1
|
Godakhindi V, Yazdimamaghani M, Dam SK, Ferdous F, Wang AZ, Tarannum M, Serody J, Vivero-Escoto JL. Optimized Fabrication of Dendritic Mesoporous Silica Nanoparticles as Efficient Delivery System for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402802. [PMID: 39375971 DOI: 10.1002/smll.202402802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/13/2024] [Indexed: 10/09/2024]
Abstract
In the past decade, cancer immunotherapy has revolutionized the field of oncology. Major immunotherapy approaches such as immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, cytokines, and immunomodulators have shown great promise in preclinical and clinical settings. Among them, immunomodulatory agents including cancer vaccines are particularly appealing; however, they face limitations, notably the absence of efficient and precise targeted delivery of immune-modulatory agents to specific immune cells and the potential for off-target toxicity. Nanomaterials can play a pivotal role in addressing targeting and other challenges in cancer immunotherapy. Dendritic mesoporous silica nanoparticles (DMSNs) can enhance the efficacy of cancer vaccines by enhancing the effective loading of immune modulatory agents owing to their tunable pore sizes. In this work, an emulsion-based method is optimized to customize the pore size of DMSNs and loaded DMSNs with ovalbumin (OVA) and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (CpG-OVA-DMSNs). The immunotherapeutic effect of DMSNs is achieved through controlled chemical release of OVA and CpG in antigen-presenting cells (APCs). The results demonstrated that CpG-OVA-DMSNs efficiently activated the immune response in APCs and reduced tumor growth in the murine B16-OVA tumor model.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mostafa Yazdimamaghani
- Center for Nanotechnology in Drug Delivery and Division of pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Farzana Ferdous
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Z Wang
- Center for Nanotechnology in Drug Delivery and Division of pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Jonathan Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, 27599, USA
- Department of Medicine, UNC School of Medicine, Haupt Building, Chapel Hill, NC, 27599, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
2
|
Aziz A, Macht M, Becit B, Zahn D. Molecular Characterization of Mesoporous Silica (Un)loading by Gemcitabine and Ibuprofen - An Interplay of Salt-Bridges and Hydrogen Bonds. J Pharm Sci 2024; 113:785-790. [PMID: 38070777 DOI: 10.1016/j.xphs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024]
Abstract
The molecular mechanisms of mesoporous silica nanomaterial (MSN) loading by gemcitabine and ibuprofen molecules, respectively, are elucidated as functions of pore geometry. Based on a small series of MSN archetypes, we use molecular dynamics simulations to systematically explore molecule-by-molecule loading of the carrier material. Apart from predicting the maximum active pharmaceutical ingredient (API) loading capacity, more detailed statistical analysis of the incorporation energy reveals dedicated profiles stemming from the interplay of guest-MSN salt-bridges/hydrogen bonding in concave and convex domains of the silica surfaces - which outcompete interactions among the drug molecules. Only after full coverage of the silica surface, we find secondary layer growth stabilized by guest-guest interactions exclusively. Based on molecular models, we thus outline a two-step type profile for drug release from MSN networks. Subject to the MSN structure, we find 50-75 % of the API within amorphous domains in the inner regions of the pores - from which drug release is provided at constant dissociation energy. In turn, the remaining 50-25 % of drug molecules are drastically hindered from dissociation.
