1
|
Didamson OC, Chandran R, Abrahamse H. Synthesis, characterisation, and anti-tumour activity of nano-immuno-conjugates for enhanced photodynamic therapy of oesophageal cancer stem cells. Biomed Pharmacother 2024; 181:117693. [PMID: 39550831 DOI: 10.1016/j.biopha.2024.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
In recent times, oesophageal cancer has been listed as the eleventh most prevalent type of cancer. It is a lethal disease attributed to a high mortality rate, tumour metastasis and poor treatment outcome. A subset of oesophageal cancer referred to as stem cells (CSCs) has been revealed to drive carcinogenesis, metastasis, and treatment failure. Therefore, it is essential to target these CSCs to improve the efficacy of treatment for oesophageal cancer. In this present study, we employed a strategy to target oesophageal CSCs with a nano-immuno-conjugate (NIC) consisting of AlPcS4Cl, gold nanoparticle (AuNPs) and anti-CD271 antibody synthesised using a chemical reaction. The synthesised NIC was characterised using ultraviolet-visible spectroscopy, transmission electron microscope (TEM), Fourier transform infra-red (FTIR) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP). The in vitro anti-tumour action of NIC-mediated photodynamic therapy (PDT) was performed on oesophageal CSCs using cell viability/cytotoxicity assays and morphological examination via light microscopy. The characterisation analysis confirmed the successful synthesis of the NIC. The synthesised nano-immuno-conjugates showed significant cytotoxicity and reduction in cell viability in the HKESC-1 oesophageal CSCs. Fluorescence microscopy confirmed the rapid internalisation of the targeted NIC in key cellular organelles of the CSCs, resulting in enhanced effects. Interestingly, NIC exhibited cytocompatibility with non-tumour WS1 cells, thus supporting its clinical application as a safe anti-tumour agent for enhanced PDT. The study demonstrates the improved effects of NIC-mediated PDT as targeted therapeutics against oesophageal CSCs.
Collapse
Affiliation(s)
- Onyisi Christiana Didamson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
2
|
Bhandari C, Moffat A, Fakhry J, Malkoochi A, Nguyen A, Trinh B, Hoyt K, Story MD, Hasan T, Obaid G. A single photodynamic priming protocol augments delivery of ⍺-PD-L1 mAbs and induces immunogenic cell death in head and neck tumors. Photochem Photobiol 2024; 100:1647-1658. [PMID: 37818742 PMCID: PMC11006828 DOI: 10.1111/php.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Photodynamic priming (PDP) leverages the photobiological effects of subtherapeutic photodynamic therapy (PDT) regimens to modulate the tumor vasculature and stroma. PDP also sensitizes tumors to secondary therapies, such as immunotherapy by inducing a cascade of molecular events, including immunogenic cell death (ICD). We and others have shown that PDP improves the delivery of antibodies, among other theranostic agents. However, it is not known whether a single PDP protocol is capable of both inducing ICD in vivo and augmenting the delivery of immune checkpoint inhibitors. In this rapid communication, we show for the first time that a single PDP protocol using liposomal benzoporphyrin derivative (Lipo-BPD, 0.25 mg/kg) with 690 nm light (75 J/cm2, 100 mW/cm2) simultaneously doubles the delivery of ⍺-PD-L1 antibodies in murine AT-84 head and neck tumors and induces ICD in vivo. ICD was observed as a 3-11 fold increase in tumor cell exposure of damage-associated molecular patterns (Calreticulin, HMGB1, and HSP70). These findings suggest that this single, highly translatable PDP protocol using clinically relevant Lipo-BPD holds potential for improving immunotherapy outcomes in head and neck cancer. It can do so by simultaneously overcoming physical barriers to the delivery of immune checkpoint inhibitors, and biochemical barriers that contribute to immunosuppression.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Brian Trinh
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Present Address: Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Michael D. Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Tanaka H, Koga Y, Sugahara M, Fuchigami H, Ishikawa A, Yamaguchi T, Banba A, Shinozaki T, Matsuura K, Hayashi R, Sakashita S, Yasunaga M, Yano T. Real-Time Fluorescence Monitoring System for Optimal Light Dosage in Cancer Photoimmunotherapy. Pharmaceuticals (Basel) 2024; 17:1246. [PMID: 39338408 PMCID: PMC11435081 DOI: 10.3390/ph17091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Near-infrared photoimmunotherapy (NIR-PIT) was recently approved for the treatment of unresectable locally advanced or recurrent head and neck cancers in Japan; however, only one clinical dose has been validated in clinical trials, potentially resulting in excessive or insufficient dosing. Moreover, IRDye700X (IR700) fluorescence intensity plateaus during treatment, indicating a particular threshold for the antitumor effects. Therefore, we investigated the NIR laser dose across varying tumor sizes and irradiation methods until the antitumor effects of the fluorescence decay rate plateaued. Methods: Mice were subcutaneously transplanted with A431 xenografts and categorized into control, clinical dose (cylindrical irradiation at 100 J/cm², frontal irradiation at 50 J/cm²), and evaluation groups. The rate of tumor IR700 fluorescence intensity decay to reach predefined rates (-0.05%/s or -0.2%/s) until the cessation of light irradiation was calculated using a real-time fluorescence imaging system. Results: The evaluation group exhibited antitumor effects comparable to those of the clinical dose group at a low irradiation dose. Similar results were observed across tumor sizes and irradiation methods. Conclusions: In conclusion, the optimal antitumor effect of NIR-PIT is achieved when the fluorescence decay rate reaches a plateau, indicating the potential to determine the appropriate dose for PIT using a real-time fluorescence monitoring system.
Collapse
Affiliation(s)
- Hideki Tanaka
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Shinjuku 160-0022, Japan
| | - Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Mayumi Sugahara
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Hirobumi Fuchigami
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | | | | | | | - Takeshi Shinozaki
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Ryuichi Hayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Shingo Sakashita
- Division of Developmental Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
- Division of Science and Technology for Endoscopy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| |
Collapse
|
4
|
Chanda B, Azophi Moffat, Shah N, Khan A, Quaye M, Fakhry J, Soma S, Nguyen A, Eroy M, Malkoochi A, Brekken R, Hasan T, Ferruzzi J, Obaid G. PD-L1 Immune Checkpoint Targeted Photoactivable Liposomes (iTPALs) Prime the Stroma of Pancreatic Tumors and Promote Self-Delivery. Adv Healthc Mater 2024; 13:e2304340. [PMID: 38324463 PMCID: PMC11281872 DOI: 10.1002/adhm.202304340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/09/2024]
Abstract
Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented. iTPALs also improve phototoxicity in PDAC cells and induce immunogenic cell death. PDP using iTPALs reduces collagen density, thereby promoting self-delivery by 5.4-fold in collagen hydrogels, and by 2.4-fold in syngeneic CT1BA5 murine PDAC tumors. PDP also reduces tumor fibroblast content by 39.4%. Importantly, iTPALs also block the PD-1/PD-L1 immune checkpoint more efficiently than free α-PD-L1 antibodies. Only a single sub-curative priming dose using iTPALs provides 54.1% tumor growth inhibition and prolongs overall survival in mice by 42.9%. Overall survival directly correlates with the extent of tumor iTPAL self-delivery following PDP (Pearson's r = 0.670, p = 0.034), while no relationship is found for sham non-specific IgG constructs activated with light. When applied over multiple cycles, as is typical for immune checkpoint therapy, PDP using iTPALs promises to offer durable tumor growth delay and significant survival benefit in PDAC patients, especially when used to promote self-delivery of integrated chemo-immunotherapy regimens.
