1
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
2
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Sontakke AD, Gupta P, Banerjee SK, Purkait MK. Chitosan-grafted folic acid decorated one-dimensional GONS: A biocompatible drug cargo for targeted co-delivery of anticancer agents. Int J Biol Macromol 2024; 271:132621. [PMID: 38795890 DOI: 10.1016/j.ijbiomac.2024.132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
In conventional chemotherapy, the cancer cells can become highly resilient due to a phenomenon known as multi-drug resistance (MDR). The co-delivery of chemotherapeutic agents assisted with novel nanocarrier-based targeted DDS may counter the MDR issues and subsequently improve their therapeutic efficacy. In line with this, the present work deals with the development of 1D graphene oxide nanoscrolls (GONS)-based nano delivery system for co-delivery of chemosensitizer along with the chemotherapeutic agent. Herein, the 1D GONS nanocarrier was initially functionalized with chitosan (CS) biopolymer and folic acid (FA) further to enhance their biocompatibility and target-specific co-delivery. The resultant GONS-CS-FA (GCF) nanocarriers were co-loaded with doxorubicin (DOX) and caffeic acid (CA) at different weight proportions with respect to nanocarrier and drug composition. The optimum loading efficiency of 51.14 ± 1.47 % (DOX) and 49.70 ± 1.19 % (CA) was observed for GCF: drug ratio of 2.5 with drug composition of 1:1. In vitro release at pH 5 yielded ~83 % DOX and 75 % CA, compared to ~71 % DOX and 61 % CA at pH 7.4 over 7 days, suggesting a higher and targeted drug release in the cancer microenvironment. Cytotoxicity tests revealed selective apoptosis in cancer cells (A549) while maintaining cytocompatibility with normal cells (HEK293).
Collapse
Affiliation(s)
- Ankush D Sontakke
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Paras Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam 781039, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam 781039, India
| | - Mihir K Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Al-Hazmi GAA, El-Zahhar AA, El-Desouky MG, El-Bindary A. Superior adsorption and removal of doxorubicin from aqueous solution using activated carbon via thermally treated green adsorbent: isothermal, kinetic, and thermodynamic studies. ENVIRONMENTAL TECHNOLOGY 2024; 45:1969-1988. [PMID: 36519320 DOI: 10.1080/09593330.2022.2159540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Activated carbon from apricot seeds (ASAC) was successfully made using a low-cost, straightforward synthesis process. With the use of various instruments, including XRD, XPS, FT-IR, SEM, and TEM, the adsorbent was demonstrated. The surface area of the ASAC that was given was also shown to be 436.8 m2/g. It was discovered that the synthesized ASAC has a fantastic capacity to absorb the anti-cancer medication doxorubicin hydrochloride (DOX). Based on changes in temperature, pH, and DOX concentration, The DOX adsorption behaviour's mechanism was evaluated. The adsorption capacity of ASAC for DOX was greater at pH 6.0, according to experimental data as the adsorption capacity was discovered to be 951.13 mg/g. Adsorption equilibrium analysis revealed that, when compared to the other models, the Langmuir adsorption provided the best fit to the data that were collected. Additionally, The ASAC has validated the DOX activation energy of adsorption as a chemisorption technique. The kinetics of adsorption were shown to be fitted to pseudo-second-order kinetic model. The reaction was endothermic and spontaneous, according to thermodynamic data. Innvestigation the removal efficiency of ASAC to remove DOX from real watrer sample (tap water, effluent wastewater, and impact wastewater). It was suggested by the results that ASAC was a viable option for treating wastewater and adsorbing DOX. The synthesized ASAC has noteworthy cyclability and reusability characteristics due to its high efficiency (up to five cycles) and low cost (around 86 percent).
Collapse
Affiliation(s)
- Gamil A A Al-Hazmi
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Chemistry Department, Faculty of Applied Sciences, Taiz University, Taiz, Yemen
| | - Adel A El-Zahhar
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
5
|
Panda S, Khan I, Neekhra S, Srivastava R, Srivastava S. NIR-responsive porous gold nanorod dispersed in a 3D gelatin scaffold for stimulus-responsive drug release and synergistic therapy. MATERIALS ADVANCES 2024; 5:6853-6863. [DOI: 10.1039/d4ma00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biodegradable porous nanomaterials have emerged as a promising avenue for tumor drug delivery owing to their capacity to encapsulate large quantities of drugs and their compatibility with biological systems.
Collapse
Affiliation(s)
- Snigdharani Panda
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Irfan Khan
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suditi Neekhra
- Nanobios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Nanobios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Das A, Roy D, Erukula K, De S. Synthesis of pH responsive malononitrile functionalized metal organic framework MIL-100(Fe) for efficient adsorption of uranium U(VI) from real-life alkaline leach liquor. CHEMOSPHERE 2024; 348:140780. [PMID: 38006916 DOI: 10.1016/j.chemosphere.2023.140780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The porous framework of MIL-100(Fe) was functionalized using malononitrile (MN), through an in-situ Knoevenagel condensation reaction to introduce abundant -CN groups on the surface of the developed adsorbent. The resultant MN-functionalized MIL-100(Fe) exhibited excellent Uranium (U(VI)) removal capacity (i.e., 270 mg/g) at highly alkaline pH (⁓ 10). Different coexisting cations and anions show negligible influence on the U-removal and it was 92.1-99.7 % in presence of different co-ions, with the concentration from 10 to 50 mg/L. Moreover, MIL-100(Fe)_MN showed extremely selective U removal from the actual alkaline leach liquor (⁓ 97 %), without any pH adjustment and leaching of the constituent Fe. The surface-grafted -CN groups were predominantly active towards the coordinative interactions with the U(VI) ionic moieties, as evident from the XPS and FTIR analysis. The MIL-100(Fe)_MN adsorbent was also subjected to five consecutive adsorption-desorption cycles, with >90 % U removal after 5th cycle. Moreover, the regenerated MIL-100(Fe)_MN was structurally and functionally resilient, as observed from the morphological and crystallographic analysis. A convection-pore diffusion based transport model was used to analyze the optimized mass transfer parameters. Overall, the present study highlights the simple design and development of malononitrile-functionalized MIL-100(Fe) as an efficient and selective adsorbent for U(VI) removal from U-rich alkaline leach liquor.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debashis Roy
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Karthik Erukula
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Sodomaco S, Gómez S, Giovannini T, Cappelli C. Computational Insights into the Adsorption of Ligands on Gold Nanosurfaces. J Phys Chem A 2023; 127:10282-10294. [PMID: 37993110 DOI: 10.1021/acs.jpca.3c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
We study the adsorption process of model peptides, nucleobases, and selected standard ligands on gold through the development of a computational protocol based on fully atomistic classical molecular dynamics (MD) simulations combined with umbrella sampling techniques. The specific features of the interface components, namely, the molecule, the metallic substrate, and the solvent, are taken into account through different combinations of force fields (FFs), which are found to strongly affect the results, especially changing absolute and relative adsorption free energies and trends. Overall, noncovalent interactions drive the process along the adsorption pathways. Our findings also show that a suitable choice of the FF combinations can shed light on the affinity, position, orientation, and dynamic fluctuations of the target molecule with respect to the surface. The proposed protocol may help the understanding of the adsorption process at the microscopic level and may drive the in-silico design of biosensors for detection purposes.