Collapse
Affiliation(s)
- Awin Aziz
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Moritz Macht
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Bahanur Becit
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
| |
Collapse
|
3
|
One-step synthesis of SiO2 nanomesh for antireflection and self-cleaning of solar cell. J Colloid Interface Sci 2023; 630:795-803. [DOI: 10.1016/j.jcis.2022.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
4
|
Zhang Y, Lu X, Chi C, Zheng Y, Chen Q. Sheet-like Janus hemostatic dressings with synergistic effects of cardanol hemostasis and quaternary ammonium salt antibacterial action. J Mater Chem B 2022; 10:9413-9423. [PMID: 36377727 DOI: 10.1039/d2tb02082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is of utmost importance that bleeding should be stopped and infection be prevented in people with trauma. In this study, an anisotropic Janus mesoporous silica nanosheet (MSNS) with different functional groups was designed and prepared. In order to endow both sides of the MSNS with independent fast hemostasis and effective antibacterial action, the MSNS was modified with cardanol (CA) and 2,3-epoxypropyltrimethylammonium (GTA). The addition of CA significantly improved the hemostatic property of the MSNS. In a SD rat femoral artery injury model, the hemostatic time of CA-MSNS-GTA was 47% shorter than that of the MSNS, attributed to the sealing of the hydrophobic alkyl side chain and the adhesion of phenolic hydroxyl groups in CA. CA-MSNS-GTA could form a three-dimensional network with fibrin to further accelerate the coagulation process. This Janus material exhibited excellent antibacterial effects (∼90%) against Gram-positive bacteria (S. pneumoniae) and Gram-negative bacteria (E. coli) due to the presence of GTA. The cytotoxicity test showed that CA-MSNS-GTA exhibited biosafety, which provided safety guarantee for clinical applications in the future. This Janus dressing with different functions on two opposite sides provides synergetic multifunctional effects during wound healing.
Collapse
Affiliation(s)
- Yuxia Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Xiaoyu Lu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Yanyan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China. .,Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
5
|
Strategy for Conjugating Oligopeptides to Mesoporous Silica Nanoparticles Using Diazirine-Based Heterobifunctional Linkers. NANOMATERIALS 2022; 12:nano12040608. [PMID: 35214937 PMCID: PMC8880541 DOI: 10.3390/nano12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Successful strategies for the attachment of oligopeptides to mesoporous silica with pores large enough to load biomolecules should utilize the high surface area of pores to provide an accessible, protective environment. A two-step oligopeptide functionalization strategy is examined here using diazirine-based heterobifunctional linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm and surface area of ~730 m2/g were synthesized and amine-functionalized. Tetrapeptides Gly-Gly-Gly-Gly (GGGG) and Arg-Ser-Ser-Val (RSSV), and a peptide comprised of four copies of RSSV (4RSSV), were covalently attached via their N-terminus to the amine groups on the particle surface by a heterobifunctional linker, sulfo-succinimidyl 6-(4,4′-azipentanamido)hexanoate (sulfo-NHS-LC-diazirine, or SNLD). SNLD consists of an amine-reactive NHS ester group and UV-activable diazirine group, providing precise control over the sequence of attachment steps. Attachment efficiency of RSSV was measured using fluorescein isothiocyanate (FITC)-tagged RSSV (RSSV-FITC). TGA analysis shows similar efficiency (0.29, 0.31 and 0.26 mol peptide/mol amine, respectively) for 4G, RSSV and 4RSSV, suggesting a generalizable method of peptide conjugation. The technique developed here for the conjugation of peptides to MSNPs provides for their attachment in pores and can be translated to selective peptide-based separation and concentration of therapeutics from aqueous process and waste streams.
Collapse
|
6
|
Fujimoto K, Ishikawa S, Watanabe K, Ishii H, Suga K, Nagao D. Correlation of Secondary Particle Number with the Debye-Hückel Parameter for Thickening Mesoporous Silica Shells Formed on Spherical Cores. ACS OMEGA 2021; 6:17734-17740. [PMID: 34278159 PMCID: PMC8280692 DOI: 10.1021/acsomega.1c02293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Mesoporous silica shells were formed on nonporous spherical silica cores during the sol-gel reaction to elucidate the mechanism for the generation of secondary particles that disturb the efficient growth of mesoporous shells on the cores. Sodium bromide (NaBr) was used as a typical electrolyte for the sol-gel reaction to increase the ionic strength of the reactant solution, which effectively suppressed the generation of secondary particles during the reaction wherein a uniform mesoporous shell was formed on the spherical core. The number of secondary particles (N 2nd) generated at an ethanol/water weight ratio of 0.53 was plotted against the Debye-Hückel parameter κ to quantitatively understand the Debye screening effect on secondary particle generation. Parameter κa, where a is the average radius of the secondary particles finally obtained in the silica coating, expresses the trend in N 2nd at different concentrations of ammonia and NaBr. N 2nd was much lower than that expected theoretically from the variation of secondary particle sizes at a constant Debye-Hückel parameter. A similar correlation with κa was observed at the high and low ethanol/water weight ratios of 0.63 and 0.53, respectively, with different hydrolysis rate constants. The good correlation between N 2nd and κa revealed that controlling the ionic strength of the silica coating is an effective approach to suppress the generation of secondary particles for designing mesoporous shells with thicknesses appropriate for their application as high-performance liquid chromatography column packing materials.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department