Collapse
Affiliation(s)
- Bhandari Chanda
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Nimit Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Adil Khan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Maxwell Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Siddharth Soma
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rolf Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
5
|
Ishizuka M, Kaibori M, Sumiyama F, Okamoto Y, Suganami A, Tamura Y, Yoshii K, Sugie T, Sekimoto M. Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer. Front Oncol 2024; 14:1365305. [PMID: 38515576 PMCID: PMC10955121 DOI: 10.3389/fonc.2024.1365305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background Photodynamic therapy (PDT) involves the administration of a photosensitizing agent and irradiation of light at an excitation wavelength that damages tumor cells without causing significant damage to normal tissue. We developed indocyanine green (ICG)-modified liposomes in which paclitaxel (PTX) was encapsulated (ICG-Lipo-PTX). ICG-Lipo-PTX accumulates specifically in tumors due to the characteristics of the liposomes. The thermal and photodynamic effects of ICG and the local release of PTX by irradiation are expected to induce not only antitumor effects but also cancer immunity. In this study, we investigated the antitumor effects of ICG-Lipo-PTX in breast cancer. Methods The antitumor effects of ICG-Lipo-PTX were examined in xenograft model mice subcutaneously implanted with KPL-1 human breast cancer cells. ICG-Lipo-PTX, ICG-Lipo, or saline was administered intraperitoneally, and the fluorescence intensity was measured with a fluorescence imaging system (IVIS). Intratumor temperature, tumor volume, and necrotic area of tumor tissue were also compared. Next, we investigated the induction of cancer immunity in an allogeneic transplantation model in which BALB-MC mouse breast cancer cells were transplanted subcutaneously in the bilateral inguinal region. ICG-Lipo-PTX was administered intraperitoneally, and PDT was performed on only one side. The fluorescence intensity measured by IVIS and the bilateral tumor volumes were compared. Cytokine secretory capacity was also evaluated by ELISPOT assay using splenocytes. Results In the xenograft model, the fluorescence intensity and temperature during PDT were significantly higher with ICG-Lipo-PTX and ICG-Lipo in tumor areas than in nontumor areas. The fluorescence intensity in the tumor area was reduced to the same level as that in the nonirradiated area after two times of irradiation. Tumor growth was significantly reduced and the percentage of necrotic area in the tumor was higher after PDT in the ICG-Lipo-PTX group than in the other groups. In the allograft model, tumor growth on day 14 in the ICG-Lipo-PTX group was significantly suppressed not only on the PDT side but also on the non-PDT side. In addition, the secretion of interferon-γ and interleukin-2 was enhanced, whereas that of interleukin-10 was suppressed, in the ICG-Lipo-PTX group. Conclusion The PDT therapy with ICG-Lipo-PTX may be an effective treatment for breast cancer.
Collapse
Affiliation(s)
- Mariko Ishizuka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | | - Akiko Suganami
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Kengo Yoshii
- Department of Mathematics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
6
|
Glabman RA, Olkowski CP, Minor HA, Bassel LL, Kedei N, Choyke PL, Sato N. Tumor Suppression by Anti-Fibroblast Activation Protein Near-Infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:449. [PMID: 38275890 PMCID: PMC10813865 DOI: 10.3390/cancers16020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute a prominent cellular component of the tumor stroma, with various pro-tumorigenic roles. Numerous attempts to target fibroblast activation protein (FAP), a highly expressed marker in immunosuppressive CAFs, have failed to demonstrate anti-tumor efficacy in human clinical trials. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor therapy that utilizes an antibody-photo-absorbing conjugate activated by near-infrared light. In this study, we examined the therapeutic efficacy of CAF depletion by NIR-PIT in two mouse tumor models. Using CAF-rich syngeneic lung and spontaneous mammary tumors, NIR-PIT against FAP or podoplanin was performed. Anti-FAP NIR-PIT effectively depleted FAP+ CAFs, as well as FAP+ myeloid cells, and suppressed tumor growth, whereas anti-podoplanin NIR-PIT was ineffective. Interferon-gamma production by CD8 T and natural killer cells was induced within hours after anti-FAP NIR-PIT. Additionally, lung metastases were reduced in the treated spontaneous mammary cancer model. Depletion of FAP+ stromal as well as FAP+ myeloid cells effectively suppressed tumor growth in bone marrow chimeras, suggesting that the depletion of both cell types in one treatment is an effective therapeutic approach. These findings highlight a promising therapy for selectively eliminating immunosuppressive FAP+ cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Colleen P. Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Hannah A. Minor
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Laura L. Bassel
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA;
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (R.A.G.); (C.P.O.); (H.A.M.); (P.L.C.)
| |
Collapse
|
7
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
8
|
Wu Y, Cao H, Yang S, Liu C, Han Z. Progress of near-infrared-II fluorescence in precision diagnosis and treatment of colorectal cancer. Heliyon 2023; 9:e23209. [PMID: 38149207 PMCID: PMC10750080 DOI: 10.1016/j.heliyon.2023.e23209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Colorectal cancer is a malignant tumour with high incidence and mortality worldwide; therefore, improving the early diagnosis of colorectal cancer and implementing a targeted "individualized treatment" strategy is of great concern. NIR-II fluorescence imaging is a large-depth, high-resolution optical bioimaging tool. Around the NIR-II window, researchers have developed a variety of luminescent probes, imaging systems, and treatment methods with colorectal cancer targeting capabilities, which can be visualized and image-guided in clinical surgery. This article aims to overcome the difficulties in diagnosing and treating colorectal cancer. The present review summarizes the latest results on using NIR-II fluorescence for targeted colorectal cancer imaging, expounds on the application prospects of NIR-II optical imaging for colorectal cancer, and discusses the imaging-guided multifunctional diagnosis and treatment platforms.
Collapse
Affiliation(s)
- Yong Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hongtao Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoqing Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chaohui Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhenguo Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
9
|
Ding Z, Xu B, Zhang H, Wang Z, Sun L, Tang M, Ding M, Zhang T, Shi S. Norcantharidin-Encapsulated C60-Modified Nanomicelles: A Potential Approach to Mitigate Cytotoxicity in Renal Cells and Simultaneously Enhance Anti-Tumor Activity in Hepatocellular Carcinoma Cells. Molecules 2023; 28:7609. [PMID: 38005331 PMCID: PMC10673410 DOI: 10.3390/molecules28227609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The objective of this study was to examine the preparation process of DSPE-PEG-C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity and antitumor activity of NCTD. METHOD The micelles containing NCTD were prepared using the ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB) double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen species (ROS) following micelle treatment was determined through 2',7'-dichlorofluorescein diacetate (DCFDA) staining. RESULTS The particle size distribution of the DSPE-PEG-C60/NCTD micelles was determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be -13.8 mV. The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD group (36%) at an NCTD concentration of 75 μM. The rate of apoptosis in the HepG2 cells exhibited a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at a concentration of 150 μM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM) upon exposure to C60-modified micelles compared to the NCTD group. CONCLUSIONS The DSPE-PEG-C60/NCTD micelles, as prepared in this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells (HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human hepatocellular carcinoma cells (HepG2, BEL-7402).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China; (Z.D.); (B.X.); (H.Z.); (Z.W.); (L.S.); (M.T.); (M.D.); (T.Z.)
| |
Collapse
|
10
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Li Y, Wang J, Xie J. Biomimetic nanoparticles targeting atherosclerosis for diagnosis and therapy. SMART MEDICINE 2023; 2:e20230015. [PMID: 39188346 PMCID: PMC11236035 DOI: 10.1002/smmd.20230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/28/2023] [Indexed: 08/28/2024]
Abstract
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.