Collapse
Affiliation(s)
- Sveva Sodomaco
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
8
|
Hornsby TK, Kashkooli FM, Jakhmola A, Kolios MC, Tavakkoli JJ. Kinetic modelling of ultrasound-triggered chemotherapeutic drug release from the surface of gold nanoparticles. Sci Rep 2023; 13:21301. [PMID: 38042841 PMCID: PMC10693567 DOI: 10.1038/s41598-023-48082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Therapeutic ultrasound can be used to trigger the on-demand release of chemotherapeutic drugs from gold nanoparticles (GNPs). In the previous work, our group achieved doxorubicin (DOX) release from the surface of GNPS under low-intensity pulsed ultrasound (LIPUS) exposure. However, the specific release kinetics of ultrasound-triggered DOX release from GNPs is not known. Here, we present a release kinetics study of DOX from GNPs under ultrasound exposure for the first time. A novel dialysis membrane setup was designed to quantify DOX release from LIPUS-activated GNPs at 37.0 °C and 43.4 °C (hyperthermia temperature range). Contributions of thermal and non-thermal mechanisms of LIPUS-triggered DOX release were also quantified. Non-thermal mechanisms accounted for 40 ± 7% and 34 ± 5% of DOX release for 37.0 °C and 43.4 °C trials, respectively. DOX release under LIPUS exposure was found to follow Korsmeyer-Peppas (K-P) kinetics, suggesting a shift from a Fickian (static) to a non-Fickian (dynamic) release profile with the addition of non-thermal interactions. DOX release was attributed to an anomalous diffusion release mechanism from the GNP surface. A finite element model was also developed to quantify the acoustic radiation force, believed to be the driving force of non-thermal DOX release inside the dialysis bag.
Collapse
Affiliation(s)
- Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
9
|
Casalinuovo S, Caschera D, Quaranta S, Genova V, Buzzin A, Federici F, de Cesare G, Puglisi D, Caputo D. Gold Nanoparticles-Functionalized Cotton as Promising Flexible and Green Substrate for Impedometric VOC Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5826. [PMID: 37687519 PMCID: PMC10488880 DOI: 10.3390/ma16175826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on cotton fabric. A complete structural and morphological characterization was conducted using UV-VIS and Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). A detailed dielectric characterization of the blank substrate revealed interfacial polarization effects related to both Au NPs and their specific surface functionalization. For instance, by entirely coating the cotton fabric (i.e., by creating a more insulating matrix), PVP was found to increase the sample resistance, i.e., to decrease the electrical interconnection of Au NPs with respect to citrate functionalized sample. However, it was observed that citrate functionalization provided a uniform distribution of Au NPs, which reduced their spacing and, therefore, facilitated electron transport. Regarding the detection of volatile organic compounds (VOCs), electrochemical impedance spectroscopy (EIS) measurements showed that hydrogen bonding and the resulting proton migration impedance are instrumental in distinguishing ethanol and acetone. Such findings can pave the way for the development of VOC sensors integrated into personal protective equipment and wearable telemedicine devices. This approach may be crucial for early disease diagnosis based on nanomaterials to attain low-cost/low-end and easy-to-use detectors of breath volatiles as disease markers.
Collapse
Affiliation(s)
- Silvia Casalinuovo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy; (S.C.); (A.B.); (G.d.C.); (D.C.)
| | - Daniela Caschera
- Institute for the Study of Nanostructured Materials CNR-ISMN, Strada Provinciale 35d/9 00010, Montelibretti, 00010 Rome, Italy; (S.Q.); (F.F.)
| | - Simone Quaranta
- Institute for the Study of Nanostructured Materials CNR-ISMN, Strada Provinciale 35d/9 00010, Montelibretti, 00010 Rome, Italy; (S.Q.); (F.F.)
| | - Virgilio Genova
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Alessio Buzzin
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy; (S.C.); (A.B.); (G.d.C.); (D.C.)
| | - Fulvio Federici
- Institute for the Study of Nanostructured Materials CNR-ISMN, Strada Provinciale 35d/9 00010, Montelibretti, 00010 Rome, Italy; (S.Q.); (F.F.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy; (S.C.); (A.B.); (G.d.C.); (D.C.)
| | - Donatella Puglisi
- Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology (IFM), Linköping University, Campus Valla, 58183 Linköping, Sweden;
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy; (S.C.); (A.B.); (G.d.C.); (D.C.)
| |
Collapse
|
10
|
Su YY, Jiang XY, Zheng LJ, Yang YW, Yan SY, Tian Y, Tian W, Liu WF, Teng ZG, Yao H, Wang SJ, Zhang LJ. Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. J Colloid Interface Sci 2023; 634:601-609. [PMID: 36549208 DOI: 10.1016/j.jcis.2022.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors. Importantly, the Au-star@PB nanoparticles function as effective MRI/PA contrast agents in vivo by increasing T1-weighted MR/PAI signal intensity and as effective PTT agents in vivo by decreasing the tumor volume in MCF-7 tumor bearing BALB / c mouse model as well as in vitro by lessening tumor cells growth rate. Interestingly, we found the main photothermal effect of Au-star@PB is derived from Au-star, but not PB. In summary, the hybrid structure of Au-star@PB NPs with good biological safety, significant photostability, dual imaging capability, and high therapeutic efficiency, might offer a novel avenue for the future diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Xin Yu Jiang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Li Juan Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yi Wen Yang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Suo Yu Yan
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wen Fei Liu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhao Gang Teng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Hui Yao
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of General Surgery, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China.
| | - Shou Ju Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, PR China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
11
|
Mubaiwa B, Lerata MS, Sibuyi NRS, Meyer M, Samaai T, Bolton JJ, Antunes EM, Beukes DR. Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1319. [PMID: 36770324 PMCID: PMC9920385 DOI: 10.3390/ma16031319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The use of natural products as chemotherapeutic agents is well established. However, many are associated with undesirable side effects, including high toxicity and instability. Previous reports on the cytotoxic activity of pyrroloiminoquinones isolated from Latrunculid sponges against cancer cell lines revealed extraordinary activity at IC50 of 77nM for discorhabdins. Their general lack of selectivity against the cancer and normal cell lines, however, precludes further development. In this study, extraction of a South African Latrunculid sponge produced three known pyrroloiminoquinone metabolites (14-bromodiscorhabdin C (5), Tsitsikammamine A (6) and B (7)). The assignment of the structures was established using standard 1D and 2D NMR experiments. To mitigate the lack of selectivity, the compounds were loaded onto gold nanoparticles synthesized using the aqueous extract of a brown seaweed, Sargassum incisifolium (sAuNPs). The cytotoxicity of the metabolites alone, and their sAuNP conjugates, were evaluated together with the known anticancer agent doxorubicin and its AuNP conjugate. The compound-AuNP conjugates retained their strong cytotoxic activity against the MCF-7 cell line, with >90% of the pyrroloiminoquinone-loaded AuNPs penetrating the cell membrane. Loading cytotoxic natural products onto AuNPs provides an avenue in overcoming some issues hampering the development of new anticancer drugs.
