique R, Murthy ZVP, Park TJ, Kailasa SK. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Analyst 2022; 147:3155-3179. [PMID: 35730445 DOI: 10.1039/d1an02170b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| | - Rafia Rafique
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| |
Collapse
|
5
|
Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A Hemicyanine-Assembled Upconversion Nanosystem for NIR-Excited Visualization of Carbon Monoxide Bio-Signaling In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202263. [PMID: 35713262 DOI: 10.1002/smll.202202263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon monoxide (CO) is considered as the second gasotransmitter involved in a series of physiological and pathological processes. Although a number of organic fluorescent probes have been developed for imaging CO, these probes display excitation within the ultraviolet or visible range, which restrict their applications in the complex biosystems. In the present work, a strategy is developed to construct an upconversion nanoparticles-based nanosystem for upconversion luminescent (UCL) sensing CO. This nanosystem exhibits a fast response to CO with high sensitivity and selectivity in aqueous solution by a near-infrared-excited ratiometric UCL detection method. Meanwhile, laser scanning upconversion luminescence microscope experiments demonstrate that this nanosystem can visualize the endogenous CO bio-signaling in living cells, deep tissues, zebrafish, and living mice by ratiometric UCL imaging. In particular, this nanosystem has been successfully employed in visualization of the endogenous CO bio-signaling through up-regulation of heme oxygenase-1 (HO-1) in the progression of hypoxia, acute inflammation, or ischemic injury. This work demonstrates that the outstanding performance of the nanosystem not only can provide an effective tool for further understanding the role of CO in the physiological and pathological environment, but also may have great potential ability for tracking the expression of HO-1 in living systems.
Collapse
Affiliation(s)
- Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jie Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jingyun Li
- Department of Plastic & Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, The Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
8
|
Pei S, Li JB, Wang Z, Xie Y, Chen J, Wang H, Sun L. A CORM loaded nanoplatform for single NIR light-activated bioimaging, gas therapy, and photothermal therapy in vitro. J Mater Chem B 2021; 9:9213-9220. [PMID: 34698754 DOI: 10.1039/d1tb01561c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon monoxide (CO) can cause mitochondrial dysfunction, inducing apoptosis of cancer cells, which sheds light on a potential alternative for cancer treatment. However, the existing CO-based compounds are inherently limited by their chemical nature, such as high biological toxicity and uncontrolled CO release. Therefore, a nanoplatform - UmPF - that addresses such pain points is urgently in demand. In this study, we have proposed a nanoplatform irradiated by near-infrared (NIR) light to release CO. Iron pentacarbonyl (Fe(CO)5) was loaded in the mesoporous polydopamine layer that was coated on rare-earth upconverting nanoparticles (UCNPs). The absorption wavelength of Fe(CO)5 overlaps with the emission bands of the UCNPs in the UV-visible light range, and therefore the emissions from the UCNPs can be used to incite Fe(CO)5 to control the release of CO. Besides, the catechol groups, which are abundant in the polydopamine structure, serve as an ideal locating spot to chelate with Fe(CO)5; in the meantime, the mesoporous structure of the polydopamine layer improves the loading efficiency of Fe(CO)5 and reduces its biological toxicity. The photothermal effect (PTT) of the polydopamine layer is highly controllable by adjusting the external laser intensity, irradiation time and the thickness of the polydopamine layer. The results illustrate that the combination of CO gas therapy (GT) and polydopamine PTT brought by the final nanoplatform can be synergistic in killing cancer cells in vitro. More importantly, the possible toxic side effects can be effectively prevented from affecting the organism, since CO will not be released in this system without near-infrared light radiation.
Collapse
Affiliation(s)
- Shihao Pei
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China.
| | - Jiabo Chen
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China. .,Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
10
|
Zhang K, Zhu G, Wei Y, Zhang L, Shen Y. Engineering of an Upconversion Luminescence Sensing Platform Based on the Competition Effect for Mercury-Ion Monitoring in Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8565-8570. [PMID: 34310878 DOI: 10.1021/acs.jafc.1c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurately monitoring mercury ions (Hg2+) in food and agriculture-related matrixes (e.g., green tea) is of great significance to safeguard food safety. Here, we employed upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) to engineer a cysteine (Cys)-assisted anti-Stokes luminescence sensing platform (UCNPs-AuNPs) for precisely detecting residual Hg2+ in green tea through the competition effect. Initially, AuNPs could effectively quench the luminescence of UCNPs through the luminescence resonance energy transfer process, which was then interrupted by Cys-triggered AuNP aggregation via Au-S, thereby restoring UCNP luminescence. Interestingly, owing to the competition effect with AuNPs toward Cys, Hg2+ could weaken the luminescence restoring efficiency, achieving a Hg2+ concentration-dependent luminescence change. On this basis, a facile, reliable, and sensitive upconversion luminescence sensing platform for monitoring residual Hg2+ in green tea was successfully established. This study offers a novel insight into integrating the competition effect and anti-Stokes luminescence for food- and agriculture-related contaminant monitoring.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guang Zhu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Ansari AA, Parchur AK, Thorat ND, Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zheng L, Huang X, Zhong J, Wang Z, Cheng X. Upconversion luminescence and temperature sensing properties of NaGd(WO 4) 2:Yb 3+/Er 3+@SiO 2 core-shell nanoparticles. RSC Adv 2021; 11:3981-3989. [PMID: 35424360 PMCID: PMC8694333 DOI: 10.1039/d0ra10039k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Optical thermometry based on the fluorescence intensity ratio (FIR) of two thermally coupled levels in lanthanide ions has potential application in non-contact optical temperature sensing techniques. In this work, a shell of SiO2 with tunable thickness was uniformly coated on NaGd(WO4)2:Yb3+/Er3+ core upconversion nanoparticles (UCNPs). The effects of the silica shell on UC luminescence and thermal sensing properties of core-shell NaGd(WO4)2:Yb3+/Er3+@SiO2 UCNPs were investigated. Under 980 nm laser excitation, the temperature-dependent UC emission spectra of obtained samples were measured. The FIR was analyzed based on the thermally coupled 2H11/2 and 4S3/2 levels of Er3+ in the biological temperature range of 300-350 K, in which the Boltzmann distribution is applied. The emission from the upper 2H11/2 state within Er3+ was enhanced as temperature increased due to the thermal effect. Absolute sensitivities (S A) and relative sensitivities (S R) of the core and core-shell UCNPs were calculated. It was found that after SiO2 coating, the maximum S A was enhanced by ∼2-fold (1.03% K-1 at 350 K). Especially, S A was as high as 2.14% K-1 at 350 K by analyzing the FIR of the non-thermally coupled 2H11/2 and 4F9/2 levels.
