1
|
Morsi RE, Gentili D, Corticelli F, Morandi V, Figoli A, Russo F, Galiano F, Gentilomi GA, Bonvicini F, Manet I, Ventura B. Cellulose acetate membranes loaded with combinations of tetraphenylporphyrin, graphene oxide and Pluronic F-127 as responsive materials with antibacterial photodynamic activity. RSC Adv 2023; 13:26550-26562. [PMID: 37692352 PMCID: PMC10483373 DOI: 10.1039/d3ra04193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes. Besides, the addition of a surfactant (Pluronic F-127) allowed to modify the morphology of the membranes whereas the use of graphene oxide (GO) enabled further photo-activated antibacterial activity. The three additives were tested in various concentrations and in different combinations in order to carefully explore the effects of their mixing on the final photophysical and photodynamic properties. A complete structural/morphologycal characterization of the produced membranes has been performed, together with a detailed photophysical study of the TPP-containing samples, including absorption and emission features, excited state lifetime, singlet oxygen production, and confocal analysis. Their antibacterial activity has been assessed in vitro against S. aureus and E. coli, and the results demonstrated excellent bacterial inactivation for the membranes containing a combination of the three additives, revealing also a non-innocent role of the membrane porous structure in the final antibacterial capacity.
Collapse
Affiliation(s)
- Rania E Morsi
- Egyptian Petroleum Research Institute (EPRI) PO Box 11727 Nasr City Cairo Egypt
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Denis Gentili
- Institute of Nanostructured Materials (ISMN), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Franco Corticelli
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Alberto Figoli
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Francesca Russo
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Francesco Galiano
- Institute on Membrane Technology (ITM), National Research Council (CNR) Via P. Bucci 17/C 87036 Rende (CS) Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna Via Massarenti 9 40138 Bologna Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna Via Massarenti 9 40138 Bologna Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna Via Massarenti 9 40138 Bologna Italy
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR) Via P. Gobetti 101 40129 Bologna Italy
| |
Collapse
|
2
|
Targeted Therapy for Glomerulonephritis Using Arterial Delivery of Encapsulated Etanercept. Int J Mol Sci 2023; 24:ijms24032784. [PMID: 36769101 PMCID: PMC9917155 DOI: 10.3390/ijms24032784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 μg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.
Collapse
|
3
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
4
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
5
|
Chandra A, Prasad S, Alemanno F, De Luca M, Rizzo R, Romano R, Gigli G, Bucci C, Barra A, del Mercato LL. Fully Automated Computational Approach for Precisely Measuring Organelle Acidification with Optical pH Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18133-18149. [PMID: 35404562 PMCID: PMC9052195 DOI: 10.1021/acsami.2c00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
pH balance and regulation within organelles are fundamental to cell homeostasis and proliferation. The ability to track pH in cells becomes significantly important to understand these processes in detail. Fluorescent sensors based on micro- and nanoparticles have been applied to measure intracellular pH; however, an accurate methodology to precisely monitor acidification kinetics of organelles in living cells has not been established, limiting the scope of this class of sensors. Here, silica-based fluorescent microparticles were utilized to probe the pH of intracellular organelles in MDA-MB-231 and MCF-7 breast cancer cells. In addition to the robust, ratiometric, trackable, and bioinert pH sensors, we developed a novel dimensionality reduction algorithm to automatically track and screen massive internalization events of pH sensors. We found that the mean acidification time is comparable among the two cell lines (ΔTMCF-7 = 16.3 min; ΔTMDA-MB-231 = 19.5 min); however, MCF-7 cells showed a much broader heterogeneity in comparison to MDA-MB-231 cells. The use of pH sensors and ratiometric imaging of living cells in combination with a novel computational approach allow analysis of thousands of events in a computationally inexpensive and faster way than the standard routes. The reported methodology can potentially be used to monitor pH as well as several other parameters associated with endocytosis.