of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shunho Ishikawa
- Department
of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kanako Watanabe
- Department
of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Haruyuki Ishii
- Department
of Sustainable Environmental Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube, Yamaguchi 755-0097, Japan
| | - Keishi Suga
- Department
of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Nagao
- Department
of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
7
|
Ren D, Xu J, Chen N, Ye Z, Li X, Chen Q, Ma S. Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Fujimoto K, Watanabe K, Ishikawa S, Ishii H, Suga K, Nagao D. Pore expanding effect of hydrophobic agent on 100 nm-sized mesoporous silica particles estimated based on Hansen solubility parameters. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Production of MCM-41 Nanoparticles with Control of Particle Size and Structural Properties: Optimizing Operational Conditions during Scale-Up. Int J Mol Sci 2020; 21:ijms21217899. [PMID: 33114330 PMCID: PMC7662541 DOI: 10.3390/ijms21217899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The synthesis of Mobil Composition of Matter 41 (MCM-41) mesoporous silica nanoparticles (MSNs) of controlled sizes and porous structure has been performed at laboratory and pilot plant scales. Firstly, the effects of the main operating conditions (TEOS –Tetraethyl ortosilicate– addition rate, nanoparticle maturation time, temperature, and CTAB –Cetrimonium bromide– concentration) on the synthesis at laboratory scale (1 L round-bottom flask) were studied via a Taguchi experimental design. Subsequently, a profound one-by-one study of operating conditions was permitted to upscale the process without significant particle enlargement and pore deformation. To achieve this, the temperature was set to 60 °C and the CTAB to TEOS molar ratio to 8. The final runs were performed at pilot plant scale (5 L cylindrical reactor with temperature and stirring speed control) to analyze stirring speed, type of impeller, TEOS addition rate, and nanoparticle maturation time effects, confirming results at laboratory scale. Despite slight variations on the morphology of the nanoparticles, this methodology provided MSNs with adequate sizes and porosities for biomedical applications, regardless of the reactor/scale. The process was shown to be robust and reproducible using mild synthesis conditions (2 mL⋅min−1 TEOS addition rate, 400 rpm stirred by a Rushton turbine, 60 min maturation time, 60 °C, 2 g⋅L−1 CTAB, molar ratio TEOS/CTAB = 8), providing ca. 13 g of prismatic short mesoporous 100–200 nm nanorods with non-connected 3 nm parallel mesopores.
Collapse
|
10
|
Khan MA, Kiser MR, Moradipour M, Nadeau EA, Ghanim RW, Webb BA, Rankin SE, Knutson BL. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. J Phys Chem B 2020; 124:8549-8561. [PMID: 32881500 DOI: 10.1021/acs.jpcb.0c06536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amine-functionalized mesoporous silica nanoparticles (MSNPAs) are ideal carriers for oligonucleotides for gene delivery and RNA interference. This investigation examines the thermodynamic driving force of interactions of double-stranded (ds) RNA with MSNPAs as a function of RNA length (84 and 282 base pair) and particle pore diameter (nonporous, 2.7, 4.3, and 8.1 nm) using isothermal titration calorimetry, extending knowledge of solution-based nucleic acid-polycation interactions to RNA confined in nanopores. Adsorption of RNA follows a two-step process: endothermic interactions driven by entropic contribution from counterion (and water) release and an exothermic regime dominated by short-range interactions within the pores. Evidence of hindered pore loading of the longer RNA and pore size-dependent confinement of RNA in the MSPAs is provided from the relative contributions of the endothermic and exothermic regimes. Reduction of endothermic and exothermic enthalpies in both regimes in the presence of salt for both lengths of RNA indicates the significant contribution of short-range electrostatic interactions, whereas ΔH and ΔG values are consistent with conformation changes and desolvation of nucleic acids upon binding with polycations. Knowledge of the interactions between RNA and functionalized porous nanoparticles will aid in porous nanocarrier design suitable for functional RNA delivery.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maelyn R Kiser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily A Nadeau
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Ramy W Ghanim
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
11
|
Hao P, Peng B, Shan BQ, Yang TQ, Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. NANOSCALE ADVANCES 2020; 2:1792-1810. [PMID: 36132521 PMCID: PMC9416971 DOI: 10.1039/d0na00219d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 05/24/2023]
Abstract
The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.