Collapse
Affiliation(s)
- Lu Zheng
- School of Materials, Sun Yat-sen University Guangzhou 510275 China
| | - Xinyi Huang
- School of Materials, Sun Yat-sen University Guangzhou 510275 China
| | - Jiuping Zhong
- School of Materials, Sun Yat-sen University Guangzhou 510275 China
| | - Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris Palaiseau 91128 France
| | - Xiaoning Cheng
- Instrumental Analysis & Research Center, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
16
|
Yuan D, Ellis CM, Davis JJ. Mesoporous Silica Nanoparticles in Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3795. [PMID: 32867401 PMCID: PMC7504327 DOI: 10.3390/ma13173795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
A biomedical contrast agent serves to enhance the visualisation of a specific (potentially targeted) physiological region. In recent years, mesoporous silica nanoparticles (MSNs) have developed as a flexible imaging platform of tuneable size/morphology, abundant surface chemistry, biocompatibility and otherwise useful physiochemical properties. This review discusses MSN structural types and synthetic strategies, as well as methods for surface functionalisation. Recent applications in biomedical imaging are then discussed, with a specific emphasis on magnetic resonance and optical modes together with utility in multimodal imaging.
Collapse
Affiliation(s)
| | | | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK; (D.Y.); (C.M.E.)
| |
Collapse
|
17
|
Wang S, Xi W, Wang Z, Zhao H, Zhao L, Fang J, Wang H, Sun L. Nanostructures based on vanadium disulfide growing on UCNPs: simple synthesis, dual-mode imaging, and photothermal therapy. J Mater Chem B 2020; 8:5883-5891. [PMID: 32538406 DOI: 10.1039/d0tb00993h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It remains a great challenge to integrate effective photothermal therapeutic materials with upconversion nanoparticles (UCNPs) into one structure with small size. Herein, a new and simple method was developed to combine the luminescent UCNPs with vanadium disulfide (VS2) heterogeneously growing on the UCNPs. VS2 was grown directly on the surface of UCNPs to obtain oil-soluble nanocomposites, UCNPs@VS2. Then polyethylene glycol (mPEG) was functionalized on the surface of the nanocomposites to improve the water solubility, resulting in the integrated nanostructure UCNPs@VS2-mPEG (with an approximate size of 25 nm) for bioimaging and photothermal therapy in vitro. Importantly, cytotoxicity test results show that the final nanostructure has good biocompatibility. Furthermore, due to the excellent photothermal effects of VS2 and the unique imaging function of UCNPs, the nanostructure shows effective photothermal therapy for HeLa cells and was successfully applied in magnetic resonance imaging and upconversion luminescence imaging in vitro. Therefore, this study demonstrates a simple yet powerful method of growing VS2 on the surface of UCNPs, which provides an effective method to establish one integrated nanostructure with a nanoscale advantage for dual-model bioimaging and treatment.
Collapse
Affiliation(s)
- Shuhan Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jewell MP, Greer MD, Dailey AL, Cash KJ. Triplet-Triplet Annihilation Upconversion Based Nanosensors for Fluorescence Detection of Potassium. ACS Sens 2020; 5:474-480. [PMID: 31912733 DOI: 10.1021/acssensors.9b02252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Typical ionophore-based nanosensors use Nile blue derived indicators called chromoionophores, which must contend with strong background absorption, autofluorescence, and scattering in biological samples that limit their usefulness. Here, we demonstrate potassium-selective nanosensors that utilize triplet-triplet annihilation upconversion to minimize potential optical interference in biological media and a pH-sensitive quencher molecule to modulate the upconversion intensity in response to changes in analyte concentration. A triplet-triplet annihilation dye pair (platinum(II) octaethylporphyrin and 9,10-diphenylanthracene) was integrated into nanosensors containing an analyte binding ligand (ionophore), charge-balancing additive, and a pH indicator quencher. The nanosensor response to potassium was shown to be reversible and stable for 3 days. In addition, the nanosensors are selective against sodium, calcium, and magnesium (selectivity coefficients in log10 units of -2.2 for calcium, -2.0 for sodium, and -2.4 for magnesium), three interfering ions found in biological samples. The lack of signal overlap between the upconversion nanosensors and GFP, a common biological fluorescent indicator, is demonstrated in confocal microscope images of sensors embedded in a bacterial biofilm.