Collapse
Affiliation(s)
- Anil Chandra
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Saumya Prasad
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Francesco Alemanno
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
| | - Maria De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Riccardo Rizzo
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| | - Roberta Romano
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
| | - Cecilia Bucci
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBa), Università del Salento, Via Monteroni, Lecce 73100, Italy
| | - Adriano Barra
- Dipartimento
di Matematica e Fisica, Università
del Salento, Via Monteroni, Lecce 73100, Italy
- Istituto
Nazionale di Fisica Nucleare, Sezione di Lecce, Via Monteroni, Lecce 73100, Italy
| | - Loretta L. del Mercato
- Institute
of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
6
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
7
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|
9
|
He S, Zhong S, Xu L, Dou Y, Li Z, Qiao F, Gao Y, Cui X. Sonochemical fabrication of magnetic reduction-responsive alginate-based microcapsules for drug delivery. Int J Biol Macromol 2020; 155:42-49. [DOI: 10.1016/j.ijbiomac.2020.03.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
|
10
|
Liu J, Chen Z, Liu Y, Liu Z, Ren Y, Xue Y, Zhu B, Wang R, Zhang Q. Preparation of a PCM Microcapsule with a Graphene Oxide Platelet-Patched Shell and Its Thermal Camouflage Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Liu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Zhicong Chen
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Yibin Liu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Zongxu Liu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Yafeng Ren
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Ying Xue
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Baolei Zhu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Rumin Wang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
| | - Qiuyu Zhang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Natural and Applied Sciences, Northwestern Polytechnical University, No. 127, West Youyi Road, Xi’an 710072, Shaanxi, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, P. R. China
| |
Collapse
|
11
|
Radziuk D, Mikhnavets L, Vorokhta M, Matolín V, Tabulina L, Labunov V. Sonochemical Formation of Copper/Iron‐Modified Graphene Oxide Nanocomposites for Ketorolac Delivery. Chemistry 2019; 25:6233-6245. [DOI: 10.1002/chem.201900662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Darya Radziuk
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Lubov Mikhnavets
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Mykhailo Vorokhta
- Department of Surface and Plasma ScienceCharles University of Prague V Holešovičkách 2 18000 Prague 8 Czech Republic
| | - Vladimír Matolín
- Department of Surface and Plasma ScienceCharles University of Prague V Holešovičkách 2 18000 Prague 8 Czech Republic
| | - Ludmila Tabulina
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| | - Vladimir Labunov
- Laboratory of Integrated Micro- and NanosystemsBelarusian State University of Informatics and Radioelectronics P. Brovki Str. 6 220013 Minsk Republic of Belarus
| |
Collapse
|
12
|
Guerra F, Paiano A, Migoni D, Girolimetti G, Perrone AM, De Iaco P, Fanizzi FP, Gasparre G, Bucci C. Modulation of RAB7A Protein Expression Determines Resistance to Cisplatin through Late Endocytic Pathway Impairment and Extracellular Vesicular Secretion. Cancers (Basel) 2019; 11:cancers11010052. [PMID: 30626032 PMCID: PMC6357196 DOI: 10.3390/cancers11010052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) is widely used in treatment of cancer, yet patients often develop resistance with consequent therapeutical failure. In CDDP-resistant cells alterations of endocytosis and lysosomal functionality have been revealed, although their causes and contribution to therapy response are unclear. METHODS We investigated the role of RAB7A, a key regulator of late endocytic trafficking, in CDDP-resistance by comparing resistant and sensitive cells using western blotting, confocal microscopy and real time PCR. Modulation of RAB7A expression was performed by transfection and RNA interference, while CDDP sensitivity and intracellular accumulation were evaluated by viability assays and chemical approaches, respectively. Also extracellular vesicles were purified and analyzed. Finally, correlations between RAB7A and chemotherapy response was investigated in human patient samples. RESULTS We demonstrated that down-regulation of RAB7A characterizes the chemoresistant phenotype, and that RAB7A depletion increases CDDP-resistance while RAB7A overexpression decreases it. In addition, increased production of extracellular vesicles is modulated by RAB7A expression levels and correlates with reduction of CDDP intracellular accumulation. CONCLUSIONS We demonstrated, for the first time, that RAB7A regulates CDDP resistance determining alterations in late endocytic trafficking and drug efflux through extracellular vesicles.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University Hospital S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy.