Collapse
Affiliation(s)
- Byron Mubaiwa
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mookho S. Lerata
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre (DST/Mintek NIC), Bio-Labels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre (DST/Mintek NIC), Bio-Labels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Toufiek Samaai
- Department of Environmental Affairs (Oceans and Coasts), Cape Town 8000, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - John J. Bolton
- Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Edith M. Antunes
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Denzil R. Beukes
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
12
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
13
|
A physicochemical and spectroscopic characterization of novel erlotinib conjugates with platinum nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022; 25:104507. [PMID: 35720266 PMCID: PMC9201018 DOI: 10.1016/j.isci.2022.104507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Exner KS, Ivanova A. A doxorubicin-peptide-gold nanoparticle conjugate as a functionalized drug delivery system: exploring the limits. Phys Chem Chem Phys 2022; 24:14985-14992. [PMID: 35687051 DOI: 10.1039/d2cp00707j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficient transport of pharmaceuticals to malignant cells in the human body often requires the application of drug-delivery systems (DDSs) consisting of several building blocks, each of them bearing a specific function. While nanoparticles are promising as potential carrier moieties, biomolecules may add to the efficient delivery by binding several drug molecules simultaneously. In this contribution, we apply a combination of atomistic molecular dynamics simulations and density functional theory calculations to characterize a multi-component DDS for the transport of the anthracycline antibiotic doxorubicin (DOX), comprising a gold nanoparticle (NP) and a drug-binding peptide (DBP) grafted on the NP surface. We have shown previously that the DDS can stabilize one DOX per DBP. However, by increasing the drug load to a 2 : 1 DOX : DBP ratio the two drug molecules compete for the available adsorption sites, which may cause spontaneous dissociation of one DOX molecule. We identify the chain length of the DBP as a limiting factor for the drug-loading capacity and provide important guidelines for further optimization of multi-component functionalized DDSs.
Collapse
Affiliation(s)
- Kai S Exner
- Sofia University, Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, 1 James Bourchier blvd., 1164 Sofia, Bulgaria. .,Cluster of Excellence RESOLV, Bochum, Germany
| | - Anela Ivanova
- Sofia University, Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, 1 James Bourchier blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
16
|
High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) have great potential in the drug delivery area. Iron oxide (Fe3O4) MNPs have demonstrated a promising effect due to their ferrimagnetic properties, large surface area, stability, low cost, easy synthesis, and functionalization. Some coating procedures are required to improve stability, biocompatibility, and decrease toxicity for medical applications. Herein, the co-precipitation synthesis of iron oxide MNPs coated with four types of primary surfactants, polyethylene glycol 2000 (PEG 2000), oleic acid (OA), Tween 20 (Tw20), and Tween 80 (Tw80), were investigated. Dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM) techniques were used for morphology, size, charge, and stability analysis. Methylene blue reactive oxygen species (ROS) detection assay and the toxicity experiment on the lung adenocarcinoma A549 cell line were conducted. Two loading conditions for anticancer drug doxorubicin (DOX) on MNPs were proposed. The first one provides high loading efficiency (~90%) with up to 870 μg/mg (DOX/MNPs) drug capacity. The second is perspective for extremely high capacity 1757 μg/mg with drug wasting (DOX loading efficiency ~24%). For the most perspective MNP_OA and MNP_OA_DOX in cell media, pH 7.4, 5, and 3, the stability experiments are also presented. MNP_OA_DOX shows DOX pH-dependent release in the acidic pH and effective inhibition of A549 cancer cell growth. The IC50 values were calculated as 1.13 ± 0.02 mM in terms of doxorubicin and 0.4 ± 0.03 µg/mL in terms of the amount of the nanoparticles. Considering this, the MNP_OA_DOX nano theranostics agent is a highly potential candidate for cancer treatment.
Collapse
|
17
|
Development of Neuropeptide Y and Cell-Penetrating Peptide MAP Adsorbed onto Lipid Nanoparticle Surface. Molecules 2022; 27:molecules27092734. [PMID: 35566093 PMCID: PMC9101637 DOI: 10.3390/molecules27092734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.
Collapse
|
18
|
García MC, Calderón-Montaño JM, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. Int J Pharm 2022; 619:121691. [PMID: 35331830 DOI: 10.1016/j.ijpharm.2022.121691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Liposomes (Lip) are useful nanocarriers for drug delivery and cancer nanomedicine because of their ability to efficiently encapsulate drugs with different physical and chemical properties. The pH gradient between normal and tumoral tissues, and their rapid metabolism that induces hyperthermia encourage the development of pH- and thermo-sensitive Lip for delivering anticancer drugs. Nucleolipids have been studied as scaffolding material to prepare Lip, mainly for cancer therapy. Herein, we report for the first time the use of 1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (DG-CDP) to develop pH/thermo-sensitive nucleolipid-containing stealth Lip stabilized by combination with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol, anchored with NH2-PEGylated gold nanoparticles (PEG-AuNPs, 15 nm) for triggering delivery of doxorubicin (Dox). The optimal composition of DPPC, DG-CDP and cholesterol (94:3:3) was established by Langmuir isotherms. Unloaded and Dox-loaded Lip and AuNPs-Lip exhibited nano-scale sizes (415-650 nm), acceptable polydispersity indexes (<0.33), spherical shapes, and negative Z-potential (-23- -6.6 mV) due to the phosphate groups of DG-CDP, which allowed the anchoring with positively charged AuNPs. High EE% were achieved (>78%) and although efficient control in the Dox release towards different receptor media was observed, the release of Dox from PEG-AuNPs-Lip-Dox was significantly triggered at acidic pH and hyperthermia temperature, demonstrating its responsiveness to both stimuli. Dox-loaded Lip showed high cytotoxic activity against MDA-MB-231 breast cancer cells and SK-OV-3 ovarian cancer cells, suggesting that Dox was released from these nanocarriers over time. Overall, the liposomal formulations showed promising properties as stimuli-responsive nanocarriers for cancer nanomedicine, with prospects for hyperthermia therapy.
