1
|
Gupta R, Singhal M. An eco-friendly polycaprolactone/graphite composite as a robust freestanding electrode platform for supercapacitive energy storage. NANOSCALE 2024; 16:20155-20167. [PMID: 39397662 DOI: 10.1039/d4nr03113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present the successful development and characterization of a novel eco-friendly polycaprolactone-graphite (PCLGr) composite as a freestanding platform, serving as a bulk conducting chip electrode for supercapacitor applications. Notably, this is the first report of using this biodegradable polymer for making such a self-standing conductive platform. Traditional polymer and carbon-based electrodes often rely on insulating supports or non-eco-friendly materials, which we have addressed in our work. Direct deposition of the redox material, polyaniline (PANI), onto the electrode via the galvanostatic method has been achieved. The specific capacitance of PANI demonstrates comparability to previous studies utilizing conventional current collectors. Notably, the electrode exhibits exceptional stability in highly acidic environments. Comprehensive characterization utilizing bulk conductivity measurements, XRD, TGA, DSC, SEM, and stress-strain analyses shows advanced properties of the electrode. It complements the evaluation of PANI's supercapacitive performance through cyclic voltammetry, charge-discharge measurements, and impedance spectroscopy. We achieved a specific capacitance of ≈162 F g-1 at 0.5 A g-1. This innovative electrode presents a promising alternative to conventional counterparts across various electrochemical applications.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Applied Chemistry, School of Sciences, ITM(SLS) Baroda University, Vadodara, Gujarat 391510, India.
| | - Monika Singhal
- Shree PM Patel Institute of PG Studies and Research in Science (Affiliated to Sardar Patel University VV Nagar), Anand, Gujarat 388001, India
| |
Collapse
|
2
|
Duan L, Xu J, Cao L, Lu L, Zang L, Hu S, Fu R, Wang K. Enhanced Electrocatalytic Performance of the FePt/PPy-C Composite toward Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44718-44727. [PMID: 39139126 DOI: 10.1021/acsami.4c07065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A novel FePt/PPy-C composite nanomaterial has been designed and investigated as a methanol oxidation reaction (MOR) electrocatalyst. The FePt nanoparticles with an average diameter of about 3 nm have been prepared by the co-reduction method and then loaded onto the PPy-C composite support. The electrocatalytic performance is affected by the composition of the FePt nanoparticles. The experimental results indicated that the Fe1.5Pt1/PPy-C catalyst exhibited excellent catalytic activity and stability for MOR, with mass activity and specific activity of 1.76 A mgPt-1 and 2.71 mA cm-2, respectively, which are 5.18 and 4.60 times higher than that of the commercial Pt/C catalyst. Density functional theory (DFT) has been employed to simulate the electrical structures of catalyst supports, and the mechanism of the methanol oxidation process has been further analyzed. The heterojunctions of the PPy-C interface could accelerate the electron migration from the electrocatalytic center to the electrodes. The possibility of methanol oxidation has been improved effectively, which can be confirmed by the d-band center and CO adsorption energy on FePt nanoparticles in the DFT calculation results.
Collapse
Affiliation(s)
- Lijun Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhao Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingzhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Likun Zang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongpeng Fu
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan 056005, China
| |
Collapse
|
3
|
Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, Hussaini KM, Abeed AHA. Green synthesis and characterization of silver and copper nanoparticles and their use as an effective adsorbent for chromium removal and recovery from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112575-112590. [PMID: 37833594 DOI: 10.1007/s11356-023-30141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Sattar
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan.
- Research and Knowledge Transfer, INTI International University, 71800, Putra Nilai, Malaysia.
| | - Noor Ul Ain
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Khalid Mahmud Hussaini
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
4
|
Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira JB, Ssekitoleko RT. A di-electrophoretic simulation procedure of iron-oxide micro-particle drug attachment system for leukemia treatment using COMSOL software: a potential treatment reference for LMICs. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1250964. [PMID: 37901748 PMCID: PMC10602814 DOI: 10.3389/fmedt.2023.1250964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Leukemia encompasses various subtypes, each with unique characteristics and treatment approaches. The challenge lies in developing targeted therapies that can effectively address the specific genetic mutations or abnormalities associated with each subtype. Some leukemia cases may become resistant to existing treatments over time making them less susceptible to chemotherapy or other standard therapies. Objective Developing new treatment strategies to overcome resistance is an ongoing challenge particularly in Low and Middle Income Countries (LMICs). Computational studies using COMSOL software could provide an economical, fast and resourceful approach to the treatment of complicated cancers like leukemia. Methods Using COMSOL Multiphysics software, a continuous flow microfluidic device capable of delivering anti-leukemia drugs to early-stage leukemia cells has been computationally modeled using dielectrophoresis (DEP). Results The cell size difference enabled the micro-particle drug attachment to the leukemia cells using hydrodynamic focusing from the dielectrophoretic force. This point of care application produced a low voltage from numerically calculated electrical field and flow speed simulations. Conclusion Therefore, such a dielectrophoretic low voltage application model can be used as a computational treatment reference for early-stage leukemia cells with an approximate size of 5 μm.