Collapse
Affiliation(s)
- Yuyu Li
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute of Heart, Lung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Jifang Wang
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of CardiologyDrum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jun Xie
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
12
|
Yamashita S, Kojima M, Onda N, Shibutani M. In Vitro Comparative Study of Near-Infrared Photoimmunotherapy and Photodynamic Therapy. Cancers (Basel) 2023; 15:3400. [PMID: 37444510 DOI: 10.3390/cancers15133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new phototherapy that utilizes a monoclonal antibody (mAb) against cancer antigens and a phthalocyanine dye, IRDye700DX (IR700) conjugate (mAb-IR700). Photodynamic therapy (PDT) is a combination therapy that utilizes photoreactive agents and light irradiation as well as NIR-PIT. In the present study, we compared these therapies in vitro. The characterization of cellular binding/uptake specificity and cytotoxicity were examined using two mAb-IR700 forms and a conventional PDT agent, talaporfin sodium, in three cell lines. As designed, mAb-IR700 had high molecular selectivity and visualized target molecule-positive cells at the lowest concentration examined. NIR-PIT induced necrosis and damage-associated molecular patterns (DAMPs), a surrogate maker of immunogenic cell death. In contrast, talaporfin sodium was taken up by cells regardless of cell type, and its uptake was enhanced in a concentration-dependent manner. PDT induced cell death, with the pattern of cell death shifting from apoptosis to necrosis depending on the concentration of the photosensitizer. Induction of DAMPs was observed at the highest concentration, but their sensitivity differed among cell lines. Overall, our data suggest that molecule-specific NIR-PIT may have potential advantages compared with PDT in terms of the efficiency of tumor visualization and induction of DAMPs.
Collapse
Affiliation(s)
- Susumu Yamashita
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Miho Kojima
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Nobuhiko Onda
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| |
Collapse
|
13
|
Nakajima K, Sugikawa A, Yasui H, Higashikawa K, Suzuki C, Natsume T, Suzuki M, Takakura H, Tomita M, Takahashi S, Hirata K, Magata Y, Kuge Y, Ogawa M. In vivo imaging of acute physiological responses after treatment of cancer with near-infrared photoimmunotherapy. Mol Imaging Biol 2023:10.1007/s11307-023-01822-9. [PMID: 37193805 DOI: 10.1007/s11307-023-01822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy using an antibody-photosensitizer conjugate (Ab-IR700). By NIR light irradiation, Ab-IR700 forms a water-insoluble aggregation on the plasma membrane of cancer cells, leading to lethal membrane damage of cancer cells with high selectivity. However, IR700 produces singlet oxygen, which induces non-selective inflammatory responses such as edema in normal tissues around the tumor. Understanding such treatment-emergent responses is important to minimize side effects and improve clinical outcomes. Thus, in this study, we evaluated physiological responses during NIR-PIT by magnetic resonance imaging (MRI) and positron emission tomography (PET). PROCEDURES Ab-IR700 was intravenously injected into tumor-bearing mice with two tumors on the right and left sides of the dorsum. At 24 h after injection, a tumor was irradiated with NIR light. Edema formation was examined by T1/T2/diffusion-weighted MRI and inflammation was investigated by PET with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Because inflammation can increase vascular permeability via inflammatory mediators, we evaluated changes in oxygen levels in tumors using a hypoxia imaging probe, [18F]fluoromisonidazole ([18F]FMISO). RESULTS The uptake of [18F]FDG in the irradiated tumor was significantly decreased compared to the control tumor, indicating the impairment of glucose metabolism induced by NIR-PIT. MRI and [18F]FDG-PET images showed that inflammatory edema with [18F]FDG accumulation was present in the surrounding normal tissues of the irradiated tumor. Furthermore, [18F]FMISO accumulation in the center of the irradiated tumor was relatively low, indicating the enhancement of oxygen supply due to increased vascular permeability. In contrast, high [18F]FMISO accumulation was observed in the peripheral region, indicating enhancement of hypoxia in the region. This could be because inflammatory edema was formed in the surrounding normal tissues, which blocked blood flow to the tumor. CONCLUSIONS We successfully monitored inflammatory edema and changes in oxygen levels during NIR-PIT. Our findings on the acute physiological responses after light irradiation will help to develop effective measures to minimize the side effects in NIR-PIT.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiyo Sugikawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Natsume
- Promotion Center for Medical Collaboration & Intellectual Property, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Mayu Tomita
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Sachi Takahashi
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
14
|
Cui Y, Xu Y, Li Y, Sun Y, Hu J, Jia J, Li X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol Cancer Res Treat 2023; 22:15330338221145992. [PMID: 36734039 PMCID: PMC9903039 DOI: 10.1177/15330338221145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, the incidence rate of breast cancer is the highest in women. Approximately 2.3 million people were newly diagnosed and 0.685 million were dead of breast cancer in 2020, which continues to grow. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a higher risk of recurrence and metastasis, but disappointly, there are no effective and specific therapies clinically, especially for patients presenting with metastatic diseases. Therefore, it is urgent to develop a new type of cancer therapy for survival improvisation and adverse effects alleviation of breast cancers. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed, photochemistry-based cancer therapy. It was drive by an antibody-photoabsorber conjugate (APC) which is triggered by near-infrared light. The key part of APC is a cancer-targeting monoclonal antibody (mAb) that can bind to receptors or antigens on the surface of tumor cells. Because of this targeted conjugate accumulation, subsequent deployment of focal NIR-light results in functional damage on the targeted cell membranes without harming the immediately adjacent receptor-negative cells and evokes a kind of photochemical, speedy, and highly specific immunogenic cell death (ICD) of cancer cells with corresponding antigens. Subsequently, immature dendritic cells adjacent to dying cancer cells will become mature, further inducing a host-oriented anti-cancer immune response, complicatedly and comprehensively. Currently, NIR-PIT has progressed into phase 3 clinical trial for recurrent head and neck cancer. And preclinical studies have illustrated strong therapeutic efficacy of NIR-PIT targeting various molecular receptors overexpressed in breast cancer cells, including EGFR, HER2, CD44c, CD206, ICAM-1 and FAP-α. Thereby, NIR-PIT is in early trials, but appears to be a promising breast cancer therapy and moving into the future. Here, we present the specific advantages and discuss the most recent preclinical studies against several transmembrane proteins of NIR-PIT in breast cancers.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Jia
- Department of Oncology, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China,Jia Jia, Department of Oncology, the Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Xiaosong Li, Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
15
|
Kato T, Furusawa A, Okada R, Inagaki F, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy Targeting Podoplanin-Expressing Cancer Cells and Cancer-Associated Fibroblasts. Mol Cancer Ther 2023; 22:75-88. [PMID: 36223542 PMCID: PMC9812859 DOI: 10.1158/1535-7163.mct-22-0313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-IRDye700DX (IR700) conjugate that binds to a target followed by the application of NIR light that results in dramatic changes in solubility of the conjugate leading to rapid cell membrane damage and highly immunogenic cell death. NIR-PIT has been used clinically in treating advanced head and neck cancers using an anti-EGFR antibody-IR700 conjugate and has been conditionally approved for clinical use in Japan. NIR-PIT can be employed using a wide range of targeting antibodies. Podoplanin (PDPN), also known as gp38, is a 38 kDa type-1 transmembrane protein associated with lymphatic vessels. In cancer cells and cancer-associated fibroblasts (CAFs), PDPN expression has been widely reported and correlates with poor outcomes in several cancer types. In this study, we evaluated the efficacy of PDPN-targeted NIR-PIT in syngenetic mouse models of cancer. PDPN-targeted NIR-PIT destroyed PDPN-expressing cancer cells and CAFs selectively, suppressing tumor progression and prolonging survival with minimal damage to lymphatic vessels compared with the control group. Interestingly, PDPN-targeted NIR-PIT also exerted a therapeutic effect by targeting CAFs in tumor models which do not express in cancer cells. Furthermore, increased cytotoxic T cells in the tumor bed after PDPN-targeted NIR-PIT were observed, suggesting enhanced host antitumor immunity. Thus, PDPN-targeted NIR-PIT is a promising new cancer therapy strategy for PDPN-expressing cancer cells and CAFs.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1088, United States
| |
Collapse
|
16
|
Han D, Zhang X, Ma Y, Yang X, Li Z. The development of live microorganism-based oxygen shuttles for enhanced hypoxic tumor therapy. Mater Today Bio 2022; 18:100517. [PMID: 36578285 PMCID: PMC9791452 DOI: 10.1016/j.mtbio.2022.100517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Hypoxia is a prominent feature of malignant tumors and contributes to tumor proliferation, metastasis, and drug resistance in various solid tumors. Therefore, improving tumor oxygenation is crucial for curing tumors. To date, multiple strategies, including oxygen delivering and producing materials, have been designed to increase the oxygen concentration in hypoxic tumors. However, the unsustainable supply of oxygen is still the main obstacle, resulting in a suboptimal outcome in treating oxygen-deprived tumors. Thus, a sufficient oxygen supply is highly desirable in the treatment of hypoxic tumors. Photosynthesis, as the main source of oxygen in nature through the conversion of light energy into chemical energy and oxygen, has been widely studied in scientific research. Moreover, photosynthetic microorganisms have been increasingly applied in cancer therapy by increasing oxygenation, which improves the therapeutic effect of oxygen-consuming tumor therapeutic tools such as radiotherapy and photodynamic therapy. In this review, we summarize recent advances in the design and manufacture of live bacteria as oxygen shuttles for a new generation of hypoxic tumor treatment strategies. Finally, current challenges and future directions are also discussed for successfully addressing hypoxic tumor issues.