| | - Anna Myriam Perrone
- Unit of Oncologic Gynecology, S. Orsola-Malpighi Hospital, via Massarenti 13, 40138 Bologna, Italy.
| | - Pierandrea De Iaco
- Unit of Oncologic Gynecology, S. Orsola-Malpighi Hospital, via Massarenti 13, 40138 Bologna, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University Hospital S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
13
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
14
|
Zhu D, Roy S, Liu Z, Weller H, Parak WJ, Feliu N. Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Adv Drug Deliv Rev 2019; 138:117-132. [PMID: 30315833 DOI: 10.1016/j.addr.2018.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
Abstract
Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner. This potentially is of great interest for medicine (e.g. allowing for remotely controlled drug delivery to cells, etc.). Among the different external exogenous and endogenous stimuli used to control the desired release, light and magnetic fields offer interesting possibilities, allowing defined, real time control of intracellular releases. In this review we highlight the use of stimuli-responsive controlled release systems that are able to respond to light and magnetic field triggers for controlling the release of encapsulated cargo inside cells. We discuss established approaches and technologies and describe prominent examples. Special attention is devoted towards polymer capsules and polymer vesicles as containers for encapsulated cargo molecules. The advantages and disadvantages of this methodology in both, in vitro and in vivo models are discussed. An overview of challenges associate with the successful translation of those stimuli-responsive materials towards future applications in the direction of potential clinical use is given.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Sathi Roy
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Horst Weller
- Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Experimental Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Xu L, Zhong S, Shi C, Sun Y, Zhao S, Gao Y, Cui X. Sonochemical fabrication of reduction-responsive magnetic starch-based microcapsules. ULTRASONICS SONOCHEMISTRY 2018; 49:169-174. [PMID: 30082250 DOI: 10.1016/j.ultsonch.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In this work, a novel, biocompatible, non-immunogenic and reductive-responsive magnetic starch-based microcapsules (RMSMCs) were designed and fabricated successfully via a facile sonochemical method for targeted delivery and triggered release of hydrophobic drugs. TEM image indicated that oleic acid (OA) modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) were encapsulated into RMSMCs. The obtained RMSMCs were endowed with magnetism for drug targeted delivery because that the superparamagnetic OA-Fe3O4 NPs were encapsulated into RMSMCs. Moreover, Coumarin 6 (C6), a green fluorescent dye, was used as a model hydrophobic drug and loaded into RMSMCs. As drug carriers, the obtained spherical RMSMCs with the average size of 2 μm presented excellent reductive-responsive release ability for hydrophobic drugs. Accordingly, the obtained RMSMCs would be promising carriers for targeted delivery and triggered release of hydrophobic drugs in biomedical applications.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shengnan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
16
|
Wu Y, Wang F, Wang S, Ma J, Xu M, Gao M, Liu R, Chen W, Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. NANOSCALE 2018; 10:14637-14650. [PMID: 30028471 DOI: 10.1039/c8nr02798f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) and its derivatives (e.g., reduced graphene oxide, RGO) have shown great promise in biomedicine. Although many studies have been conducted to understand the relative cyto-compatibility between GO and RGO materials, the results are inconclusive and controversial. In this study, we compared the biocompatibility aspects (e.g. cytotoxicity, pro-inflammatory effects and impairment of cellular morphology) between parental and reduced GOs towards macrophages using primary bone marrow-derived macrophages (BMDMs) and J774A.1 cell line. Two RGOs (RGO1 and RGO2) with differential reduction levels relative to the parental GO were prepared. Intriguingly, besides loss of oxygen-containing functional groups, significant morphological alteration of GO occurred, from the sheet-like structure to a polygonal curled shape for RGO, without significant aggregation in biological medium. Cytotoxicity assessment unveiled that the RGOs were more toxic than pristine GO to both types of cells. It was surprising to find for the first time (to our knowledge) that GO and RGOs elicited different effects on the morphological changes of BMDMs, as reflected by elongated protrusions from GO treatment and shortened protrusions from the RGOs. Furthermore, RGOs induced greater pro-inflammatory responses than GO, especially in BMDMs. Compromised cyto-compatibility of RGOs was attributable (at least partially) to their greater oxidative stress in macrophages. Mechanistically, these differences in bio-reactivities between GO and RGO should be boiled down to (at least in part) the synergistic effects from the variation of oxygen-containing functional groups and the distinct morphology in between. This study unearthed the crucial contribution of reduction-mediated detrimental cellular effects between GO and RGO towards macrophages.