Collapse
Affiliation(s)
- Pan Hao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Tai-Qun Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| |
Collapse
|
12
|
Yan P, Zhang X, Wang X, Zhang X. Controllable Preparation of Monodisperse Mesoporous Silica from Microspheres to Microcapsules and Catalytic Loading of Au Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5271-5279. [PMID: 32306735 DOI: 10.1021/acs.langmuir.0c00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A unique structural transition from pomegranate-like monodisperse mesoporous silica microspheres (M-MSMs) with tunable mesopores to mesoporous silica microcapsules has been reported. The unique evolution occurred together with varying the cross-linking degrees (CLDs) of templates. Herein, using monodisperse sulfonated cross-linked polystyrene (S-CLPS) as templates, S-CLPS/SiO2 composite microspheres were synthesized by the sol-gel method. Subsequently, the templates were removed by calcination to obtain the M-MSMs or microcapsules. The pore sizes of M-MSMs could be tailored from 3.2 to 7.4 nm by facilely varying the CLDs from 0.5 to 20%. Interestingly, mesoporous silica microcapsules were gradually formed when the CLDs were beyond 20%. Meanwhile, the specific surface area also could be adjusted by this strategy without hardly affecting the monodispersity, and the specific surface area increased to 391.9 m2/g. Significantly, Au@M-MSM was prepared by supporting Au nanoparticles (NPs) on M-MSM and used as nanocatalysts to reduce 4-nitrophenol (4-NP). The ultrathin shell and interconnected three-dimensional (3D) porous structure of M-MSMs can increase the mass transfer and protect the Au NPs from leakage, which reveals high recyclability and high conversion (>95%) after 10 regeneration-catalysis cycles. This approach provides a nanotechnology platform for the preparation of mesoporous silica materials with different microstructures, which will have enormous potential in practical applications involving different molecular sizes.
Collapse
Affiliation(s)
- Panyu Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xinchao Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
13
|
Kembuan C, Saleh M, Rühle B, Resch-Genger U, Graf C. Coating of upconversion nanoparticles with silica nanoshells of 5-250 nm thickness. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2410-2421. [PMID: 31921519 PMCID: PMC6941407 DOI: 10.3762/bjnano.10.231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/19/2019] [Indexed: 05/23/2023]
Abstract
A concept for the growth of silica shells with a thickness of 5-250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5-11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core-shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below -40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems.
Collapse
Affiliation(s)
- Cynthia Kembuan
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Maysoon Saleh
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Bastian Rühle
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany
| | - Christina Graf
- Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany
| |
Collapse
|
14
|
Chen J, Cheng W, Chen S, Xu W, Lin J, Liu H, Chen Q. Urushiol-functionalized mesoporous silica nanoparticles and their self-assembly into a Janus membrane as a highly efficient hemostatic material. NANOSCALE 2018; 10:22818-22829. [PMID: 30488065 DOI: 10.1039/c8nr05882b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quick hemostasis plays a very important role in preventing hemorrhagic shock and death by controlling blood loss from trauma in civil and military accidents. An ideal quick hemostat should have tissue-adhesive functional groups, clotting factor activating components, and a plasma non-permeable hydrophobic layer. Inspired by the adhesive behavior of mussels, a novel efficient hemostat of urushiol-functionalized mesoporous silica nanoparticles (MSN@U) with a core-shell structure was synthesized and their hemostatic performance was evaluated for the first time. MSN@U could form an amphipathic Janus membrane (a hydrophobic layer and a hydrophilic layer in one membrane) by interfacial self-assembly. The morphology and structure of MSN@U were characterized. The results showed that MSN@U possessed a large specific surface area of 448.91 m2 g-1 and a rich porous structure with an average pore diameter of 3.94 nm. The hydrophilic catechol groups and the long hydrophobic alkyl groups of urushiol allowed MSN@U to self-assemble at the blood/air interface. The former made MSN@U tightly adhere onto blood vessel tissue through covalent bonds, while the latter formed a hydrophobic barrier layer which hindered blood from oozing. Meanwhile, MSN@U would accelerate clotting cascade reactions. These three effects made MSN@U a very quick hemostat with a hemostatic time of 22 ± 2 s on a rat liver laceration. Both in vitro and in vivo tests showed that they had a better hemostatic effect and blood compatibility than MSN. Cell viability evaluations indicated that MSN@U had no cytotoxicity. MSN@U will be a safe and promising hemostatic agent for clinical applications.