Collapse
Affiliation(s)
- Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Manuela Rueda
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - Marcela Longhi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina
| | - Antonio M Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain
| | - Francisco Prieto-Dapena
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain.
| |
Collapse
|
19
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
20
|
Lee J, Lee K, Lim CT. Surface Plasmon Resonance Assay for Identification of Small Molecules Capable of Inhibiting Aβ Aggregation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27845-27855. [PMID: 34110774 DOI: 10.1021/acsami.1c04833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic aggregates of amyloid-beta (Aβ) have importance in the pathology of Alzheimer's disease, and inhibition of aggregate formation is considered to be a promising strategy for drug development. Here, we report a simple and rapid surface plasmon resonance (SPR) assay method that can identify potential Aβ aggregation inhibitors. Our assay is based on the SPR shifting of the Aβ-gold nanoparticle (Aβ-GNP) aggregates by size under the influence of an Aβ aggregation inhibitor. This user-friendly assay features a short assay time with a low reagent consumption that can be easily adapted as a high-throughput screen. We demonstrated that an effective Aβ aggregation inhibitor induces the blue-shifted SPR peaks of the Aβ-GNP aggregates by hindering the formation of long fibrillar aggregates. Moreover, the blue shifting was correlated to the efficacy and concentrations of an Aβ aggregation inhibitor. Overall, our findings suggest that our simple SPR assay can be a powerful tool to screen small molecules targeting Aβ aggregation.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Kwan Lee
- Department of Advanced Materials Engineering, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
21
|
Oladipo AO, Unuofin JO, Iku SII, Nkambule TTI, Mamba BB, Msagati TAM. Bimetallic Au@Pd nanodendrite system incorporating multimodal intracellular imaging for improved doxorubicin antitumor efficiency. Int J Pharm 2021; 602:120661. [PMID: 33933638 DOI: 10.1016/j.ijpharm.2021.120661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
The sufficient accumulation of drugs is crucial for efficient treatment in a complex tumor microenvironment. Drug delivery systems (DDS) with high surface area and selective cytotoxicity present a novel approach to mitigate insufficient drug loading for improved therapeutic response. Herein, a doxorubicin-conjugated bimetallic gold-core palladium-shell nanocarrier with multiple dense arrays of branches (Au@PdNDs.PEG/DOX) was characterized and its efficacy against breast adenocarcinoma (MCF-7) and lung adenocarcinoma (A549) cells were evaluated. Enhanced darkfield and hyperspectral imaging (HSI) microscopy were used to study the intracellular uptake and accumulation of the DOX-loaded nanodendrites A fascinating data from a 3D-CytoViva fluorescence imaging technique provided information about the dynamics of localization and distribution of the nanocarrier. In vitro cytotoxicity assays indicated that Au@PdNDs.PEG/DOX inhibited the proliferative effects of MCF-7 cells at equivalent IC50 dosage compared to DOX alone. The nanocarrier triggered higher induction of apoptosis proved by a time-dependent phosphatidylserine V release, cell cycle arrest, and flow cytometry analysis. Moreover, the cell cycle phase proportion increase suggests that the enhanced apoptotic effect induced by Au@PdNDs.PEG/DOX was via a G2/M phase arrest. Thus, this study demonstrated the potential of dendritic nanoparticles to improve DOX therapeutic efficiency and plasmonic-mediated intracellular imaging as a suitable theranostic platform for deployment in nanomedicine.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| | - Jeremiah O Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Solange I I Iku
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
22
|
Epanchintseva AV, Gorbunova EA, Ryabchikova EI, Pyshnaya IA, Pyshnyi DV. Effect of Fluorescent Labels on DNA Affinity for Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1178. [PMID: 33947157 PMCID: PMC8145642 DOI: 10.3390/nano11051178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Fluorophore (FD) labeling is widely used for detection and quantification of various compounds bound to nanocarriers. The systems, composed of gold nanoparticles (GNPs) and oligonucleotides (ONs) labeled with FDs, have wide applications. Our work was aimed at a systemic study of how FD structure (in composition of ON-FDs) influenced the efficiency of their non-covalent associates' formation with GNPs (ON-FD/GNPs). We examined ONs of different length and nucleotide composition, and corresponding ON-FDs (FDs from a series of xanthene, polymethine dyes; dyes based on polycyclic aromatic hydrocarbons). Methods: fluorometry, dynamic light scattering, high performance liquid chromatography, gel electrophoresis, molecular modeling and methods of thermodynamic and statistical analysis. We observed significant, differing several times, changes in surface density and Langmuir constant values of ON-FDs vs. ONs, evidence for the critical significance of FD nature for binding of ON-FDs with GNPs. Surface density of ON-FD/GNPs; hydrophobicity and total charge of ON or ON-FD; and charge and surface area of FDs were revealed as key factors determining affinity (Langmuir constant) of ON or ON-FDs for GNPs. These factors compose a specific set, which makes possible the highly reliable prediction of efficiency of ONs and ON-FDs binding with GNPs. The principal possibility of creating an algorithm for predictive calculation of efficiency of ONs and GNPs interaction was demonstrated. We proposed a hypothetical model that described the mechanism of contact interaction between negatively charged nano-objects, such as citrate-stabilized GNPs, and ONs or ON-FDs.
Collapse
Affiliation(s)
| | | | - Elena I. Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrentiev ave. 8, 630090 Novosibirsk, Russia; (A.V.E.); (E.A.G.); (I.A.P.)
| | | | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrentiev ave. 8, 630090 Novosibirsk, Russia; (A.V.E.); (E.A.G.); (I.A.P.)
| |
Collapse
|
23
|
Amelioration of Tumor Targeting and In Vivo Biodistribution of 99mTc-Methotrexate-Gold Nanoparticles ( 99mTc-Mex-AuNPs). J Pharm Sci 2021; 110:2955-2965. [PMID: 33812886 DOI: 10.1016/j.xphs.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
Gold nanoparticles (AuNPs) represent very attractive and promising drug delivery carriers due to their unique dimensions, adjustable surface functions, and controllable drug release. Therefore, AuNPs are used to overcome the limitations of conventional chemotherapy, for example methotrexate (Mex), one of the first-generation chemotherapy drugs for cancer treatment, whose usefulness has been restricted due to drug resistance and dose-dependent side effects. In the present study, the AuNPs drug delivery system was synthesized and loaded with technetium-99 m radiolabeled Methotrexate (99mTc-Mex) to produce new potential nanoradiopharmaceutical for tumor targeting and further imaging. The Methotrexate loaded gold nanoparticles (Mex-AuNPs) successfully prepared in small spherical particle size (20.3 nm), polydispersity index PDI (< 0.5) and a zeta potential (-17.6 mV) with loading efficiency% (93 ± 1.2%) of methotrexate at 30 min as an optimum stirring time and showed strong absorption peak for Mex-AuNPs at λmax, 525 nm. The in vitro release profile of Mex-AuNPs showed high release percent of methotrexate at pH 5; the Q0.5 h and Q8h were 21.2 ± 1.5% and 92.9 ± 3.4%, respectively. The in vitro cytotoxicity was investigated at different concentrations (0.024-50 μl/100 μl) of Mex-AuNPs (1 mg/ml) against MCF-7 (Michigan Cancer Foundation-7) breast cancer cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay technique. Mex-AuNPs showed higher anticancer activity with low inhibitory concentration (IC50 = 0.098 μl/100 μl) that was three times lower than the inhibitory concentration (IC50) of methotrexate (IC50 = 0.3 μl/100 μl). 99mTc-Mex complex prepared by direct reduction method at maximum radiochemical yield (RCY)% ̴ 98.3 ± 1.09 % was loaded in AuNPs to form 99mTc-Mex-AuNPs with loading efficiency% (93 ± 1.2 %) at 30 min of stirring time. 99mTc-Mex-AuNPs showed convenient in vitro stability in mice serum up to 24 h with RCY% > 90 %. The preclinical biodistribution studies of 99mTc-Mex-AuNPs were performed in 3 experimental groups A (intravenous (I.V.) injected normal mice), B and C (I.V. and intratumor (I.T.) injected tumor bearing mice, respectively). The 99mTc-Mex-AuNPs achieved highest tumor uptake (93 ± 0.39 %ID/g) and highest Target/NonTarget (T/NT) ratio (58.1 ± 0.91) with high Tumor/Blood (T/B) ratio (25.8 ± 0.11) at 10 min post I.T. injection and retained high tumor uptake (79 ± 0.65 %ID/g) up to 60 min post I.T. injection before escaping into blood stream. Consequently, 99mTc-Mex-AuNPs can be considered as new potential nanoradiopharmaceutical in tumor diagnosis.