Collapse
Affiliation(s)
- Dandan Han
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China,College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xing Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yichuan Ma
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China,Corresponding author.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong, 510515, PR China,Corresponding author. Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
17
|
Kumar H, Kumar J, Pani B, Kumar P. Multifunctional Folic acid‐coated and Doxorubicin Encapsulated Mesoporous Silica Nanocomposites (FA/DOX@Silica) for Cancer Therapeutics, Bioimaging and
invitro
Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hemant Kumar
- Department of Chemistry Ramjas College University of Delhi Delhi 110007 India
- Department of Chemistry University of Delhi Delhi 110007 India
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Jitender Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Balaram Pani
- Bhaskaracharya College of Applied Sciences Department of Chemistry University of Delhi Delhi 110075
| | - Pramod Kumar
- Department of Chemistry& Chemical Science School of Physical & Material Sciences Central University of Himachal Pradesh Dharamshala 176215 India
| |
Collapse
|
18
|
Dual-targeted near-infrared photoimmunotherapy for esophageal cancer and cancer-associated fibroblasts in the tumor microenvironment. Sci Rep 2022; 12:20152. [PMID: 36418422 PMCID: PMC9684531 DOI: 10.1038/s41598-022-24313-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a significant role in tumor progression within the tumor microenvironment. Previously, we used near-infrared photoimmunotherapy (NIR-PIT), a next-generation cancer cell-targeted phototherapy, to establish CAF-targeted NIR-PIT. In this study, we investigated whether dual-targeted NIR-PIT, targeting cancer cells and CAFs, could be a therapeutic strategy. A total of 132 cases of esophageal cancer were analyzed for epidermal growth factor receptor (EGFR), human epidermal growth factor 2 (HER2), and fibroblast activation protein (FAP) expression using immunohistochemistry. Human esophageal cancer cells and CAFs were co-cultured and treated with single- or dual-targeted NIR-PIT in vitro. These cells were co-inoculated into BALB/c-nu/nu mice and the tumors were treated with single-targeted NIR-PIT or dual-targeted NIR-PIT in vivo. Survival analysis showed FAP- or EGFR-high patients had worse survival than patients with low expression of FAP or EGFR (log-rank, P < 0.001 and P = 0.074, respectively), while no difference was observed in HER2 status. In vitro, dual (EGFR/FAP)-targeted NIR-PIT induced specific therapeutic effects in cancer cells and CAFs along with suppressing tumor growth in vivo, whereas single-targeted NIR-PIT did not show any significance. Moreover, these experiments demonstrated that dual-targeted NIR-PIT could treat cancer cells and CAFs simultaneously with a single NIR light irradiation. We demonstrated the relationship between EGFR/FAP expression and prognosis of patients with esophageal cancer and the stronger therapeutic effect of dual-targeted NIR-PIT than single-targeted NIR-PIT in experimental models. Thus, dual-targeted NIR-PIT might be a promising therapeutic strategy for cancer treatment.
Collapse
|
19
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
20
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
21
|
Kato T, Okada R, Furusawa A, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. Comparison of the Effectiveness of IgG Antibody versus F(ab') 2 Antibody Fragment in CTLA4-Targeted Near-Infrared Photoimmunotherapy. Mol Pharm 2022; 19:3600-3611. [PMID: 35759343 PMCID: PMC10645141 DOI: 10.1021/acs.molpharmaceut.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment modality that utilizes antibody-photoabsorber conjugates (APCs) and selectively kills target cells after irradiation with NIR light. Originally, NIR-PIT was targeted against cancer cell surface antigens, but as it became clear that NIR-PIT induced a strong immune response, an effort was made to target selected immune cell populations in the tumor microenvironment to encourage an even stronger immune response. Thus, CD25-targeted NIR-PIT and cytotoxic T-lymphocyte associated protein 4 (CTLA4)-targeted NIR-PIT were developed to kill regulatory T cells (Tregs) in conjunction with cancer-cell-targeted NIR-PIT, in order to amplify the host immune response. It was found that CD25-targeted NIR-PIT, using an antibody with the Fc portion removed, led to better results than the unmodified anti-CD25 antibody-directed NIR-PIT presumably because of a negative effect on activated T cells. The aim of this study was to compare the efficacy of an antibody fragment [anti-CTLA4-F(ab')2] and a whole antibody (anti-CTLA4-IgG) for NIR-PIT. There was no significant difference in NIR-PIT-induced Treg killing between the anti-CTLA4-F(ab')2 and anti-CTLA4-IgG antibodies. Although both the antibody and the antibody fragment resulted in significant tumor growth inhibition, the antibody induced more robust CD8+ T cell activation in ipsilateral lymph nodes and was more effective compared to the antibody fragment. The slower clearance of the anti-CTLA4-IgG APC enhanced antitumor immunity by promoting T cell priming in lymph nodes. In conclusion, unlike the results with CD25 where modified antibodies produced superior results to unmodified antibodies, anti-CTLA4-IgG antibody-based NIR-PIT proved more effective in reducing tumor growth than anti-CTLA4-F(ab')2 antibody-based NIR-PIT.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
23
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
24
|
Okamoto Y, Ishizuka M, Sumiyama F, Kosaka H, Suganami A, Tamura Y, Sekimoto M, Kaibori M. Inhibitory Effects and Gene Expression Analysis of Chemotherapeutic Photodynamic Therapy by using a Liposomally Formulated Indocyanine Green Derivative. Photodiagnosis Photodyn Ther 2022; 39:102961. [PMID: 35700912 DOI: 10.1016/j.pdpdt.2022.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) utilizes the enhanced permeability retention effect of photosensitizers and is less invasive and more selective than traditional chemotherapy. We constructed a chemotherapeutic PDT (chemo-PDT) nanoscale drug delivery system using a liposomally formulated indocyanine green derivative (ICG-Lipo) that encapsulated carboplatin and docetaxel (ICG-Lipo-C&D). METHODS The antitumor effect of chemo-PDT mediated by ICG-Lipo-C&D was evaluated in a murine colon 26 CDF1 mouse model. Gene expression in tumor tissues was analyzed by RNA sequencing. RESULTS Chemo-PDT using ICG-Lipo-C&D demonstrated an even stronger PDT-enhancing effect than did ICG-Lipo due to the synergistic effect of carboplatin and docetaxel. In addition, gene expression analysis showed that PDT with ICG-Lipo-C&D increased the expression of immune-related genes and decreased the expression of cytoskeleton-related genes. CONCLUSIONS Chemo-PDT using ICG-Lipo as a photosensitizer as well as a drug delivery system with an enhanced permeability retention effect may be a promising cancer therapy.