Collapse
Affiliation(s)
- Jiawen Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted great attention because of their high surface area, large pore volume, transparency, biocompatibility, and high cell-uptake efficiency. Such unique properties allow the use of these materials such as catalysts, drug carriers, and optical materials. This chapter introduces the preparation of MSNs and some recent developments in the preparation of MSNs with precisely controlled particle size, pore size, functionality, and morphology.
Collapse
Affiliation(s)
- Eisuke Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Japan
| | - Kazuyuki Kuroda
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan; Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo, Japan.
| |
Collapse
|
16
|
Maity A, Polshettiwar V. Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing. CHEMSUSCHEM 2017; 10:3866-3913. [PMID: 28834600 PMCID: PMC5698778 DOI: 10.1002/cssc.201701076] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/18/2017] [Indexed: 05/07/2023]
Abstract
Morphology-controlled nanomaterials such as silica play a crucial role in the development of technologies for addressing challenges in the fields of energy, environment, and health. After the discovery of Stöber silica, followed by that of mesoporous silica materials, such as MCM-41 and SBA-15, a significant surge in the design and synthesis of nanosilica with various sizes, shapes, morphologies, and textural properties has been observed in recent years. One notable invention is dendritic fibrous nanosilica, also known as KCC-1. This material possesses a unique fibrous morphology, unlike the tubular porous structure of various conventional silica materials. It has a high surface area with improved accessibility to the internal surface, tunable pore size and pore volume, controllable particle size, and, importantly, improved stability. Since its discovery, a large number of studies have been reported concerning its use in applications such as catalysis, solar-energy harvesting, energy storage, self-cleaning antireflective coatings, surface plasmon resonance-based ultrasensitive sensors, CO2 capture, and biomedical applications. These reports indicate that dendritic fibrous nanosilica has excellent potential as an alternative to popular silica materials such as MCM-41, SBA-15, Stöber silica, and mesoporous silica nanoparticles. This Review provides a critical survey of the dendritic fibrous nanosilica family of materials, and the discussion includes the synthesis and formation mechanism, applications in catalysis and photocatalysis, applications in energy harvesting and storage, applications in magnetic and composite materials, applications in CO2 mitigation, biomedical applications, and analytical applications.
Collapse
Affiliation(s)
- Ayan Maity
- Nanocatalysis Laboratories (NanoCat)Department of Chemical SciencesTata Institute of Fundamental Research (TIFR)Homi Bhabha Road, ColabaMumbaiIndia
| | - Vivek Polshettiwar
- Nanocatalysis Laboratories (NanoCat)Department of Chemical SciencesTata Institute of Fundamental Research (TIFR)Homi Bhabha Road, ColabaMumbaiIndia
| |
Collapse
|
17
|
Ma L, Chen Q, Ma P, Han MK, Xu Z, Kang Y, Xiao B, Merlin D. iRGD-functionalized PEGylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine (Lond) 2017; 12:1991-2006. [PMID: 28745123 DOI: 10.2217/nnm-2017-0107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To enhance the tumor accumulation and targeted drug delivery for colon cancer therapy, iRGD peptide was introduced to the surface of PEGylated camptothecin-loaded nanoparticles (NPs). METHODS Cellular uptake, targeting specificity, biodistribution and antitumor capacity were evaluated. RESULTS The functionalization of iRGD facilitated tumor accumulation and cellular uptake of NPs by Colon-26 cells. Furthermore, the resultant iRGD-PEG-NPs remarkably improved the therapeutic efficacy of camptothecin in vitro and in vivo by inducing a higher degree of tumor cell apoptosis compared with PEG-NPs. CONCLUSION iRGD-PEG-NP is a desired drug delivery system to facilitate the drug accumulation in orthotopic colon tumor tissues and further drug internalization by colon cancer cells.