Collapse
Affiliation(s)
- Megan P. Jewell
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Meredith D. Greer
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexandra L. Dailey
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
19
|
Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020; 208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
|
20
|
Wang M, Han Y, Yu X, Liang L, Chang H, Yeo DC, Wiraja C, Wee ML, Liu L, Liu X, Xu C. Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA. Adv Healthc Mater 2020; 9:e1900635. [PMID: 31788987 DOI: 10.1002/adhm.201900635] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/31/2019] [Indexed: 11/10/2022]
Abstract
Microneedles (MNs) permit the delivery of nucleic acids like small interfering RNA (siRNA) through the stratum corneum and subsequently into the skin tissue. However, skin penetration is only the first step in successful implementation of siRNA therapy. These delivered siRNAs need to be resistant to enzymatic degradation, enter target cells, and escape the endosome-lysosome degradation axis. To address this challenge, this article introduces a nanoparticle-embedding MN system that contains a dissolvable hyaluronic acid (HA) matrix and mesoporous silica-coated upconversion nanoparticles (UCNPs@mSiO2 ). The mesoporous silica (mSiO2 ) shell is used to load and protect siRNA while the upconversion nanoparticle (UCNP) core allows the tracking of MN skin penetration and NP diffusion through upconversion luminescence imaging or optical coherence tomography (OCT) imaging. Once inserted into the skin, the HA matrix dissolves and UCNPs@mSiO2 diffuse in the skin tissue before entering the cells for delivering the loaded genes. As a proof of concept, this system is used to deliver molecular beacons (MBs) and siRNA targeting transforming growth factor-beta type I receptor (TGF-βRI) that is potentially used for abnormal scar treatment.
Collapse
Affiliation(s)
- Min Wang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- School of Pharmaceutical SciencesChongqing University Chongqing 401331 China
| | - Yiyuan Han
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Xiaojun Yu
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- School of AutomationNorthwestern Polytechnical University Xi'an Shaanxi 710027 China
| | - Liangliang Liang
- Department of ChemistryNational University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Hao Chang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - David C. Yeo
- Singapore Institute of Manufacturing Technology (SIMTech)Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, #08‐04, Innovis Singapore 138634 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Mei Ling Wee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Linbo Liu
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- National Dental Centre of Singapore 5 Second Hospital Avenue Singapore 168938 Singapore
| |
Collapse
|
21
|
Amino Acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. Int J Pharm 2019; 572:118709. [DOI: 10.1016/j.ijpharm.2019.118709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
|
22
|
Liu G, Chen Y, Jia M, Sun Z, Ding B, Shao S, Jiang F, Fu Z, Ma P, Lin J. One-pot synthesis of SiO 2-coated Gd 2(WO 4) 3:Yb 3+/Ho 3+ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. Dalton Trans 2019; 48:10537-10546. [PMID: 31214676 DOI: 10.1039/c9dt01841g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rare earth ion-doped fluoride upconversion nanoparticles (UCNPs), emerging as a novel class of probes and drug carriers, exhibit superior promise for bio-applications in diagnostics and treatment on account of their strong luminescence, fine biocompatibility, and high drug loading. However, the fine control and manipulation of particle size and the distribution of rare earth ion-doped oxides has remained an insurmountable challenge to date. In this work, we construct and synthesize silica-coated Gd2(WO4)3:Yb3+/Ho3+ nanoparticles by one-pot co-precipitation, with uniform distribution (∼130 nm) and enhanced yellow fluorescence. Particularly, the nanoparticles not only possess outstanding temperature sensing performance at biological temperatures in water by utilizing the fluorescence intensity ratio (FIR) method, but also allow a further serviceable contrast effect in vitro and in vivo based on the prominent T1-weighted magnetic resonance (MR) signal of Gd3+. Compared with cisplatin and platinum(iv) (DSP), the Gd2(WO4)3@SiO2 nanoparticles functionalized with DSP (Gd2(WO4)3@SiO2-Pt-PEG) exert higher lethality against CT26 cells and significantly inhibit the growth of tumors at the same concentration of Pt. This effect occurs through the greater level of cell endocytosis. The lethality value of the latter is 10 times higher than the former after the same length of time according to inductively coupled plasma-mass spectrometry (ICP-MS) results. In short, the monodisperse and strongly fluorescent Gd2(WO4)3@SiO2-Pt-PEG nanoparticles are endowed with dual-mode imaging, temperature sensing and anticancer functions, which provide a significant guide for synthesis and bio-application of lanthanide ion-doped oxides.
Collapse
Affiliation(s)
- Guofeng Liu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China. and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Yeqing Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Mochen Jia
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Zhen Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shuai Shao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zuoling Fu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
23
|
Abualrejal MMA, Eid K, Tian R, Liu L, Chen H, Abdullah AM, Wang Z. Rational synthesis of three-dimensional core-double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application. Chem Sci 2019; 10:7591-7599. [PMID: 31588310 PMCID: PMC6761864 DOI: 10.1039/c9sc01586h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Herein, we rationally fabricated three-dimensional upconversion core–double shell nanodendrites as efficient and safe luminescent probes for in vitro and in vivo bioimaging.
Engineering the morphology of rare-earth doped NaYF4-based upconversion nanoparticles (UCNPs) can effectively tune their upconversion luminescence emission (UCLE) properties. Herein, we rationally synthesized a new class of three-dimensional upconversion core–double-shell nanodendrites (UCNDs) including an active core (NaYF4:Yb,Er,Ca) capped by a transition layer (NaYF4:Yb,Ca) and an active outer shell (NaNdF4:Yb,Ca). The high concentration of the Nd3+ sensitizer in the outer dendritic shell enhances the luminescence intensity, while the transition layer enriched with Yb3+ acts as an efficient energy migration network between the outer shell and inner core along with preventing the undesired quenching effects resulting from Nd3+. These unique structural and compositional merits enhanced the UCLE of UCNDs by 5 and 15 times relative to NaYF4:Yb,Er,Ca@NaYF4:Yb,Ca truncated core–shell UCNPs and NaYF4:Yb,Er,Ca spherical core UCNPs, respectively, under excitation at 980 nm. The SiO2–COOH layer coated UCNDs (UCND@SiO2–COOH) were successfully used as efficient long-term luminescent probes for in vitro and in vivo bioimaging without any significant toxicity. The uptake and retention of UCND@SiO2–COOH were mostly found in the liver and spleen. This study may open the way towards the preparation of three-dimensional UCND nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Murad M A Abualrejal
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . .,University of Science and Technology of China , Road Baohe District , Hefei , Anhui 230026 , P. R. China
| | - Kamel Eid
- Centre for Advanced Materials , Qatar University , Doha 2713 , Qatar
| | - Rongrong Tian
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . .,University of Science and Technology of China , Road Baohe District , Hefei , Anhui 230026 , P. R. China
| | - Lin Liu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . .,College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China .
| | | | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , P. R. China . .,University of Science and Technology of China , Road Baohe District , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
24
|
Andresen E, Resch-Genger U, Schäferling M. Surface Modifications for Photon-Upconversion-Based Energy-Transfer Nanoprobes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5093-5113. [PMID: 30870593 DOI: 10.1021/acs.langmuir.9b00238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An emerging class of inorganic optical reporters are near-infrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the surface functionalization of UCNPs, the analysis and quantification of surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core-shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH.
Collapse
Affiliation(s)
- Elina Andresen
- BAM Federal Institute of Materials Research and Testing, Biophotonics Division, Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
- Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany
| | - Ute Resch-Genger
- BAM Federal Institute of Materials Research and Testing, Biophotonics Division, Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Michael Schäferling
- Münster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39 , D-48565 Steinfurt , Germany
| |
Collapse
|
25
|
Castillo RR, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 2019; 16:415-439. [PMID: 30897978 PMCID: PMC6667337 DOI: 10.1080/17425247.2019.1598375] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. AREAS COVERED This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. EXPERT OPINION The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
26
|
Wang H, Li Y, Yang M, Wang P, Gu Y. FRET-Based Upconversion Nanoprobe Sensitized by Nd 3+ for the Ratiometric Detection of Hydrogen Peroxide in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7441-7449. [PMID: 30673225 DOI: 10.1021/acsami.8b21549] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The exorbitant level of hydrogen peroxide is closely related to many human diseases. The development of novel probes for H2O2 detection will be beneficial to disease diagnosis. In this study, a novel Nd3+-sensitized upconversion nanoprobe based on Förster resonance energy transfer was first developed for sensing H2O2. This nanosystem was made of core-shell upconversion nanoparticles (emission at 540 and 660 nm), dicyanomethylene-4 H-pyran (DCM)-H2O2, and poly acrylic acid (PAA)-octylamine. Obviously, upconversion nanoparticles (UCNPs) doped with Nd3+ acted as an energy donor, and DCM-H2O2, transferring to DCM-OH with the reaction of H2O2, acted as an energy acceptor. The ratiometric upconversion luminescence (540 nm/660 nm) signal could be utilized to visualize the H2O2 level, and the LOD of the nanoprobe for H2O2 was quantified to be 0.168 μM. Meanwhile, owing to the dope of Nd3+, the nanoprobe would not induce the overheating effect in biological samples and could possess deeper tissue penetration depth, compared with the UCNPs excited by 980 nm light during bioimaging. The nanoprobe could also play an important role in detecting the exogenous and endogenous H2O2 in living cells with ratiometric UCL (upconversion luminescence) imaging. Furthermore, our nanoprobe could function in detecting the H2O2 in a tumor-bearing mouse model. Therefore, this novel nanoprobe along with the ratiometric method for responding and bioimaging H2O2 could serve as a new model that promotes the emergence of novel probes for H2O2 detection.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
27
|
Hama Aziz KH, Omer KM, Hamarawf RF. Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots. NEW J CHEM 2019. [DOI: 10.1039/c9nj01333d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Surface modification of carbon dots can lower the detection limit of trace analysis which is challenging in analytical chemistry and environmental analysis.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Khalid M. Omer
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| |
Collapse
|
28
|
Zhang R, Liang L, Meng Q, Zhao J, Ta HT, Li L, Zhang Z, Sultanbawa Y, Xu ZP. Responsive Upconversion Nanoprobe for Background-Free Hypochlorous Acid Detection and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803712. [PMID: 30548763 DOI: 10.1002/smll.201803712] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Responsive nanoprobes play an important role in bioassay and bioimaging, early diagnosis of diseases and treatment monitoring. Herein, a upconversional nanoparticle (UCNP)-based nanoprobe, Ru@UCNPs, for specific sensing and imaging of hypochlorous acid (HOCl) is reported. This Ru@UCNP nanoprobe consists of two functional components,, i.e., NaYF4 :Yb, Tm UCNPs that can convert near infrared light-to-visible light as the energy donor, and a HOCl-responsive ruthenium(II) complex [Ru(bpy)2 (DNCH-bpy)](PF6 )2 (Ru-DNPH) as the energy acceptor and also the upconversion luminescence (UCL) quencher. Within this luminescence resonance energy transfer nanoprobe system, the UCL OFF-ON emission is triggered specifically by HOCl. This triggering reaction enables the detection of HOCl in aqueous solution and biological systems. As an example of applications, the Ru@UCNPs nanoprobe is loaded onto test papers for semiquantitative HOCl detection without any interference from the background fluorescence. The application of Ru@UCNPs for background-free detection and visualization of HOCl in cells and mice is successfully demonstrated. This research has thus shown that Ru@UCNPs is a selective HOCl-responsive nanoprobe, providing a new way to detect HOCl and a new strategy to develop novel nanoprobes for in situ detection of various biomarkers in cells and early disgnosis of animal diseases.