Collapse
Affiliation(s)
- Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yuan X, Niu J, Zeng J, Jing Q. Cement-Induced Coagulation of Aqueous Graphene Oxide with Ultrahigh Capacity and High Rate Behavior. NANOMATERIALS 2018; 8:nano8080574. [PMID: 30060440 PMCID: PMC6116235 DOI: 10.3390/nano8080574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Graphene oxide (GO) has excellent physicochemical properties and is used in multiple areas. However, the potential toxicity and environmental problems associated with GO increase its risk to the ecological system. In this study, cement was employed as a coagulant to eliminate GO from aqueous solutions. The effects of the cement dosage, the contact time, and the concentration and volume of the aqueous GO solution on the GO coagulation capacity were investigated in detail. The results showed that the dosage of cement had a significant effect on the coagulation process, and coagulation equilibrium was achieved in less than 1 h. Compared to coagulants used to remove GO from water in other reports, cement exhibited an ultrahigh coagulation capacity of approximately 5981.2 mg/g with 0.4 mg/mL GO solution. The kinetic analysis showed that the GO removal behavior could be described by a pseudo second-order model. The in-depth mechanism of GO coagulation using cement included Ca2+-induced coagulation of GO and adsorption by the hydrated product of cement paste. The present study revealed that cement could be a very cheap and promising material for the efficient elimination of GO from aqueous solutions.
Collapse
Affiliation(s)
- Xiaoya Yuan
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jiawei Niu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junjie Zeng
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qiuye Jing
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
18
|
Li Z, Wang Z, Du X, Shi C, Cui X. Sonochemistry-Assembled Stimuli-Responsive Polymer Microcapsules for Drug Delivery. Adv Healthc Mater 2018. [PMID: 29527834 DOI: 10.1002/adhm.201701326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive polymer microcapsules (PMs) fabricated by the sonochemical method have emerged for developing useful drug delivery systems, and the latest developments are mainly focusing on the synthetic strategies and properties such as structure, size, stability, loading capacity, drug delivery, and release. There, the primary attribution of sonochemistry is to offer a simple and practical approach for the preparation of PMs. Structure, size, stability, and properties of PMs are designed mainly according to synthetic materials, implementation schemes, or specific demands. Numerous functionalities of PMs based on different stimuli are demonstrated: targeting motion in a magnetic field or adhering to the living cells with sensitive sites through molecular recognition, and stimuli-triggered release including enzymatic catalysis, chemical reaction as well as physical or mechanical process. The current review discusses the basic principles and mechanisms of stimuli effects, and describes the progress in the application such as targeted drug systems and controlled drug systems, and also gives an outlook on the future challenges and opportunities for drug delivery and theranostics.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Chao Shi
- College of Chemistry; Jilin University; 130012 Changchun China
| | - Xuejun Cui
- College of Chemistry; Jilin University; 130012 Changchun China
| |
Collapse
|
19
|