Collapse
Affiliation(s)
- Lijun Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Qiubing Chen
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Panpan Ma
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Zhigang Xu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China
| | - Bo Xiao
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing 400715, PR China.,Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
18
|
Yamamoto E, Mori S, Shimojima A, Wada H, Kuroda K. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. NANOSCALE 2017; 9:2464-2470. [PMID: 27824195 DOI: 10.1039/c6nr07416b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Colloidal crystals composed of mesoporous silica nanoparticles (MSNs) are expected to have various applications because of their unique hierarchical structures and tunable functions. The expansion of the mesopore size is important for introducing guest species which cannot be accommodated by using conventional colloidal crystals of MSNs; however, the preparation of MSNs with a controllable pore size, suitable for the fabrication of colloidal crystals, still remains a challenge. In this study, we fabricated colloidal crystals composed of pore-expanded MSNs using a sophisticated particle growth method to control the pore size of colloidal MSNs while retaining their monodispersity high enough to form colloidal crystals. By adding triisopropylbenzene (TIPB) only during the growth process with the stepwise addition of tetrapropoxysilane (TPOS), the particle size can be tuned from 60 nm to 100 nm, while the pore size can be tuned from 3 nm to ten plus several nm which is the largest size among the previous MSNs capable of forming colloidal crystals. These novel colloidal crystals should contribute to the expansion of nanomaterials science.
Collapse
Affiliation(s)
- Eisuke Yamamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Seiya Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Hiroaki Wada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan. and Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo, 169-0051, Japan
| |
Collapse
|
19
|
Ernawati L, Balgis R, Ogi T, Okuyama K. Tunable Synthesis of Mesoporous Silica Particles with Unique Radially Oriented Pore Structures from Tetramethyl Orthosilicate via Oil-Water Emulsion Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:783-790. [PMID: 28026955 DOI: 10.1021/acs.langmuir.6b04023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies of the synthesis of mesoporous silica (MPS) particles with tailored properties have been published. Among those studies, tetraethyl orthosilicate (TEOS) is commonly used as a silica source, but tetramethyl orthosilicate (TMOS) is rarely used because its reaction is fast and difficult to control. In this study, MPS particles were synthesized via one-step controlled polymerization of styrene and hydrolysis of TMOS, followed by the addition of hexadecyltrimethylammonium bromide (CTAB) and n-octane. The MPS particles obtained from TMOS generally have small inner pores, but the MPS particles obtained in this study had a unique radially oriented structure, a high surface area up to 800 m2 g-1, and large pores, of size 20 nm. The content of styrene in the emulsion system played a key role in increasing pore sizes of the MPS particles. A plausible mechanism for particle formation based on the phase behavior and type of the emulsion system is proposed. For further research, this material is expected to be useful for various applications, such as in drug delivery, filtration, and catalyst supports.
Collapse
Affiliation(s)
- Lusi Ernawati
- Department of Chemical Engineering, Hiroshima University , 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
| | - Ratna Balgis
- Department of Chemical Engineering, Hiroshima University , 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Department of Chemical Engineering, Hiroshima University , 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
| | - Kikuo Okuyama
- Department of Chemical Engineering, Hiroshima University , 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
| |
Collapse
|
20
|
Deodhar GV, Adams ML, Trewyn BG. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600408] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Gauri V Deodhar
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| | - Marisa L Adams
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| | - Brian G Trewyn
- Department of Chemistry; Colorado School of Mines; Golden CO USA
| |
Collapse
|
21
|
Yamamoto E, Kuroda K. Colloidal Mesoporous Silica Nanoparticles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150420] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eisuke Yamamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University
| |
Collapse
|