Collapse
Affiliation(s)
- Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Mariko Ishizuka
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan.
| |
Collapse
|
25
|
Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14122829. [PMID: 35740495 PMCID: PMC9221493 DOI: 10.3390/cancers14122829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/24/2022] Open
Abstract
Survival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses. Several biological mechanisms have been found to be involved in the chemoradioresistance such as cancer stem cells, cancer mutation status, or the immune system. New drugs to overcome this radioresistance in NSCLCs have been investigated such as radiosensitizer treatments or immunotherapies. Different modalities of radiotherapy have also been investigated to improve efficacity such as dose escalation or proton irradiations. In this review, we focused on biological mechanisms such as the cancer stem cells, the cancer mutations, the antitumor immune response in the first part, then we explored some strategies to overcome this radioresistance in stage III NSCLCs with new drugs or radiotherapy modalities.
Collapse
|
26
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
27
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
28
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
29
|
Sadat SMA, Wuest M, Paiva IM, Munira S, Sarrami N, Sanaee F, Yang X, Paladino M, Binkhathlan Z, Karimi-Busheri F, Martin GR, Jirik FR, Murray D, Gamper AM, Hall DG, Weinfeld M, Lavasanifar A. Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage. Front Oncol 2022; 11:772920. [PMID: 35004293 PMCID: PMC8733593 DOI: 10.3389/fonc.2021.772920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3’-deoxy-3’-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.
Collapse
Affiliation(s)
- Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Igor M Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Forughalsadat Sanaee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyan Yang
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Ziyad Binkhathlan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gary R Martin
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Armin M Gamper
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Lőrincz A, Mihály J, Wacha A, Németh C, Besztercei B, Gyulavári P, Varga Z, Peták I, Bóta A. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112481. [PMID: 34857267 DOI: 10.1016/j.msec.2021.112481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
A sterically stabilized unilamellar nanocarrier vesicle (SSV) system containing dipalmitoylphosphatidylcholine, cholesterol, ursolic acid and PEGylated phospholipid has been developed by exploiting the structural advantages of ursolic acid: by spontaneously attaching to the lipid head groups, it induces curvature at the outer side of the bilayers, allowing the preparation of size-limited vesicles without extrusion. Ursolic acid (UA) also interacts with the PEG chains, supporting steric stabilization even when the amount of PEGylated phospholipid is reduced. Using fluorescence immunohistochemistry, vesicles containing ursolic acid (UA-SSVs) were found to accumulate in the tumor in 3 h on xenografted mouse, suggesting the potential use of these vesicles for passive tumor targeting. Further on, mono- and combination therapy with UA and six different kinase inhibitors (crizotinib, erlotinib, foretinib, gefitinib, refametinib, trametinib) was tested on seven cancer cell-lines. In most combinations synergism was observed, in the case of trametinib even at very low concentration (0.001 μM), which targets the MAPK pathway most often activated in human cancers. The coupled intercalation of UA and trametinib (2:1 molar ratio) into vesicles causes further structural advantageous molecular interactions, promoting the formation of small vesicles. The high drug:lipid molar ratio (~0.5) in the novel type of co-delivery vesicles enables their direct medical application, possibly also overcoming the multidrug resistance effect.
Collapse
Affiliation(s)
- A Lőrincz
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - J Mihály
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| | - A Wacha
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - Cs Németh
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - B Besztercei
- Semmelweis University, Institute of Clinical Experimental Research, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - P Gyulavári
- Semmelweis University, Pathobiochemistry Research Group, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Z Varga
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - I Peták
- University of Illinois at Chicago, Department of Biopharmaceutical Sciences, 833 S. Wood street, Chicago, IL 60612, USA; Oncompass Medicine Ltd., Retek street 34, 1024 Budapest, Hungary; Semmelweis University, Department of Pharmacology and Pharmacotherapy, Nagyvárad square 4, 1089 Budapest, Hungary
| | - A Bóta
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| |
Collapse
|
32
|
Matsuoka K, Sato M, Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy 2021; 13:1427-1438. [PMID: 34693721 DOI: 10.2217/imt-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted treatment for cancers achieved by injecting a conjugate of IRDye700DX® (IR700), a water-soluble silicon phthalocyanine derivative in the near infrared, and a monoclonal antibody that targets cancer cell antigens. NIR-PIT is a highly specific treatment with few side effects that results in rapid immunogenic cell death. Despite it being a very effective and innovative therapy, there are a few challenges preventing full implementation in clinical practice. These include the limits of near infrared light penetration, selection of targets, concerns about tumor lysis syndrome and drug costs. However, NIR-PIT has been approved by the regulatory authorities in Japan, allowing for exploration of how to mitigate challenges while maximizing the benefits of this treatment modality.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, 464-0814, Japan.,Nagoya University Institute for Advanced Research, Advanced Analytical & Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, 102-8666, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya, 464-8601, Japan
| |
Collapse
|
33
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Quantitative Radionuclide Imaging Analysis of Enhanced Drug Delivery Induced by Photoimmunotherapy. Int J Mol Sci 2021; 22:ijms22158316. [PMID: 34361080 PMCID: PMC8348642 DOI: 10.3390/ijms22158316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Photoimmunotherapy (PIT) is an upcoming potential cancer treatment modality, the effect of which is improved in combination with chemotherapy. PIT causes a super-enhanced permeability and retention (SUPR) effect. Here, we quantitatively evaluated the SUPR effect using radiolabeled drugs of varying molecular weights (18F-5FU, 111In-DTPA, 99mTc-HSA-D, and 111In-IgG) to determine the appropriate drug size. PIT was conducted with an indocyanine green-labeled anti-HER2 antibody and an 808 nm laser irradiation. Mice were subcutaneously inoculated with HER2-positive cells in both hindlimbs. The tumor on one side was treated with PIT, and the contralateral side was not treated. The differences between tumor accumulations were evaluated using positron emission tomography or single-photon emission computed tomography. Imaging studies found increased tumor accumulation of agents after PIT. PIT-treated tumors showed significantly increased uptake of 18F-5FU (p < 0.001) and 99mTc-HSA-D (p < 0.001). A tendency toward increased accumulation of 111In-DTPA and 111In-IgG was observed. These findings suggest that some low- and medium-molecular-weight agents are promising candidates for combined PIT, as are macromolecules; hence, administration after PIT could enhance their efficacy. Our findings encourage further preclinical and clinical studies to develop a combination therapy of PIT with conventional anticancer drugs.