Zizzari A, Bianco M, del Mercato LL, Sorarù A, Carraro M, Pellegrino P, Perrone E, Monteduro AG, Bonchio M, Rinaldi R, Viola I, Arima V. Highly Sensitive Membrane-Based Pressure Sensors (MePS) for Real-Time Monitoring of Catalytic Reactions. Anal Chem 2018; 90:7659-7665. [DOI: 10.1021/acs.analchem.8b01531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandra Zizzari
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics E. De Giorgi, University of Salento, 73100, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Loretta L. del Mercato
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Antonio Sorarù
- ITM-CNR and Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mauro Carraro
- ITM-CNR and Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pellegrino
- Department of Mathematics and Physics E. De Giorgi, University of Salento, 73100, Lecce, Italy
| | - Elisabetta Perrone
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anna G. Monteduro
- National Institute of Gastroenterology “S. De Bellis” Research Hospital, via Turi 27, 70013, Castellana Grotte (Bari), Italy
| | - Marcella Bonchio
- ITM-CNR and Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics E. De Giorgi, University of Salento, 73100, Lecce, Italy
| | - Ilenia Viola
- CNR NANOTEC - Institute of Nanotechnology, S.Li.M Lab, c/o Department of Physics, Sapienza University, P.le A. Moro 5, 00185, Rome, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
20
|
Larrañaga A, Isa ILM, Patil V, Thamboo S, Lomora M, Fernández-Yague MA, Sarasua JR, Palivan CG, Pandit A. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater 2018; 67:21-31. [PMID: 29258803 DOI: 10.1016/j.actbio.2017.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. STATEMENT OF SIGNIFICANCE Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | - Isma Liza Mohd Isa
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Vaibhav Patil
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Basel, Switzerland
| | - Mihai Lomora
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Marc A Fernández-Yague
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | | | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
21
|
Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO. Photoresponsive and Magnetoresponsive Graphene Oxide Microcapsules Fabricated by Droplet Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44192-44198. [PMID: 29172415 DOI: 10.1021/acsami.7b14448] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluid compartmentalization by microencapsulation is important in scenarios where protection or controlled release of encapsulated species, or isolation of chemical transformations is the central concern. Realizing responsive encapsulation systems by incorporating functional nanomaterials is of particular interest. We report here on the development of graphene oxide microcapsules enabled by a single-step microfluidic process. Interfacial reaction of epoxide-bearing graphene oxide sheets and an amine-functionalized macromolecular silicone fluid creates a chemically cross-linked film with micronscale thickness at the surface of water-in-oil droplets generated by microfluidic devices. The resulting microcapsules are monodisperse, mechanically resilient, and shape-tunable constructs. Ferrite nanoparticles are incorporated via the aqueous phase and enable microcapsule positioning by a magnetic field. We exploit the photothermal response of graphene oxide to realize microcapsules with photoresponsive release characteristics and show that the microcapsule permeability is significantly enhanced by near-IR illumination. The dual magnetic and photoresponsive characteristics, combined with the use of a single-step process employing biocompatible fluids, represent highly compelling aspects for practical applications.