Collapse
|
24
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Exner KS, Ivanova A. Method to Construct Volcano Relations by Multiscale Modeling: Building Bridges between the Catalysis and Biosimulation Communities. J Phys Chem B 2021; 125:2098-2104. [PMID: 33606541 DOI: 10.1021/acs.jpcb.1c00836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the complex interactions of different building blocks within a sophisticated drug-delivery system (DDS), aimed at targeted transport of the drug to malignant cells, requires modeling techniques on different time and length scales. On the example of the anthracycline antibiotic doxorubicin (DOX), we investigate a potential DDS component, consisting of a gold nanoparticle and a short peptide sequence as carriers of DOX. The combination of atomistic molecular dynamics simulations and density functional theory calculations facilitates compiling a volcano plot, which allows deriving general conclusions on DDS constituents for chemotherapeutic agents within the class of anthracycline antibiotics: the nanoparticle and peptide carrier moieties need to be chosen in such a way that the anthracycline body of the drug is able to intercalate between both entities or between two (π-stacking) residues of the peptide. Using the popular volcano framework as a guideline, the present article connects the catalysis and biosimulation communities, thereby identifying a strategy to overcome the limiting volcano relation by tuning the coordination number of the drug in the DDS component.
Collapse
Affiliation(s)
- Kai S Exner
- Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.,Cluster of Excellence RESOLV, Bochum, Germany
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
26
|
Gold nanoparticles for 99mTc-doxorubicin delivery: formulation, in vitro characterization, comparative studies in vivo stability and biodistribution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. Stable sub-100 nm PDMS nanoparticles as an intracellular drug delivery vehicle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111577. [DOI: 10.1016/j.msec.2020.111577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
|
28
|
Bhattarai JK, Neupane D, Nepal B, Demchenko AV, Stine KJ. Nanoporous Gold Monolith for High Loading of Unmodified Doxorubicin and Sustained Co-Release of Doxorubicin-Rapamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:208. [PMID: 33467416 PMCID: PMC7830488 DOI: 10.3390/nano11010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) have been widely explored for delivering doxorubicin (DOX), an anticancer drug, to minimize cardiotoxicity. However, their efficiency is marred by a necessity to chemically modify DOX, NPs, or both and low deposition of the administered NPs on tumors. Therefore, alternative strategies should be developed to improve therapeutic efficacy and decrease toxicity. Here we report the possibility of employing a monolithic nanoporous gold (np-Au) rod as an implant for delivering DOX. The np-Au has very high DOX encapsulation efficiency (>98%) with maximum loading of 93.4 mg cm-3 without any chemical modification required of DOX or np-Au. We provide a plausible mechanism for the high loading of DOX in np-Au. The DOX sustained release for 26 days from np-Au in different pH conditions at 37 °C, which was monitored using UV-Vis spectroscopy. Additionally, we encased the DOX-loaded np-Au with rapamycin (RAPA)-trapped poly(D,L-lactide-co-glycolide) (PLGA) to fabricate an np-Au@PLGA/RAPA implant and optimized the combinatorial release of DOX and RAPA. Further exploiting the effect of the protein corona around np-Au and np-Au@PLGA/RAPA showed zero-order release kinetics of DOX. This work proves that the np-Au-based implant has the potential to be used as a DOX carrier of potential use in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, Saint Louis, MO 63121, USA; (J.K.B.); (D.N.); (B.N.); (A.V.D.)
| |
Collapse
|
29
|
R K C, Rajagopalan V, Sahu NK. Synthesis of manganese doped β-FeOOH and MnFe 2O 4 nanorods for enhanced drug delivery and hyperthermia application. IET Nanobiotechnol 2020; 14:823-829. [PMID: 33399114 PMCID: PMC8676647 DOI: 10.1049/iet-nbt.2020.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Preparation of manganese ferrite (MnFe2O4) nanorods by the reduction of akaganeite seeds in the presence of oleylamine is reported. The Mn-doped β-FeOOH akaganeite seeds have been processed by the hydrolysis of metal-chloride salts in the presence of polyethylenimine (PEI) surfactant. The hydrophobic oleylamine capped nanorods are made hydrophilic using trisodium citrate as a phase transferring agent. The nanorods form with an aspect ratio of 5.47 and possess a high magnetisation value of 69 emu/g at an applied magnetic field of 1.5 T. The colloidal water dispersion of nanorods exhibits superior heating efficiency by the application of alternating magnetic field (AMF). A specific absorption rate value of 798 W/g is achieved at an applied AMF of field strength 500 Oe and frequency 316 kHz. Further, the citrate functionalised nanorods are capable of attaching with doxorubicin (DOX) electrostatically with a loading efficiency of 97% and the drug release is pH responsive. The DOX loaded nanorods show a promising effect on the apoptosis of MCF-7 as experimented in vitro.
Collapse
Affiliation(s)
- Chandunika R K
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, TN 632014, India
| | | | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, TN 632014, India.
| |
Collapse
|
30
|
Identifying a gold nanoparticle as a proactive carrier for transport of a doxorubicin-peptide complex. Colloids Surf B Biointerfaces 2020; 194:111155. [DOI: 10.1016/j.colsurfb.2020.111155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
|
31
|
El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles ( 99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 2020; 586:119514. [PMID: 32565281 DOI: 10.1016/j.ijpharm.2020.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 μg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.
Collapse
Affiliation(s)
- Walaa I El-Ghareb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Pharmacology Department, College of Pharmacy, Al-Bayan University, 10006 Baghdad, Iraq
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mina Ibrahim Tadros
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
32
|
Oladipo AO, Iku SI, Ntwasa M, Nkambule TT, Mamba BB, Msagati TA. Doxorubicin conjugated hydrophilic AuPt bimetallic nanoparticles fabricated from Phragmites australis: Characterization and cytotoxic activity against human cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Effective Gold Nanoparticle-Antibody-Mediated Drug Delivery for Photodynamic Therapy of Lung Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21113742. [PMID: 32466428 PMCID: PMC7311980 DOI: 10.3390/ijms21113742] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a leading contributor to lung cancer mortality rates. CSCs are responsible for tumor growth and recurrence through inhibition of drug-induced cell death, decreasing the effect of traditional cancer therapy and photodynamic therapy (PDT). PDT can be improved to successfully treat lung cancer by using gold nanoparticles (AuNPs), due to their size and shape, which have been shown to facilitate drug delivery and retention, along with the targeted antibody (Ab) mediated selection of CSCs. In this study, a nanobioconjugate (NBC) was constructed, using a photosensitizer (PS) (AlPcS4Cl), AuNPs and Abs. The NBC was characterized, using spectroscopy techniques. Photodynamic effects of the NBC on lung CSCs was evaluated, using biochemical assays 24 h post-irradiation, in order to establish its anticancer effect. Results showed successful conjugation of the nanocomposite. Localization of the NBC was seen to be in integral organelles involved in cell homeostasis. Biochemical responses of lung CSCs treated using AlPcS4Cl-AuNP and AlPcS4Cl-AuNP-Ab showed significant cell toxicity and cell death, compared to free AlPcS4Cl. The PDT effects were enhanced when using the NBC, showing significant lung CSC destruction to the point of eradication.