Collapse
Affiliation(s)
- Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liuen Liang
- Department of Physics and Astronomy, Macquarie University, NSW, 2109, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiangbo Zhao
- Department of Physics and Astronomy, Macquarie University, NSW, 2109, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
29
|
Rao L, Tang Y, Lu H, Yu S, Ding X, Xu K, Li Z, Zhang JZ. Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg 2+ Detection. NANOMATERIALS 2018; 8:nano8110900. [PMID: 30400227 PMCID: PMC6265737 DOI: 10.3390/nano8110900] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 01/30/2023]
Abstract
We developed a microreactor with porous copper fibers for synthesizing nitrogen-doped carbon dots (N-CDs) with a high stability and photoluminescence (PL) quantum yield (QY). By optimizing synthesis conditions, including the reaction temperature, flow rate, ethylenediamine dosage, and porosity of copper fibers, the N-CDs with a high PL QY of 73% were achieved. The PL QY of N-CDs was two times higher with copper fibers than without. The interrelations between the copper fibers with different porosities and the N-CDs were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrate that the elemental contents and surface functional groups of N-CDs are significantly influenced by the porosity of copper fibers. The N-CDs can be used to effectively and selectively detect Hg2+ ions with a good linear response in the 0~50 μM Hg2+ ions concentration range, and the lowest limit of detection (LOD) is 2.54 nM, suggesting that the N-CDs have great potential for applications in the fields of environmental and hazard detection. Further studies reveal that the different d orbital energy levels of Hg2+ compared to those of other metal ions can affect the efficiency of electron transfer and thereby result in their different response in fluorescence quenching towards N-CDs.
Collapse
Affiliation(s)
- Longshi Rao
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Yong Tang
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hanguang Lu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shudong Yu
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany.
| | - Xinrui Ding
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ke Xu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
- Department of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Zongtao Li
- Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
30
|
Guller AE, Nadort A, Generalova AN, Khaydukov EV, Nechaev AV, Kornienko IA, Petersen EV, Liang L, Shekhter AB, Qian Y, Goldys EM, Zvyagin AV. Rational Surface Design of Upconversion Nanoparticles with Polyethylenimine Coating for Biomedical Applications: Better Safe than Brighter? ACS Biomater Sci Eng 2018; 4:3143-3153. [PMID: 33435055 DOI: 10.1021/acsbiomaterials.8b00633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upconversion nanoparticles (UCNPs) coated with polyethylenimine (PEI) are popular background-free optical contrast probes and efficient drug and gene delivery agents attracting attention in science, industry, and medicine. Their unique optical properties are especially useful for subsurface nanotheranostics applications, in particular, in skin. However, high cytotoxicity of PEI limits safe use of UCNP@PEI, and this represents a major barrier for clinical translation of UCNP@PEI-based technologies. Our study aims to address this problem by exploring additional surface modifications to UCNP@PEI to create less toxic and functional nanotheranostic materials. We designed and synthesized six types of layered polymer coatings that envelop the original UCNP@PEI surface, five of which reduced the cytotoxicity to human skin keratinocytes under acute (24 h) and subacute (120 h) exposure. In parallel, we examined the photoluminescence spectra and lifetime of the surface-modified UCNP@PEI. To quantify their brightness, we developed original methodology to precisely measure the colloidal concentration to normalize the photoluminescence signal using a nondigesting mass spectrometry protocol. Our results, specified for the individual coatings, show that, despite decreasing the cytotoxicity, the external polymer coatings of UCNP@PEI quench the upconversion photoluminescence in biologically relevant aqueous environments. This trade-off between cytotoxicity and brightness for surface-coated UCNPs emphasizes the need for the combined assessment of the viability of normal cells exposed to the nanoparticles and the photophysical properties of postmodification UCNPs. We present an optimized methodology for rational surface design of UCNP@PEI in biologically relevant conditions, which is essential to facilitate the translation of such nanoparticles to the clinical applications.
Collapse
Affiliation(s)
- Anna E Guller
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,University of New South Wales, Sydney, New South Wales 2032, Australia
| | - Annemarie Nadort
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia
| | - Alla N Generalova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia.,Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Evgeny V Khaydukov
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey V Nechaev
- Institute of Fine Chemical Technologies, Moscow Technological University, Moscow, 119571, Russia
| | - Inna A Kornienko
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141700, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141700, Russia
| | - Liuen Liang
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia
| | | | - Yi Qian
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia
| | - Ewa M Goldys
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,University of New South Wales, Sydney, New South Wales 2032, Australia
| | - Andrei V Zvyagin
- Macquarie University, Department of Physics and Astronomy, MQ Photonics Research Centre, The ARC Centre of Excellence for Nanoscale BioPhotonics, North Ryde, New South Wales 2109, Australia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Macquarie University, Department of Biomedical Sciences, North Ryde, New South Wales 2109, Australia.,Lobachevsky Nizhniy Novgorod State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
31
|
Lingeshwar Reddy K, Prabhakar N, Rosenholm JM, Krishnan V. Core-Shell Structures of Upconversion Nanocrystals Coated with Silica for Near Infrared Light Enabled Optical Imaging of Cancer Cells. MICROMACHINES 2018; 9:E400. [PMID: 30424333 PMCID: PMC6187455 DOI: 10.3390/mi9080400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
Abstract
Optical imaging of cancer cells using near infrared (NIR) light is currently an active area of research, as this spectral region directly corresponds to the therapeutic window of biological tissues. Upconversion nanocrystals are photostable alternatives to conventional fluorophores. In our work, we have prepared upconversion nanocrystals of NaYF₄:Yb/Er and encapsulated them in silica to form core-shell structures. The as-prepared core-shell nanostructures have been characterized for their structure, morphology, and optical properties using X-ray diffraction, transmission electron microscopy coupled with elemental mapping, and upconversion luminescence spectroscopy, respectively. The cytotoxicity examined using cell viability assay indicated a low level of toxicity of these core-shell nanostructures. Finally, these core-shell nanostructures have been utilized as photostable probes for NIR light enabled optical imaging of human breast cancer cells. This work paves the way for the development of advanced photostable, biocompatible, low-toxic core-shell nanostructures for potential optical imaging of biological cells and tissues.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India.