Collapse
Affiliation(s)
- Gilad Kaufman
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| | - Karla A Montejo
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
- Department of Biomedical Engineering, Florida International University , Miami, Florida 33174, United States
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, United States
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC): CNRS (UMR 7104)/Inserm U964, Université de Strasbourg , Illkirch 67400, France
| | - Paweł W Majewski
- Department of Chemistry, University of Warsaw , Warsaw 02-096, Poland
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Quarta A, Rodio M, Cassani M, Gigli G, Pellegrino T, del Mercato LL. Multilayered Magnetic Nanobeads for the Delivery of Peptides Molecules Triggered by Intracellular Proteases. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35095-35104. [PMID: 28858466 PMCID: PMC6091500 DOI: 10.1021/acsami.7b05709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
In this work, the versatility of layer-by-layer technology was combined with the magnetic response of iron oxide nanobeads to prepare magnetic mesostructures with a degradable multilayer shell into which a dye quenched ovalbumin conjugate (DQ-OVA) was loaded. The system was specifically designed to prove the protease sensitivity of the hybrid mesoscale system and the easy detection of the ovalbumin released. The uptake of the nanostructures in the breast cancer cells was followed by the effective release of DQ-OVA upon activation via the intracellular proteases degradation of the polymer shells. Monitoring the fluorescence rising due to DQ-OVA digestion and the cellular dye distribution, together with the electron microscopy studying, enabled us to track the shell degradation and the endosomal uptake pathway that resulted in the release of the digested fragments of DQ ovalbumin in the cytosol.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Marina Rodio
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Marco Cassani
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
- Department of Chemistry, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giuseppe Gigli
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- Department
of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Teresa Pellegrino
- Italian Institute
of Technology (IIT), via Morego 30, 16163 Genova, Italy
| | - Loretta L. del Mercato
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
23
|
Jalani G, Jeyachandran D, Bertram Church R, Cerruti M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. NANOSCALE 2017; 9:10161-10166. [PMID: 28702585 DOI: 10.1039/c7nr00378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Perfluorocarbon (PFC) emulsions are capable of absorbing large quantities of oxygen. They are widely used as blood alternates for quick oxygenation of tissues. However, they are unsuitable for applications where sustained oxygen supply is desired over an extended period of time. Here, we have designed a new PFC oxygen delivery system that combines perfluorodecalin with graphene oxide (GO), where GO acts both as an emulsifier and a stabilizing agent. The resulting emulsions (PFC@GO) release oxygen at least one order of magnitude slower than emulsions prepared with other common surfactants. The release rate can be controlled by varying the thickness of the GO layer. Controlled release of oxygen make these emulsions excellent oxygen carriers for applications where sustained oxygen delivery is required e.g. in tissue regeneration and vascular wound healing.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | | | - Richard Bertram Church
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| |
Collapse
|
24
|
Zhang X, Zhou Q, Zou W, Hu X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7861-7871. [PMID: 28614664 DOI: 10.1021/acs.est.7b01922] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Developmental toxicity is a critical issue in nanotoxicity. However, very little is known about the effects of graphene oxide (GO, a widely used carbon material) at predicted environmental concentrations on biological development or the specific molecular mechanisms. The present study established that the development of zebrafish embryos exposed to trace concentrations (1-100 μg/L) of GO was impaired because of DNA modification, protein carbonylation and excessive generation of reactive oxygen species (ROS), especially the superoxide radical. Noticeably, there was a nonmonotonic response of zebrafish developmental toxicity to GO at μg/L to mg/L levels. Transcriptomics analysis revealed that disturbing collagen- and matrix metalloproteinase (MMP)-related genes affected the skeletal and cardiac development of zebrafish. Moreover, metabolomics analysis showed that the inhibition of amino acid metabolism and the ratios of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) contributed to the above developmental toxicity. The present work verifies the developmental toxicity of GO at trace concentrations and illustrates for the first time the specific molecular mechanisms thereof. Because of the potential developmental toxicity of GO at trace concentrations, government administrators and nanomaterial producers should consider its potential risks prior to the widespread environmental exposure to GO.
Collapse
Affiliation(s)
- Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
25
|
Dong L, Shi C, Guo L, Yang T, Sun Y, Cui X. Fabrication of redox and pH dual-responsive magnetic graphene oxide microcapsules via sonochemical method. ULTRASONICS SONOCHEMISTRY 2017; 36:437-445. [PMID: 28069231 DOI: 10.1016/j.ultsonch.2016.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, the biocompatible redox and pH dual-responsive magnetic graphene oxide microcapsules (MGOMCs) were prepared by a simple sonochemical method. The disulfide bonds cross-linked the wall of MGOMCs were formed from the hydrosulfuryl on the surface of thiolated graphene oxide, which was synthesized by functionalizing graphene oxide with cysteine, showed an excellent redox-responsive property to control drugs release. Moreover, oleic acid modified Fe3O4 nanoparticles were encapsulated into the microcapsules successfully with the hydrophobic drugs dispersed in the hydroxy silicone oil. The MGOMCs possess distinguished magnetic property and pH-responsive ability. Besides, the microcapsules could be engulfed by Hela cells successfully due to the appropriate size and flexible shell. The MGOMCs could be a good carrier for hydrophobic drugs, especially the anticancer drugs.