Collapse
|
34
|
The stimuli-responsive properties of doxorubicin adsorbed onto bimetallic Au@Pd nanodendrites and its potential application as drug delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110696. [DOI: 10.1016/j.msec.2020.110696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/21/2019] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
35
|
Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. Int J Biol Macromol 2020; 150:315-325. [DOI: 10.1016/j.ijbiomac.2020.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
|
36
|
Huang Z, Liu B, Liu J. A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chem Commun (Camb) 2020; 56:4208-4211. [PMID: 32168370 DOI: 10.1039/d0cc01418d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preparing DNA/Fe coordination nanoparticles in solution requires a high concentration of DNA. Herein we grew a DNA/Fe shell on DNA-functionalized gold nanoparticles. Taking advantage of the high local DNA density, the required DNA concentration decreased 60-fold, and the size can be controlled. This hybrid material allowed drug loading and colorimetric sensing.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
37
|
Yin HQ, Shao G, Gan F, Ye G. One-step, Rapid and Green Synthesis of Multifunctional Gold Nanoparticles for Tumor-Targeted Imaging and Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:29. [PMID: 32006199 PMCID: PMC6994604 DOI: 10.1186/s11671-019-3232-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles (GNPs) have always been used as doxorubicin (DOX) transport vectors for tumor diagnosis and therapy; however, the synthesis process of these vectors is to prepare GNPs via chemical reduction method firstly, followed by conjugation with DOX or specific peptides, so these meth•ods faced some common problems including multiple steps, high cost, time consuming, complicated preparation, and post-processing. Here, we present a one-step strategy to prepare the DOX-conjugated GNPs on the basis of DOX's chemical constitution for the first time. Moreover, we prepare a multifunctional GNPs (DRN-GNPs) with a one-step method by the aid of the reductive functional groups possessed by DOX, RGD peptides, and nuclear localization peptides (NLS), which only needs 30 min. The results of scattering images and cell TEM studies indicated that the DRN-GNPs could target the Hela cells' nucleus. The tumor inhibition rates of DRN-GNPs via tumor and tail vein injection of nude mice were 66.7% and 57.7%, respectively, which were significantly enhanced compared to control groups. One step synthesis of multifunctional GNPs not only saves time, materials, but also it is in line with the development direction of green chemistry, and it would lay the foundation for large-scale applications within the near future. Our results suggested that the fabrication strategy is efficient, and our prepared DRN-GNPs possess good colloidal stability in the physiological system; they are a potentially contrast agent and an efficient DOX transport vector for cervical cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hua Qin Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Guang Shao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Gang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
38
|
Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019; 14:349-364. [PMID: 32104465 PMCID: PMC7032133 DOI: 10.1016/j.ajps.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Aurum nanomaterials (ANM), combining the features of nanotechnology and metal elements, have demonstrated enormous potential and aroused great attention on biomedical applications over the past few decades. Particularly, their advantages, such as controllable particle size, flexible surface modification, higher drug loading, good stability and biocompatibility, especially unique optical properties, promote the development of ANM in biomedical field. In this review, we will discuss the advanced preparation process of ANM and summarize their recent applications as well as their prospects in diagnosis and therapy. Besides, multi-functional ANM-based theranostic nanosystems will be introduced in details, including radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), and so on.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
39
|
Matougui N, Groo AC, Umerska A, Cassisa V, Saulnier P. A comparison of different strategies for antimicrobial peptides incorporation onto/into lipid nanocapsules. Nanomedicine (Lond) 2019; 14:1647-1662. [DOI: 10.2217/nnm-2018-0337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Over the last decade, antimicrobial peptides (AMPs) have emerged as a promising alternative for the treatment of various infections. The aim of this work is to explore the potential of lipid nanocapsules for the delivery of AMPs. Three approaches were compared in terms of encapsulation efficiency, peptide activity and protection against proteases: peptide encapsulation, surface adsorption or covalent attachment of three selected AMPs. Results: A potentiation of the antimicrobial activity and a partial protection of the peptides after adsorption were demonstrated compared with native peptides. Conversely, encapsulation allowed better peptide stability, correlated with higher encapsulation efficiencies and a preservation of the activity. Finally, the covalent attachment strategy turned out to be less conclusive due to peptide inactivation. Conclusion: In brief, a lipid nanocapsule-based platform appears suitable to deliver AMPs.
Collapse
Affiliation(s)
- Nada Matougui
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
| | - Anne-Claire Groo
- Normandie Univ, UNICAEN, CERMN – EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, Caen, France
| | - Anita Umerska
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
- Université de Lorraine, CITHEFOR, Nancy, France
| | - Viviane Cassisa
- Equipe 7b, ATIP Avenir, ATOMyca, U892, CRCNA, CHU Angers, France
| | - Patrick Saulnier
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
- University Hospital Department of Biostatistics and Methodology, Angers University Hospital, Angers, France
| |
Collapse
|
40
|
Zhou X, Chen F, Lu H, Kong L, Zhang S, Zhang W, Nie J, Du B, Wang X. Ionic Microgel Loaded with Gold Nanoparticles for the Synergistic Dual-Drug Delivery of Doxorubicin and Diclofenac Sodium. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feng Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haipeng Lu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingli Kong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Siyu Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
41
|
Lara-Cruz C, Jiménez-Salazar JE, Arteaga M, Arredondo M, Ramón-Gallegos E, Batina N, Damián-Matsumura P. Gold nanoparticle uptake is enhanced by estradiol in MCF-7 breast cancer cells. Int J Nanomedicine 2019; 14:2705-2718. [PMID: 31118607 PMCID: PMC6503330 DOI: 10.2147/ijn.s196683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/06/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: In the present study, we investigated the effects of 17β-estradiol (E2) on membrane roughness and gold nanoparticle (AuNP) uptake in MCF-7 breast cancer cells. Methods: Estrogen receptor (ER)-positive breast cancer cells (MCF-7) were exposed to bare 20 nm AuNPs in the presence and absence of 1×10-9 M E2 for different time intervals for up to 24 hrs. The effects of AuNP incorporation and E2 incubation on the MCF-7 cell surface roughness were measured using atomic force microscopy (AFM). Endocytic vesicle formation was studied using confocal laser scanning microscopy (CLSM). Finally, the results were confirmed by hyperspectral optical microscopy. Results: High-resolution AFM images of the surfaces of MCF-7 membranes (up to 250 nm2) were obtained. The incubation of cells for 12 hrs with AuNP and E2 increased the cell membrane roughness by 95% and 30% compared with the groups treated with vehicle (ethanol) or AuNPs only, respectively. This effect was blocked by an ER antagonist (7α,17β-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol [ICI] 182,780). Higher amounts of AuNPs were localized inside MCF-7 cells around the nucleus, even after 6 hrs of E2 incubation, compared with vehicle-treated cells. Endolysosome formation was induced by E2, which may be associated with an increase in AuNP-uptake. Conclusions: E2 enhances AuNP incorporation in MCF-7 cells by modulating of plasma membrane roughness and inducing lysosomal endocytosis. These findings provide new insights into combined nanotherapies and hormone therapies for breast cancer.