Collapse
|
35
|
Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021; 70:103501. [PMID: 34332294 PMCID: PMC8340111 DOI: 10.1016/j.ebiom.2021.103501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly-developed, highly-selective cancer treatment, which utilizes a monoclonal antibody conjugated to a photoabsorbing dye, IRDye700DX (IR700). The antibody conjugate is injected into the patient and accumulates in the tumour. Within 24 h of injection the tumour is exposed to NIR light which activates the conjugate and causes rapid, selective cancer cell death. A global phase III clinical trial of NIR-PIT in recurrent head and neck squamous cell cancer (HNSCC) patients is currently underway. Conditional clinical approval for NIR-PIT in recurrent HNSCC has been granted in Japan as of September 2020. Not only does NIR-PIT induce highly selective and immediate cancer cell killing, but it also stimulates highly active anti-tumour immunity. While monotherapy with NIR-PIT has proven effective it is likely that combinations with immune-checkpoint inhibitors or additional NIR-PIT targeting immune suppressive cells in the tumour microenvironment will further improve results. In this review, we discuss the translational aspects of NIR-PIT especially in HNSCC, and potential future applications.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Rosenberg A, Fujimura D, Okada R, Furusawa A, Inagaki F, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Real-Time Fluorescence Imaging Using Indocyanine Green to Assess Therapeutic Effects of Near-Infrared Photoimmunotherapy in Tumor Model Mice. Mol Imaging 2021; 19:1536012120934965. [PMID: 32609570 PMCID: PMC7331766 DOI: 10.1177/1536012120934965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that causes an increase in tumor perfusion, a phenomenon termed the super-enhanced permeability and retention effect. Currently, in vivo treatment efficacy of NIR-PIT is observable days after treatment, but monitoring would be improved by more acute detection of intratumor change. Fluorescence imaging may detect increased tumor perfusion immediately after treatment. Methods: In the first experiment, athymic nude mouse models bearing unilateral subcutaneous flank tumors were treated with either NIR-PIT or laser therapy only. In the second experiment, mice bearing bilateral flank tumors were treated with NIR-PIT only on the left-sided tumor. In both groups, immediately after treatment, indocyanine green was injected at different doses intravenously, and mice were monitored with the Shimadzu LIGHTVISION fluorescence imaging system for 1 hour. Results: Tumor-to-background ratio of fluorescence intensity increased over the 60 minutes of monitoring in treated mice but did not vary significantly in control mice. Tumor-to-background ratio was highest in the 1 mg kg−1 and 0.3 mg kg−1 doses. In mice with bilateral tumors, tumor-to-untreated tumor ratio increased similarly. Conclusions: Acute changes in tumor perfusion after NIR-PIT can be detected by real-time fluorescence imaging.
Collapse
Affiliation(s)
- Adrian Rosenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takuya Kato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Zheng K, Huang Z, Huang J, Liu X, Ban J, Huang X, Luo H, Chen Z, Xie Q, Chen Y, Lu Z. Effect of a 2-HP-β-Cyclodextrin Formulation on the Biological Transport and Delivery of Chemotherapeutic PLGA Nanoparticles. Drug Des Devel Ther 2021; 15:2605-2618. [PMID: 34168432 PMCID: PMC8216700 DOI: 10.2147/dddt.s314361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this work was to develop a novel and feasible modification strategy by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-β-CD) for enhancing the biological transport efficiency of paclitaxel (PTX)-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles. Methods PTX-loaded 2-HP-β-CD-modified PLGA nanoparticles (2-HP-β-CD/PLGA NPs) were prepared using the modified emulsion method. Nano-characteristics, drug release behavior, in vitro cytotoxicity, cellular uptake profiles and in vivo bio-behavior of the nanoparticles were then characterized. Results Compared with the plain PLGA NPs, 2-HP-β-CD/PLGA NPs exhibited smaller particle sizes (151.03±1.36 nm), increased entrapment efficiency (~49.12% increase) and sustained drug release. When added to A549 human lung cancer cells, compared with PLGA NPs, 2-HP-β-CD/PLGA NPs exhibited higher cytotoxicity in MTT assays and improved cellular uptake efficiency. Pharmacokinetic analysis showed that the AUC value of 2-HP-β-CD/PLGA NPs was 2.4-fold higher than commercial Taxol® and 1.7-fold higher than plain PLGA NPs. In biodistribution assays, 2-HP-β-CD/PLGA NPs exhibited excellent stability in the circulation. Conclusion The results of this study suggest that the formulation that contains 2-HP-β-CD can prolong PTX release, enhance drug transport efficiency and serve as a potential tumor targeting system for PTX.
Collapse
Affiliation(s)
- Kangyu Zheng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zeju Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jiaying Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiangmei Liu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, People's Republic of China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Haosen Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhicong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qingchun Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Calixto GMF, Victorelli FD, Franz-Montan M, Baltazar F, Chorilli M. Innovative Mucoadhesive Precursor of Liquid Crystalline System Loading Anti-Gellatinolytic Peptide for Topical Treatment of Oral Cancer. J Biomed Nanotechnol 2021; 17:253-262. [PMID: 33785096 DOI: 10.1166/jbn.2021.3025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current researches report an actual benefit of a treatment for oral cancer via inhibition of proteolytic matrix metallopro-teinases (MPP) with a peptide drug, called CTT1. However, peptides present poor oral bioavailability. Topical administration on oral mucosa avoids its passage through the gastrointestinal tract and the first-pass liver metabolism, but the barrier function of the oral mucosa can impair the permeation and retention of CTT1. The objective of this study is to incorporate CTT1 into a mucoadhesive precursor of liquid crystalline system (PLCS) as an interesting strategy for the topical treatment of oral cancer. PLCS consisting of oleic acid, ethoxylated 20 and propoxylated cetyl alcohol 5, polyethyleneimine (P)-associated chitosan (C) dispersion and CTT1 (FPC-CTT1) was developed and characterized by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). In vitro permeation and retention across esophageal mucosa, In vitro cytotoxicity towards tongue squamous cell carcinoma cells, and in vivo evaluation of vascular changes using the chick embryo chorioallantoic membrane (CAM) model were performed. PLM and SAXS showed that FPC-CTT1acted as PLCS, because it formed a lamellar liquid crystalline system after the addition of artificial saliva. FPC-CTT1increased approximately 2-fold the flux of permeation and 3-fold the retention of CTT1 on the porcine esophageal mucosa. CTT1 does not affect cell viability. CAM tests showed that FPC preserved the blood vessels and it can be a safe formulation. These findings encourage the use of the FPC-CTT1 for topical treatment of oral cancer.
Collapse
Affiliation(s)
| | - Francesca Damiani Victorelli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Michelle Franz-Montan
- UNICAMP, University of Campinas, Piracicaba Dental School Department of Biosciences, Piracicaba, SP, 13414-903, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, 4710-057, Portugal
| | - Marlus Chorilli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
39
|
Ngen EJ, Chen Y, Azad BB, Boinapally S, Jacob D, Lisok A, Shen C, Hossain MS, Jin J, Bhujwalla ZM, Pomper MG, Banerjee SR. Prostate-specific membrane antigen (PSMA)-targeted photodynamic therapy enhances the delivery of PSMA-targeted magnetic nanoparticles to PSMA-expressing prostate tumors. Nanotheranostics 2021; 5:182-196. [PMID: 33564617 PMCID: PMC7868004 DOI: 10.7150/ntno.52361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/31/2020] [Indexed: 02/03/2023] Open
Abstract
Enhanced vascular permeability in tumors plays an essential role in nanoparticle delivery. Prostate-specific membrane antigen (PSMA) is overexpressed on the epithelium of aggressive prostate cancers (PCs). Here, we evaluated the feasibility of increasing the delivery of PSMA-targeted magnetic nanoparticles (MNPs) to tumors by enhancing vascular permeability in PSMA(+) PC tumors with PSMA-targeted photodynamic therapy (PDT). Method: PSMA(+) PC3 PIP tumor-bearing mice were given a low-molecular-weight PSMA-targeted photosensitizer and treated with fluorescence image-guided PDT, 4 h after. The mice were then given a PSMA-targeted MNP immediately after PDT and monitored with fluorescence imaging and T2-weighted magnetic resonance imaging (T2-W MRI) 18 h, 42 h, and 66 h after MNP administration. Untreated PSMA(+) PC3 PIP tumor-bearing mice were used as negative controls. Results: An 8-fold increase in the delivery of the PSMA-targeted MNPs was detected using T2-W MRI in the pretreated tumors 42 h after PDT, compared to untreated tumors. Additionally, T2-W MRIs revealed enhanced peripheral intra-tumoral delivery of the PSMA-targeted MNPs. That finding is in keeping with two-photon microscopy, which revealed higher vascular densities at the tumor periphery. Conclusion: These results suggest that PSMA-targeted PDT enhances the delivery of PSMA-targeted MNPs to PSMA(+) tumors by enhancing the vascular permeability of the tumors.