| |
Collapse
|
32
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
34
|
Gu B, Zhang Q. Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700609. [PMID: 29593963 PMCID: PMC5867034 DOI: 10.1002/advs.201700609] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Significant progress on upconversion-nanoparticle (UCNP)-based probes is witnessed in recent years. Compared with traditional fluorescent probes (e.g., organic dyes, metal complexes, or inorganic quantum dots), UCNPs have many advantages such as non-autofluorescence, high chemical stability, large light-penetration depth, long lifetime, and less damage to samples. This article focuses on recent achievements in the usage of lanthanide-doped UCNPs as efficient probes for biodetection since 2014. The mechanisms of upconversion as well as the luminescence resonance energy transfer process is introduced first, followed by a detailed summary on the recent researches of UCNP-based biodetections including the detection of inorganic ions, gas molecules, reactive oxygen species, and thiols and hydrogen sulfide.
Collapse
Affiliation(s)
- Bin Gu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
35
|
Lin LS, Song J, Yang HH, Chen X. Yolk-Shell Nanostructures: Design, Synthesis, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704639. [PMID: 29280201 DOI: 10.1002/adma.201704639] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Yolk-shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard-templating, soft-templating, self-templating, and multimethod combination synthesis. For the hard- or soft-templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self-templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.
Collapse
Affiliation(s)
- Li-Sen Lin
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Huang-Hao Yang
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
36
|
Dibaba ST, Wei R, Xi W, Zhao L, Shi L, Ren W, Mayr T, Sun L. Theranostic nanocomposite from upconversion luminescent nanoparticles and black phosphorus nanosheets. RSC Adv 2018; 8:35706-35718. [PMID: 35547921 PMCID: PMC9088079 DOI: 10.1039/c8ra07441k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022] Open
Abstract
An anti-cancer campaign might not be easily achieved through a single therapeutic modality. Collaboration of multimodal therapies and diagnosis could be vital to win the battle against cancer. In this context, we synthesized a multifunctional theranostic nanocomposite (UCNP–BPNS) from upconversion nanoparticles (UCNP) and black phosphorus nanosheets (BPNS) for synergistic photothermal/photodynamic therapies in vitro and dual modal imaging. Core–shell UCNP (NaYF4:Yb,Er@NaGdF4) and BPNS were synthesized using solvo-thermal and liquid exfoliation methods, respectively, and then covalently conjugated after UCNP was modified with polyacrylic acid and BPNS with methoxypolyethylene glycol amine. The experimental results validate that the nanocomposite exhibited a good photothermal therapy (PTT) effect under 808 nm laser irradiation, endorsing the apparent heat conversion effect of BPNS. Besides, a very good photodynamic therapy (PDT) effect was achieved under 980 nm laser irradiation of the nanocomposite due to Förster resonance energy transfer from UCNP to BPNS that generated singlet oxygen (1O2). The synergistic PTT/PDT therapeutic effect provided by UCNP–BPNS under simultaneous 808 and 980 nm laser irradiation was significantly higher than either PTT or PDT alone. Furthermore, due to the merit of the outer shell coated on the surface of the core of UCNP, the nanocomposite exhibited good potential for magnetic resonance and upconversion luminescence imaging. These results demonstrated that our multifunctional nanocomposite has promising theranostic efficacy under near infrared laser irradiation. We successfully synthesized a multifunctional theranostic nanocomposite from upconversion nanoparticles and black phosphorus nanosheets for synergistic photothermal/photodynamic therapies in vitro and dual modal imaging.![]()
Collapse
Affiliation(s)
- Solomon Tiruneh Dibaba
- Physics Department
- International Centre for Quantum and Molecular Structures
- Shanghai University
- Shanghai 200444
- China
| | - Ruoyan Wei
- Research Center of Nano Science and Technology
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Wensong Xi
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- China
| | - Lei Zhao
- Research Center of Nano Science and Technology
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Liyi Shi
- Research Center of Nano Science and Technology
- School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Wei Ren
- Physics Department
- International Centre for Quantum and Molecular Structures
- Shanghai University
- Shanghai 200444
- China
| | - Torsten Mayr
- Applied Sensors
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Lining Sun
- Physics Department
- International Centre for Quantum and Molecular Structures
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
37
|
|
38
|
Zhao L, Ge X, Yan G, Wang X, Hu P, Shi L, Wolfbeis OS, Zhang H, Sun L. Double-mesoporous core-shell nanosystems based on platinum nanoparticles functionalized with lanthanide complexes for in vivo magnetic resonance imaging and photothermal therapy. NANOSCALE 2017; 9:16012-16023. [PMID: 29022987 DOI: 10.1039/c7nr04983h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A double-mesoporous nanosystem was synthesized for treating as well as imaging cancer cells by using a simple and mild method. The mesoporous platinum (Pt) nanoparticles acting as a core show excellent photothermal effect under illumination with an 808 nm near infrared (NIR) laser. The mesoporous silica linked with a lanthanide (Gd) complex acting as a shell displays potential applications as a contrast agent for magnetic resonance imaging (MRI). The final mPt@mSiO2-GdDTPA nanosystems exhibit good biocompatibility in vitro and in vivo, when investigated by methyl thiazolyl tetrazolium assay and histological and serum biochemistry analysis. The investigation of the photothermal effect shows that the mPt@mSiO2-GdDTPA nanosystems exhibit an excellent photothermal therapy effect on HeLa cells and tumor-bearing mice. As theranostic agents, the nanosystems display a higher r1 value than the medical contrast agent magnevist and were successfully applied to in vivo MRI of Kunming mice. Therefore, the first systematic study on the photothermal effect of nanosystems based on mesoporous Pt nanoparticles does encourage the potential applications of metal nanoparticles and hybrid nanocomposites for cancer bioimaging and therapy.