Collapse
Affiliation(s)
- Carlos Lara-Cruz
- Nanotechnology and Molecular Engineering Laboratory, Department of Chemistry, Division of Basic Science and Engineering (DCBI), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Javier E Jiménez-Salazar
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Marcela Arteaga
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Michelle Arredondo
- Nanotechnology and Molecular Engineering Laboratory, Department of Chemistry, Division of Basic Science and Engineering (DCBI), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Department of Morphology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nikola Batina
- Nanotechnology and Molecular Engineering Laboratory, Department of Chemistry, Division of Basic Science and Engineering (DCBI), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Pablo Damián-Matsumura
- Department of Biology of Reproduction, Division of Biological Sciences and Health (DCBS), Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| |
Collapse
|
42
|
Alba-Molina D, Rodríguez-Padrón D, Puente-Santiago AR, Giner-Casares JJ, Martín-Romero MT, Camacho L, Martins LO, Muñoz-Batista MJ, Cano M, Luque R. Mimicking the bioelectrocatalytic function of recombinant CotA laccase through electrostatically self-assembled bioconjugates. NANOSCALE 2019; 11:1549-1554. [PMID: 30629067 DOI: 10.1039/c8nr06001k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unprecedented 3D nanobiosystems composed of recombinant CotA laccases and citrate-stabilised gold nanoparticles have been successfully achieved by an electrostatic self-assembly strategy. The bioelectrochemical reduction of O2 driven by CotA laccase at the spore coat was mimicked. Consequently key insights into its bioelectrocatalytic function were unravelled.
Collapse
Affiliation(s)
- David Alba-Molina
- Departamento de Química Física y Termodinamica Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Manatunga DC, de Silva RM, de Silva KMN, Wijeratne DT, Malavige GN, Williams G. Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: enhanced anti-proliferative effect on breast and liver cancer cells. Chem Cent J 2018; 12:119. [PMID: 30470922 PMCID: PMC6768026 DOI: 10.1186/s13065-018-0482-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Ample attention has been devoted to the construction of anti-cancer drug delivery systems with increased stability, and controlled and targeted delivery, minimizing toxic effects. In this study we have designed a magnetically attractive hydroxyapatite (m-HAP) based alginate polymer bound nanocarrier to perform targeted, controlled and pH sensitive drug release of 6-gingerol, doxorubicin, and their combination, preferably at low pH environments (pH 5.3). They have exhibited higher encapsulation efficiency which is in the range of 97.4-98.9% for both 6-gingerol and doxorubicin molecules whereas the co-loading has accounted for a value of 81.87 ± 0.32%. Cell proliferation assays, fluorescence imaging and flow cytometric analysis, demonstrated the remarkable time and dose responsive anti-proliferative effect of drug loaded nanoparticles on MCF-7 cells and HEpG2 cells compared with their neat counter parts. Also, these systems have exhibited significantly reduced toxic effects on non-targeted, non-cancerous cells in contrast to the excellent ability to selectively kill cancerous cells. This study has suggested that this HAP based system is a versatile carrier capable of loading various drug molecules, ultimately producing a profound anti-proliferative effect.
Collapse
Affiliation(s)
| | - Rohini M. de Silva
- Department of Chemistry, University of Colombo, Colombo, 00300 Sri Lanka
| | - K. M. Nalin de Silva
- Department of Chemistry, University of Colombo, Colombo, 00300 Sri Lanka
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama, 10206 Sri Lanka
| | - Dulharie T. Wijeratne
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
| |
Collapse
|
44
|
García Rubia G, Peigneux A, Jabalera Y, Puerma J, Oltolina F, Elert K, Colangelo D, Gómez Morales J, Prat M, Jimenez-Lopez C. pH-Dependent Adsorption Release of Doxorubicin on MamC-Biomimetic Magnetite Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13713-13724. [PMID: 30394747 DOI: 10.1021/acs.langmuir.8b03109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
New biomimetic magnetite nanoparticles (hereafter BMNPs) with sizes larger than most common superparamagnetic nanoparticles were produced in the presence of the recombinant MamC protein from Magnetococcus marinus MC-1 and functionalized with doxorubicin (DOXO) intended as potential drug nanocarriers. Unlike inorganic magnetite nanoparticles, in BMNPs the MamC protein controls their size and morphology, providing them with magnetic properties consistent with a large magnetic moment per particle; moreover, it provides the nanoparticles with novel surface properties. BMNPs display the isoelectric point at pH 4.4, being strongly negatively charged at physiological pH (pH 7.4). This allows both (i) their functionalization with DOXO, which is positively charged at pH 7.4, and (ii) the stability of the DOXO-surface bond and DOXO release to be pH dependent and governed by electrostatic interactions. DOXO adsorption follows a Langmuir-Freundlich model, and the coupling of DOXO to BMNPs (binary biomimetic nanoparticles) is very stable at physiological pH (maximum release of 5% of the drug adsorbed). Conversely, when pH decreases, these electrostatic interactions weaken, and at pH 5, DOXO is released up to ∼35% of the amount initially adsorbed. The DOXO-BMNPs display cytotoxicity on the GTL-16 human gastric carcinoma cell line in a dose-dependent manner, reaching about ∼70% of mortality at the maximum amount tested, while the nonloaded BMNPs are fully cytocompatible. The present data suggest that BMNPs could be useful as potential drug nanocarriers with a drug adsorption-release governed by changes in local pH values.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Oltolina
- Dipartimento di Scienze della Salute , Università del Piemonte Orientale "A. Avogadro" , Via Solaroli 17 , 28100 Novara , Italy
| | | | - Donato Colangelo
- Dipartimento di Scienze della Salute , Università del Piemonte Orientale "A. Avogadro" , Via Solaroli 17 , 28100 Novara , Italy
| | - Jaime Gómez Morales
- Laboratorio de Estudios Cristalográficos , IACT (CSIC-Universidad de Granada) , Avda. Las Palmeras, 4 , 18100 Armilla , Spain
| | - Maria Prat
- Dipartimento di Scienze della Salute , Università del Piemonte Orientale "A. Avogadro" , Via Solaroli 17 , 28100 Novara , Italy
| | | |
Collapse
|
45
|
Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B Biointerfaces 2018. [PMID: 29533842 PMCID: PMC6581030 DOI: 10.1016/j.colsurfb.2018.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.