Collapse
Affiliation(s)
- Ethel J Ngen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Babak Behnam Azad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Srikanth Boinapally
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Desmond Jacob
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chentian Shen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mir S Hossain
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiefu Jin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sangeeta R Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,The F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, USA
| |
Collapse
|
40
|
Akopov A, Papayan G. Photodynamic theranostics of central lung cancer: Present state and future prospects. Photodiagnosis Photodyn Ther 2021; 33:102203. [PMID: 33529744 DOI: 10.1016/j.pdpdt.2021.102203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/13/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Endobronchial photodynamic therapy (PDT) in central lung cancer (CLC) shows feasibility even in late stage disease. Our experience with chlorin e6 based photosensitizers (PS), including in combination with medical cancer treatment, demonstrated regression of tumor lesions of the trachea and bronchi in 94 % of patients with central NSCLC. It is possible to increase the efficiency of the treatment and achieve its personalization by using fluorescent bronchoscopes, which provide fluorescence guided PDT - photodynamic theranostics (PT). PT allows to clarify localization the area of treatment due to visualization of tumor foci which are invisible in white light, to carry out targeted irradiation and at the same time to monitor its effectiveness using the effects of bleaching/flare-up of PS. PT prospects are associated with the transition to the near-infrared (NIR) region, which makes possible to increase the depth of light penetration. The first experiments using the combined NIR/visible PT system showed the possibility of detecting tumor sites using the OS-BPT method (On-Site Bronchoscopic Photodynamic Theranostics), which consists in NIR visualization of tumor when indocyanine green (ICG) is injected directly during examination in a minimal dose. This allows the technology to be used for CLC screening in the future. Further progress of endobronchial PT will be determined by the development of clinically available devices and new NIR PSs with targeted properties, high singlet oxygen yield and fluorescence.
Collapse
Affiliation(s)
- Andrey Akopov
- Department of Thoracic Oncology, Institute of Surgery and Emergency Medicine, Pavlov First State Medical University, Saint-Petersburg, Russia.
| | - Garry Papayan
- Department of Thoracic Oncology, Institute of Surgery and Emergency Medicine, Pavlov First State Medical University, Saint-Petersburg, Russia; Institute of Experimental Medicine, Almazov Federal Medical Research Center, Saint-Petersburg, Russia
| |
Collapse
|
41
|
Overchuk M, Harmatys KM, Sindhwani S, Rajora MA, Koebel A, Charron DM, Syed AM, Chen J, Pomper MG, Wilson BC, Chan WCW, Zheng G. Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. NANO LETTERS 2021; 21:344-352. [PMID: 33301689 DOI: 10.1021/acs.nanolett.0c03731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Limited tumor nanoparticle accumulation remains one of the main challenges in cancer nanomedicine. Here, we demonstrate that subtherapeutic photodynamic priming (PDP) enhances the accumulation of nanoparticles in subcutaneous murine prostate tumors ∼3-5-times without inducing cell death, vascular destruction, or tumor growth delay. We also found that PDP resulted in an ∼2-times decrease in tumor collagen content as well as a significant reduction of extracellular matrix density in the subendothelial zone. Enhanced nanoparticle accumulation combined with the reduced extravascular barriers improved therapeutic efficacy in the absence of off-target toxicity, wherein 5 mg/kg of Doxil with PDP was equally effective in delaying tumor growth as 15 mg/kg of Doxil. Overall, this study demonstrates the potential of PDP to enhance tumor nanomedicine accumulation and alleviate tumor desmoplasia without causing cell death or vascular destruction, highlighting the utility of PDP as a minimally invasive priming strategy that can improve therapeutic outcomes in desmoplastic tumors.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kara M Harmatys
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Shrey Sindhwani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Maneesha A Rajora
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Adam Koebel
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Danielle M Charron
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Abdullah M Syed
- J. David Gladstone Institutes, San Francisco, California 94158, USA
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
42
|
Hirata H, Kuwatani M, Nakajima K, Kodama Y, Yoshikawa Y, Ogawa M, Sakamoto N. Near-infrared photoimmunotherapy (NIR-PIT) on cholangiocarcinoma using a novel catheter device with light emitting diodes. Cancer Sci 2021; 112:828-838. [PMID: 33345417 PMCID: PMC7894014 DOI: 10.1111/cas.14780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapy for cancers that uses NIR light and antibody-photosensitizer (IR700) conjugates. However, it is difficult to deliver NIR light into the bile duct for cholangiocarcinoma (CCA) from the conventional extracorporeal apparatus. Thus, in this study, we developed a dedicated catheter with light emitting diodes (LEDs) that supersedes conventional external irradiation devices; we investigated the therapeutic effect of NIR-PIT for CCA using the novel catheter. The new catheter was designed to be placed in the bile duct and a temperature sensor was attached to the tip of the catheter to avoid thermal burn. An anti-epidermal growth factor receptor (EGFR) antibody, Panitumumab-IR700 conjugate or anti-human epidermal growth factor receptor type 2 (HER2) antibody, Trastuzumab-IR700 conjugate, was used with EGFR- or HER2-expressing cell lines, respectively. The in vitro efficacy of NIR-PIT was confirmed in cultured cells; the capability of the new catheter for NIR-PIT was then tested in a mouse tumor model. NIR-PIT via the developed catheter treated CCA xenografts in mice. NIR-PIT had an effect in Panitumumab-IR700 conjugate- and Trastuzumab-IR700 conjugate-treated CCA cells that depended on the receptor expression level. Tumor growth was significantly suppressed in mice treated with NIR-PIT using the novel catheter compared with controls (P < .01). NIR-PIT was an effective treatment for EGFR- and HER2-expressing CCA cells, and the novel catheter with mounted LEDs was useful for NIR-PIT of CCA.
Collapse
Affiliation(s)
- Hajime Hirata
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
43
|
Fakhri KU, Sultan A, Mushtaque M, Hasan MR, Nafees S, Hafeez ZB, Zafaryab M, Rizwanullah M, Sharma D, Bano F, AlMalki WH, Ahmad FJ, Rizvi MMA. Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. HANDBOOK OF RESEARCH ON ADVANCEMENTS IN CANCER THERAPEUTICS 2021. [DOI: 10.4018/978-1-7998-6530-8.ch026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, the authors first review nano-devices that are mixtures of biologic molecules and synthetic polymers like nano-shells and nano-particles for the most encouraging applications for different cancer therapies. Nano-sized medications additionally spill especially into tumor tissue through penetrable tumor vessels and are then held in the tumor bed because of diminished lymphatic drainage. This procedure is known as the enhanced penetrability and retention (EPR) impact. Nonetheless, while the EPR impact is generally held to improve conveyance of nano-medications to tumors, it in certainty offers not exactly a 2-overlay increment in nano-drug conveyance contrasted with basic ordinary organs, bringing about medication concentration that is not adequate for restoring most malignant growths. In this chapter, the authors likewise review different obstructions for nano-sized medication conveyance and to make the conveyance of nano-sized medications to tumors progressively successful by expanding on the EPR impact..