Collapse
Affiliation(s)
- Lei Zhao
- Research Center of Nano Science and Technology, School of Material Science and Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wei R, Xi W, Wang H, Liu J, Mayr T, Shi L, Sun L. In situ crystal growth of gold nanocrystals on upconversion nanoparticles for synergistic chemo-photothermal therapy. NANOSCALE 2017; 9:12885-12896. [PMID: 28650053 DOI: 10.1039/c7nr02280h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A multifunctional cancer therapy nanocomposite was proposed and synthesized by linking the pH-responsive SH-PEG-DOX prodrug onto gold nanocrystals that were grown in situ on the surface of upconversion nanoparticles (UCNPs). In the structure of the SH-PEG-DOX prodrug, a hydrazone bond was utilized for subsequent pH-responsive drug release in the intracellular acidic microenvironment of cancer cells. This innovative assembly method is facile and mild, and can be used to obtain nanocomposites of UCNPs and gold, which show excellent photostability and biocompatibility. The final UCNPs@Au-DOX nanocomposites offer efficient treatment effects in vitro under irradiation with an 808 nm laser due to the synergistic effect of chemotherapy and photothermal therapy. In addition, the UCNPs@Au-DOX nanocomposites show excellent intracellular locating ability via upconversion luminescence (UCL) imaging with Er3+ ions and magnetic resonance imaging (MRI) with Gd3+ ions, indicating that they have potential as a visual tracking agent in cancer treatment. Therefore, the presented bioimaging-guided multifunctional synergistic therapy nanocomposites are promising tools for imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Ruoyan Wei
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Dong X, Wu P, Hellmann GP, Wang C, Schäfer CG. Morphology-Controlled Coating of Colloidal Particles with Silica: Influence of Particle Surface Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2235-2247. [PMID: 28192995 DOI: 10.1021/acs.langmuir.6b04069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a general, convenient, and efficient synthetic concept for the coating of colloidal particles with a silica (SiO2) shell of well-defined and precisely controlled morphology and porosity. Monodisperse submicroscopic polystyrene (PS) particles were synthesized via two-stage emulsifier-free emulsion polymerization and subsequent swelling polymerization, enabling selective particle surface modification by the incorporation of ionic (methacrylic acid, MAA) or nonionic (hydroxyethyl methacrylate, HEMA or methacrylamide, MAAm) comonomers, which could be proven by zeta potential measurements as well as by determining the three-phase contact angle of the colloidal particles adsorbed at the air-water and n-decane-water interface. The functionalized particles could be directly coated with silica shells of variable thickness, porosity, and controlled surface roughness in a seeded sol-gel process from tetraethoxysilane (TEOS), leading to hybrid PS@silica particles with morphologies ranging from core-shell (CS) to raspberry-type architectures. The experimental results demonstrated that the silica coating could be precisely tailored by the type of surface functionalization, which strongly influences the surface properties of the colloidal particles and thus the morphology of the final silica shell. Furthermore, the PS cores could be easily removed by thermal treatment, yielding extremely uniform hollow silica particles, while maintaining their initial shell architecture. These particles are highly stable against irreversible aggregation and could be readily dried, purified, and redispersed in various solvents. Herein we show a first example of coating semiconducting CdSe/ZnS nanocrystals with smooth and spherical silica shells by applying the presented method that are expected to be suitable systems for applications as markers in biology and life science by using fluorescence microscopy methods, which are also briefly discussed.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Pan Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Goetz P Hellmann
- German Institute for Polymers (DKI) , Schlossgartenstrasse 6, D-64289 Darmstadt, Germany
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Christian G Schäfer
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, China
- German Institute for Polymers (DKI) , Schlossgartenstrasse 6, D-64289 Darmstadt, Germany
| |
Collapse
|
41
|
Wu W, Ye C, Xiao H, Sun X, Qu W, Li X, Chen M, Li J. Hierarchical mesoporous silica nanoparticles for tailorable drug release. Int J Pharm 2016; 511:65-72. [PMID: 27374197 DOI: 10.1016/j.ijpharm.2016.06.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
In order to modulate the drug release profiles, the hierarchical mesoporous silica nanoparticles (HMSNs) are fabricated by a two-step synthetic process. The HMSNs exhibit uniform spherical morphology with nanoscaled size, well mono-dispersed size distribution, and smooth surface. Because of the hierarchical pore structures with different mesoporous sizes and morphologies (partial open and partial blocked pores), the HMSNs can release the loaded drug in a controlled manner. The hierarchical mesoporous structures directed drug release profiles suggest a feasible strategy to tailor drug release behaviors. Meanwhile, the HMSNs exhibit good biocompatibility. Therefore, the HMSNs having tailorable drug release capacity would be a potential candidate to improve their therapeutic efficiency for drug delivery systems.