Collapse
Affiliation(s)
- Kyle T Householder
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Danielle M DiPerna
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Anne Rosa Luning
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Duong T Nguyen
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA
| | - Shwetal Mehta
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, 85013, USA; School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ, 85287, USA.
| |
Collapse
|
46
|
Khoshnevisan K, Daneshpour M, Barkhi M, Gholami M, Samadian H, Maleki H. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target 2017; 26:525-532. [PMID: 28972797 DOI: 10.1080/1061186x.2017.1387790] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fabrication and characterisation of gold nanoparticles (GNPs) through reducing agents and different capped agents are one of their most attractive applications in biomedicine. GNPs are coated using various agents such as carbohydrate, amino acids, peptides and proteins. These capped gold nanoparticles (C-GNPs) are applied for wide different applications including drug delivery in the recent decade and potential treatment and diagnosis in drug delivery systems (DDS). Recent studies have shown that these novel compounds and conjugated-nanoparticles drugs play a key role for the promising cure of high-risk refractory diseases. In addition, it seems that these compounds have a capability for potential treatment of certain cancers. In this review, a well-defined description of C-GNPs and the application of these nanoparticles are discussed. Our study revealed that C-GNPs with anticancer drugs or new compounds could be potentially applied for biomedical usage especially in cancer therapy.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- a Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran.,b Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Daneshpour
- c Department of Biotechnology, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Barkhi
- d University of Applied Science and Technology (UAST), Zar Center , Karaj , Iran
| | - Morteza Gholami
- b Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran.,e Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran
| | - Hadi Samadian
- f Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Maleki
- f Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
47
|
Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target 2017; 26:296-310. [DOI: 10.1080/1061186x.2017.1380655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ummarah Kanwal
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | | | - Muhammad Ovais
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir Abass
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Khalid Hussain
- University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| |
Collapse
|
48
|
Palomino-Vizcaino G, Valencia Reséndiz DG, Benítez-Hess ML, Martínez-Acuña N, Tapia-Vieyra JV, Bahena D, Díaz-Sánchez M, García-González OP, Alvarez-Sandoval BA, Alvarez-Salas LM. Effect of HPV16 L1 virus-like particles on the aggregation of non-functionalized gold nanoparticles. Biosens Bioelectron 2017; 100:176-183. [PMID: 28889068 DOI: 10.1016/j.bios.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 01/02/2023]
Abstract
Colorimetric assays based on gold nanoparticles (GNPs) are of considerable interest for diagnostics because of their simplicity and low-cost. Nevertheless, a deep understanding of the interaction between the GNPs and the intended molecular target is critical for the development of reliable detection technologies. The present report describes the spontaneous interaction between HPV16 L1 virus-like particles (VLPs) and non-functionalized GNPs (nfGNPs) resulting in the inhibition of nfGNPs salt-induced aggregation and the stabilization of purified VLPs. Ionic-competition experiments suggested that the nature of nfGNPs-VLPs interaction is non-covalent. Adsorption of an RNA aptamer on nfGNPs surface showed an additive aggregation-inhibitory effect. The use of mutant VLPs confirmed that the interaction nfGNPs-VLPs is not mediated by the opposing superficial electrostatic charges, suggesting that non-electrostatic forces participate in the arrangement of nfGNPs on the VLPs surface. Competition experiments using increasing ethanol concentrations on nfGNPs-VLPs complexes suggested hydrophobic interactions as the main stabilizing force. Therefore, the nfGNPs-VLPs interaction described here should facilitate the development of adsorption assays based on nfGNPs for HPV detection and cervical cancer prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica (LANE), Centro de Investigación y de EstudiosAvanzados del Instituto Politécnico Nacional, Ciudad de México D.F., México
| | - Mauricio Díaz-Sánchez
- R,D & Innovation Department, Genes2Life S.A.P.I. de C.V., Irapuato, Guanajuato, México
| | | | | | | |
Collapse
|
49
|
Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur J Med Chem 2017; 142:416-423. [PMID: 28870452 DOI: 10.1016/j.ejmech.2017.08.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022]
Abstract
In this study, we propose doxorubicin (DOX) loaded oligonucleotides (ONTs) attached to gold nanoparticles (AuNPs) as a drug delivery system for cancer chemotherapy. DOX is one of the representative cancer chemotherapy agents and is widely used by many researchers as a chemotherapy agent in the drug delivery system. Due to the advantages of AuNPs such as simple steps in synthesis, high surface-area-to-volume ratio, and biocompatibility, we utilized AuNPs as drug delivery vehicle. AuNPs were synthesized by chemical reduction to be 13 nm diameter. The G-C rich oligonucleotides were used both for drug loading sites and AuNPs capping agents. 80% of DOX in solution could be bound to ONTs on AuNPs to became DOX-loaded AuNPs coated with ONTs (Doxorubicin-Oligomer-AuNP, DOA), and about 28% of loaded DOX was released from the as-prepared DOA. Confocal microscopy observation showed that DOA was well transported into cells, and finally the DOX was released into the cell nucleus. The drug's efficacies such as in vitro cytotoxicity and in vivo tumor growth inhibition were demonstrated with SW480 colon cancer cell line and a xenograft mouse model. MTT assay was performed to see the cytotoxicity effect on SW480 cells treated with DOA for 24 h, and the cell viability was determined to be 41.77% (p < 0.001). When DOA was administered regularly to a tumor bearing mouse, the tumor growth inhibition degree was examined by measuring the tumor size. The treatment-control (T/C) ratio was found to be 0.69. Thus, our results suggest the use of DOAs as promising drug delivery systems for colorectal cancer therapy.
Collapse
|
50
|
Malekigorji M, Alfahad M, Kong Thoo Lin P, Jones S, Curtis A, Hoskins C. Thermally triggered theranostics for pancreatic cancer therapy. NANOSCALE 2017; 9:12735-12745. [PMID: 28829476 DOI: 10.1039/c7nr02751f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hybrid iron oxide-gold nanoparticles (HNPs) show the ability to bind drugs onto their surface with a triggered release at elevated temperatures. The iron oxide core allows for diagnostic imaging whilst heating of the gold shell upon laser irradiation reverses drug binding. This study exploits the reversible binding of novel polyamine based drugs in order to provide a specific and effective method for pancreatic cancer treatment. Here we used a novel bisnaphthalamido (BNIP) based drug series. Our hybrid nanoparticles (50 nm) showed the ability to load drugs onto their surface (3 : 1 : 0.25, drug : Fe : Au). By exploiting the surface-to-drug electrostatic interaction of a range of BNIP agents, heat triggered drug release was achieved. A 12-fold reduction in IC50 after 24 h in vitro and a 5-fold reduction of tumour retardation in vivo compared with free drug in pancreatic models after treatment were achieved with the HNP-formulation and laser irradiation. This heat activated system could provide a key platform for future therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Malekigorji
- Institute of Science and Technology in Medicine, School of Pharmacy, Faculty of Medicine and Health Sciences, Keele University, Keele, ST5 5BG, UK.
| | | | | | | | | | | |
Collapse
|