Collapse
Affiliation(s)
- Linlin Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Lanlan Guo
- College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, PR China
| | - Ting Yang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
26
|
Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J, Feliu N, Escudero A, Almendral MJ, Linne U, Peer D, Fuentes M, Parak WJ. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug Chem 2017; 28:556-564. [DOI: 10.1021/acs.bioconjchem.6b00657] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Meir Goldsmith
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | | | - Alberto Escudero
- Instituto
de Ciencia de Materiales de Sevilla, CSIC − Universidad de Sevilla, C. Américo Vespucio 49, E-41092, Seville, Spain
| | - María Jesús Almendral
- Department
of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain
| | | | - Dan Peer
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Wolfgang J. Parak
- CIC biomaGUNE, Paseo de Miramón
182, 20014 Donostia
− San Sebastián, Spain
| |
Collapse
|
27
|
Yu S, Wang X, Zhang R, Yang T, Ai Y, Wen T, Huang W, Hayat T, Alsaedi A, Wang X. Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation. Sci Rep 2017; 7:39625. [PMID: 28045053 PMCID: PMC5206720 DOI: 10.1038/srep39625] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 01/19/2023] Open
Abstract
Although graphene oxide (GO) has been used in multidisciplinary areas due to its excellent physicochemical properties, its environmental behavior and fate are still largely unclear. In this study, batch experiments, spectroscopy analysis and theoretical calculations were addressed to promote a more comprehensive understanding toward the coagulation behavior of GO onto TiO2 under various environmental conditions (pH, co-existing ions, temperature, etc.). The results indicated that neutral pH was beneficial to the removal of GO due to the electrostatic interaction. The presence of cations accelerated GO coagulation significantly owing to the influence of electrical double layer compression. On the contrary, the presence of anions improved the stability of GO primarily because of electrostatic repulsion and steric hindrance. Results of XRD, FTIR and XPS analysis indicated that the coagulation of GO on TiO2 was mainly dominated by electrostatic interactions and hydrogen bonds, which were further evidenced by DFT calculations. The high binding energy further indicated the stability of GO + TiO2 system, suggesting that TiO2 can be used as an effective coagulant for the efficient elimination and coagulation of GO from aqueous solutions. These findings might likely lead to a better understanding of the migration and transformation of carbon nanomaterials in the natural environment.
Collapse
Affiliation(s)
- Shujun Yu
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China.,University of Science and Technology of China, Jinzhai road 96, Hefei, 230000, P.R. China
| | - Xiangxue Wang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China.,University of Science and Technology of China, Jinzhai road 96, Hefei, 230000, P.R. China
| | - Rui Zhang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China.,University of Science and Technology of China, Jinzhai road 96, Hefei, 230000, P.R. China
| | - Tongtong Yang
- University of Science and Technology of China, Jinzhai road 96, Hefei, 230000, P.R. China
| | - Yuejie Ai
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Tao Wen
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Wei Huang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China
| | - Tasawar Hayat
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Alsaedi
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiangke Wang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, P.R. China.,NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Del Mercato LL, Passione LG, Izzo D, Rinaldi R, Sannino A, Gervaso F. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J Mech Behav Biomed Mater 2016; 62:209-221. [PMID: 27219851 DOI: 10.1016/j.jmbbm.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties.
Collapse
Affiliation(s)
- Loretta L Del Mercato
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Laura Gioia Passione
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Daniela Izzo
- DHITECH s.c.a.r.l - High Technology Cluster c/o Campus Ecotekne, Via Monteroni s.n., 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Department of Mathematics and Physics "Ennio De Giorgi" University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni s.n., 73100 Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Via Monteroni s.n., 73100 Lecce, Italy.
| |
Collapse
|