Collapse
Affiliation(s)
| | | | | | | | | | | | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Rizwanullah
- School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Deepti Sharma
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Farhad Bano
- National Institute of Immunology, New Delhi, India
| | | | - Farhan Jalees Ahmad
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
44
|
Nagaya T, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy for Cancers of the Gastrointestinal Tract. Digestion 2020; 102:1-8. [PMID: 33316807 PMCID: PMC8200364 DOI: 10.1159/000513216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cancers of the gastrointestinal (GI) tract are the common leading cause of cancer-related death in the world. Recent advances in cancer therapies such as intensive multidrug chemotherapy and molecular targeted treatment have improved therapeutic efficacy; however, the outcomes are not satisfied. Moreover, these therapies also cause severe side effects. New type of cancer therapies is urgently needed to improve the outcomes and to reduce side effects of GI tract cancers. SUMMARY This account is a comprehensive review article on the newly developed, photochemistry-based cancer therapy named as near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a highly selective tumor treatment that employs an antibody-photoabsorber conjugate, which is activated by near-infrared light. A world-wide phase 3 clinical trial of NIR-PIT against recurrent head and neck cancer patients is currently underway. NIR-PIT differs from conventional cancer therapies such as surgery, chemotherapy, and radiation in its selectivity for killing cancer cells and cells treated with NIR-PIT leading to immunogenic cell death. Preclinical research in animals with combining cancer-targeting NIR-PIT and other cancer immunotherapies could lead to responses not only in local tumor but also in distant metastases. NIR-PIT also leads to an immediate and dramatic increase in vascular permeability after therapy. From these aspects, NIR-PIT appears to be a promising new form of cancer therapy. NIR-PIT could be readily translated into clinical use for virtually any cancers in the near future provided suitable humanized antibodies are available. Here, we describe the specific advantages and applications of NIR-PIT in the GI tract. Key Messages: We believe that NIR-PIT with NIR excitation light, which can be delivered via a fiber optic diffuser through endoscopes, is a promising method for a new treatment of GI cancers.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,
- Department of Gastroenterology, Shinshu University Hospital, Matsumoto, Japan,
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Wakiyama H, Furusawa A, Okada R, Inagaki F, Kato T, Maruoka Y, Choyke PL, Kobayashi H. Increased Immunogenicity of a Minimally Immunogenic Tumor after Cancer-Targeting Near Infrared Photoimmunotherapy. Cancers (Basel) 2020; 12:E3747. [PMID: 33322807 PMCID: PMC7763141 DOI: 10.3390/cancers12123747] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective cancer treatment that employs an antibody photoabsorber conjugate (APC) composed of a targeting monoclonal antibody (mAb) conjugated with a photoactivatable phthalocyanine-derivative dye. Once injected and allowed to bind to a tumor, the APC is activated by local near-infrared light which kills cancer cells and induces a strong immune response in the tumor microenvironment by unmasking of new tumor antigens emerging from damaged tumor cells. Due to its ability to incite an immune reaction, even in poorly immunogenic tumors, NIR-PIT has the potential to enhance immunogenicity in tumors especially after immune checkpoint inhibition. In this study, we employ a poorly immunogenic MOC2-luc syngeneic tumor model and evaluate the efficacy of cancer-targeting CD44-targeted NIR-PIT. Increased infiltration of CD8+ T cells observed after NIR-PIT suggested an enhanced immune environment. Next, we evaluated tumor progression and survival after the combination of CD44-targeted NIR-PIT and short-term administration of an anti-PD1 immune checkpoint inhibitor (ICI) to further activate CD8+ T cells. Additionally, in mice in which the tumors were eradicated by this combination therapy, a re-challenge with fresh MOC2-luc cells demonstrated failure of tumor implantation implying acquired long-term immunity against the cancer cells. Combination therapy decreased tumor progression and prolonged survival significantly. Therefore, we concluded that NIR-PIT was able to convert a minimally immunogenic tumor unresponsive to anti-PD-1 ICI into a highly immunogenic tumor responsive to anti-PD-1 ICI, and this therapy was capable of inducing long-term immunity against the treated cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (H.W.); (A.F.); (R.O.); (F.I.); (T.K.); (Y.M.); (P.L.C.)
| |
Collapse
|
46
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Redox dual-responsive dendrimeric nanoparticles for mutually synergistic chemo-photodynamic therapy to overcome drug resistance. J Control Release 2020; 329:1210-1221. [PMID: 33122002 DOI: 10.1016/j.jconrel.2020.10.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Combination therapy has exhibited crucial potential in the treatment of cancers, especially in drug-resistant cancers. In this work, a novel tumor-targeted, redox dual-responsive and paclitaxel (PTX) loaded nanoparticle based on multifunctional dendrimer and lentinan was developed for combinational chemo-photodynamic therapy of PTX-resistant cancers. The nanoparticles exhibited enhanced cellular uptake and tumor penetration based on phenylboronic acid-sialic acid interactions, and had the ability to control drug release in response to intracellular high concentration of glutathione and H2O2. Specifically, light irradiation not only triggered the photodynamic effect of the nanoparticles for prominent photodynamic cytotoxicity, but also resulted in increased internalization and accelerated release of PTX into cytoplasm through the lysosome disruption, as well as the obvious damage to microtubules and actin microfilaments, for drug resistance reversal of A549/T cells. Meanwhile, PTX treatment would arrest cells in G2/M phase, thereby prolonging the period when nuclear membrane is broken down, which further facilitated photosensitizer accumulation in nuclei and improved DNA damage response. Consequently, the combination of PTX and photodynamic treatment lead to excellent antitumor effects to drug-resistant A549/T cells in vitro and in vivo, which provides a new strategy for the design of co-delivery system to overcome drug resistance.
Collapse
|
48
|
Huang CT, Guo X, Bařinka C, Lupold SE, Pomper MG, Gabrielson K, Raman V, Artemov D, Hapuarachchige S. Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Mol Pharm 2020; 17:3392-3402. [PMID: 32803984 DOI: 10.1021/acs.molpharmaceut.0c00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb- and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.
Collapse
Affiliation(s)
- Colin T Huang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States.,The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Venu Raman
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| |
Collapse
|
49
|
Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother 2020; 129:110371. [PMID: 32563984 DOI: 10.1016/j.biopha.2020.110371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer still remains a leading cause of cancer mortality in the world. Obatoclax mesylate (OM), a B cell chronic lymphocytic leukemia/lymphoma 2 (Bcl-2) family antagonist, is a potential antitumor drug. However, its poor aqueous solubility restricts its clinical application. Although these inherent defects, nanotechnology can be used to improve the solubility and tumor target of OM, promoting its antitumor efficiency. In the present study, the poly(lactic-coglycolic acid) (PLGA) was used and combined with red blood-cell membrane (RBCm) to explore if OM-loaded RBCm nanoparticles could improve the antitumor efficacy of OM for the treatment of lung cancer with relatively lower side effects compared with the free OM. The good physicochemical stability of the prepared RBCm-OM/PLGA nanoparticles was confirmed, and the optimal size of 153 nm was screened out, along with sustained drug release behavior. We found that RBCm-OM/PLGA nanoparticles effectively reduced the proliferation of lung cancer cells. Additionally, RBCm-OM/PLGA nanoparticles considerably induced apoptosis in lung cancer cells by reducing Bcl-2 expression levels, accompanied with the improved Cyto-c releases in cytoplasm and Caspase-3 activation. Mitochondrial membrane potential was also obviously impaired in lung cancer cells incubated with RBCm-OM/PLGA nanoparticles. Compared with free OM, RBCm-OM/PLGA nanoparticles could greatly prolong the drug circulation time in vivo and upgraded the drug concentration accumulated in tumor tissue. Furthermore, RBCm-OM/PLGA nanoparticles exerted stronger antitumor efficacy in vivo against lung cancer progression with superior safety. Therefore, RBCm-OM/PLGA nanoparticles provided new potential for lung cancer therapy with the improved safety and therapeutic effect.
Collapse
Affiliation(s)
- Song Chen
- Department of Radiology, XD Group Hospital, Xi'an City, Shaanxi Province, 710077, China
| | - Yujie Ren
- Department of CT Room, Dongying People's Hospital, Dongying City, Shandong Province, 257091, China
| | - Peng Duan
- Department of Oncology, The Third People's Hospital of Qingdao, Qingdao City, Shandong Province, 266041, China.
| |
Collapse
|
50
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|