Collapse
Affiliation(s)
- Wei Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory For Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Chenyu Ye
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhao Qu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiuhua Li
- Changzhou Institute of Engineering Technology, Changzhou 213164, China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Zhang J, Cheng F, Li J, Zhu JJ, Lu Y. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. NANO TODAY 2016; 11:309-329. [PMID: 27818705 PMCID: PMC5089816 DOI: 10.1016/j.nantod.2016.05.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in nanoscale science and technology have generated nanomaterials with unique optical properties. Over the past decade, numerous fluorescent nanoprobes have been developed for highly sensitive and selective sensing and imaging of metal ions, both in vitro and in vivo. In this review, we provide an overview of the recent development of the design and optical properties of the different classes of fluorescent nanoprobes based on noble metal nanomaterials, upconversion nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials. We further detail their application in the detection and quantification of metal ions for environmental monitoring, food safety, medical diagnostics, as well as their use in biomedical imaging in living cells and animals.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - FangFang Cheng
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - JingJing Li
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Jun-Jie Zhu
- College of Chemistry, Nanjing University, Nanjing, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Wei R, Wei Z, Sun L, Zhang JZ, Liu J, Ge X, Shi L. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:400-10. [PMID: 26702512 DOI: 10.1021/acsami.5b09132] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Iron ion (Fe(3+)) which is the physiologically most abundant and versatile transition metal in biological systems, has been closely related to many certain cancers, metabolism, and dysfunction of organs, such as the liver, heart, and pancreas. In this Research Article, a novel Nile red derivative (NRD) fluorescent probe was synthesized and, in conjunction with polymer-modified core-shell upconversion nanoparticles (UCNPs), demonstrated in the detection of Fe(3+) ion with high sensitivity and selectivity. The core-shell UCNPs were surface modified using a synthesized PEGylated amphiphilic polymer (C18PMH-mPEG), and the resulting mPEG modified core-shell UCNPs (mPEG-UCNPs) show good water solubility. The overall Fe(3+)-responsive upconversion luminescence nanostructure was fabricated by linking the NRD to the mPEG-UCNPs, denoted as mPEG-UCNPs-NRD. In the nanostructure, the core-shell UCNPs, NaYF4:Yb,Er,Tm@NaGdF4, serve as the energy donor while the Fe(3+)-responsive NRD as the energy acceptor, which leads to efficient luminescence resonance energy transfer (LRET). The mPEG-UCNPs-NRD nanostructure shows high selectivity and sensitivity for detecting Fe(3+) in water. In addition, benefited from the good biocompatibility, the nanostructure was successfully applied for detecting Fe(3+) in living cells based on upconversion luminescence (UCL) from the UCNPs. Furthermore, the doped Gd(3+) ion in the UCNPs endows the mPEG-UCNPs-NRD nanostructure with effective T1 signal enhancement, making it a potential magnetic resonance imaging (MRI) contrast agent. This work demonstrates a simple yet powerful strategy to combine metal ion sensing with multimodal bioimaging based on upconversion luminescence for biomedical applications.
Collapse
Affiliation(s)
- Ruoyan Wei
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Zuwu Wei
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - Jinliang Liu
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Xiaoqian Ge
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| | - Liyi Shi
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University , Shanghai 200444, P. R. China
| |
Collapse
|
44
|
Han GM, Jiang HX, Huo YF, Kong DM. Simple synthesis of amino acid-functionalized hydrophilic upconversion nanoparticles capped with both carboxyl and amino groups for bimodal imaging. J Mater Chem B 2016; 4:3351-3357. [DOI: 10.1039/c6tb00650g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amino acid-functionalized hydrophilic upconversion nanoparticles capped with both carboxyl and amino groups were one-step synthesized for bimodal imaging.
Collapse
Affiliation(s)
- Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Hong-Xin Jiang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yan-Fang Huo
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| |
Collapse
|
45
|
Rathaiah M, Lozano-Gorrín AD, Babu P, Jayasankar CK, Lavín V, Venkatramu V. Efficient Nd3+ sensitized Yb3+ emission and infrared-to-visible energy conversion in gallium nano-garnets. RSC Adv 2016. [DOI: 10.1039/c6ra13729f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We studied the structural and luminescence properties of nanocrystalline RE3Ga5O12 (RE = Gd, Y and Lu) garnets co-doped with 1 mol% of Nd3+ and 10 mol% of Yb3+ ions. The Nd3+ sensitized Yb3+ emission at 1025 nm is observed due to efficient Nd3+ to Yb3+ energy transfer.
Collapse
Affiliation(s)
| | | | - Palamandala Babu
- Department of Physics
- Government Degree College
- Satyavedu 517 588
- India
| | | | - Víctor Lavín
- Departmento de Física
- MALTA Consolider Team
- IUdEA
- Universidad de La Laguna
- 38200 San Cristóbal de La Laguna
| | | |
Collapse
|
46
|
Singh G, Rani S, Arora A, Aulakh D, Wriedt M. Thioester-appended organosilatranes: synthetic investigations and application in the modification of magnetic silica surfaces. NEW J CHEM 2016. [DOI: 10.1039/c6nj00011h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thioester tethered organosilatranes were synthesized. The substituent effect on the absorption spectra and potential for binding with Cu2+were explored.
Collapse
Affiliation(s)
| | - Sunita Rani
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Aanchal Arora
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Darpandeep Aulakh
- Functional Materials Design & X-ray Diffraction Laboratory
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Mario Wriedt
- Functional Materials Design & X-ray Diffraction Laboratory
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
47
|
Li J, Yao S, Song S, Wang X, Wang Y, Ding X, Wang F, Zhang H. Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure. Dalton Trans 2016; 45:11522-7. [DOI: 10.1039/c6dt02044e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We produce the core@shell structure of PEGylated Yb2O3:Gd@SiO2@CeO2 islands, which exhibit a high-performance dual-modal contrast agent in MRI and CT and excellent catalase mimetic activity.
Collapse
Affiliation(s)
- Junqi Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shuang Yao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xing Ding
- Department of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
48
|
Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 2016; 141:3601-20. [DOI: 10.1039/c6an00150e] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.
Collapse
Affiliation(s)
- Chengli Wang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Xiaomin Li
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| | - Fan Zhang
- Department of Chemistry
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials
- Fudan University
| |
Collapse
|