Collapse
Affiliation(s)
- Henry Fenekansi Kiwumulo
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| | - Haruna Muwonge
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Kampala, Uganda
| | - Charles Ibingira
- Department of Human Anatomy, Makerere University, Kampala, Uganda
| | - Michael Lubwama
- Department of Mechanical Engineering, Makerere University, Kampala, Uganda
| | | | - Robert Tamale Ssekitoleko
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Liang S, Xu W, Hu L, Yrjänä V, Wang Q, Rosqvist E, Wang L, Peltonen J, Rosenholm JM, Xu C, Latonen RM, Wang X. Aqueous Processable One-Dimensional Polypyrrole Nanostructured by Lignocellulose Nanofibril: A Conductive Interfacing Biomaterial. Biomacromolecules 2023; 24:3819-3834. [PMID: 37437256 PMCID: PMC10428162 DOI: 10.1021/acs.biomac.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.
Collapse
Affiliation(s)
- Shujun Liang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Wenyang Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Liqiu Hu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Ville Yrjänä
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Qingbo Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Emil Rosqvist
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Luyao Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jouko Peltonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Rose-Marie Latonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| |
Collapse
|
6
|
Ghosh S, Bera S, Sardar S, Pal S, Camargo FVA, D'Andrea C, Cerullo G. Role of Efficient Charge Transfer at the Interface between Mixed-Phase Copper-Cuprous Oxide and Conducting Polymer Nanostructures for Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18867-18877. [PMID: 37023322 DOI: 10.1021/acsami.3c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photocatalytic hydrogen generation from water splitting is regarded as a sustainable technology capable of producing green solar fuels. However, the low charge separation efficiencies and the requirement of lowering redox potentials are unresolved challenges. Herein, a multiphase copper-cuprous oxide/polypyrrole (PPy) heterostructure has been designed to identify the role of multiple oxidation states of metal oxides in water reduction and oxidation. The presence of a mixed phase in PPy heterostructures enabled an exceptionally high photocatalytic H2 generation rate of 41 mmol h-1 with an apparent quantum efficiency of 7.2% under visible light irradiation, which is a 7-fold augmentation in contrast to the pure polymer. Interestingly, the copper-cuprous oxide/PPy heterostructures exhibited higher charge carrier density, low resistivity, and 6 times higher photocurrent density compared to Cu2O/PPy. Formation of a p-p-n junction between polymer and mixed-phase metal oxide interfaces induce a built-in electric field which influences directional charge transfer that improves the catalytic activity. Notably, photoexcited charge separation and transfer have been significantly improved between copper-cuprous oxide nanocubes and PPy nanofibers, as revealed by femtosecond transient absorption spectroscopy. Additionally, the photocatalyst demonstrates excellent stability without loss of catalytic activity during cycling tests. The present study highlights a superior strategy to boost photocatalytic redox reactions using a mixed-phase metal oxide in the heterostructure to achieve enhanced light absorption, longer charge carrier lifetimes, and highly efficient photocatalytic H2 and O2 generation.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Susmita Bera
- Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Sourabh Pal
- Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Al-Aoh HA, Badi N, Roy AS, Alsharari AM, Abd El Wanees S, Albaqami A, Ignatiev A. Preparation of Anionic Surfactant-Based One-Dimensional Nanostructured Polyaniline Fibers for Hydrogen Storage Applications. Polymers (Basel) 2023; 15:polym15071658. [PMID: 37050269 PMCID: PMC10096723 DOI: 10.3390/polym15071658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Polyaniline fibers were prepared in the presence of anionic surfactant in an ice medium to nucleate in one dimension and were compared to bulk polyaniline prepared at an optimum temperature. Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) were used to investigate the structural analysis of the prepared samples. A conductivity study reveals that polyaniline fibers have high conductivity compared to bulk polyaniline. Hydrogen storage measurements confirm that the polyaniline fibers adsorbed approximately 86% of the total actual capacity of 8–8.5 wt% in less than 9 min, and desorption occurs at a lower temperature, releasing approximately 1.5 wt% of the hydrogen gases when the pressure is reduced further to 1 bar.
Collapse
Affiliation(s)
- Hatem A. Al-Aoh
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nacer Badi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Renewable Energy & Energy Efficiency Center, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence:
| | - Aashis S. Roy
- Department of Chemistry, S. S. Tegnoor Degree College, Kalaburagi 585105, India
| | | | | | - Abdulrahman Albaqami
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alex Ignatiev
- Department of Physics, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
8
|
del Valle MA, Gacitúa MA, Hernández F, Luengo M, Hernández LA. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers (Basel) 2023; 15:1450. [PMID: 36987228 PMCID: PMC10054839 DOI: 10.3390/polym15061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Due to the energy requirements for various human activities, and the need for a substantial change in the energy matrix, it is important to research and design new materials that allow the availability of appropriate technologies. In this sense, together with proposals that advocate a reduction in the conversion, storage, and feeding of clean energies, such as fuel cells and electrochemical capacitors energy consumption, there is an approach that is based on the development of better applications for and batteries. An alternative to commonly used inorganic materials is conducting polymers (CP). Strategies based on the formation of composite materials and nanostructures allow outstanding performances in electrochemical energy storage devices such as those mentioned. Particularly, the nanostructuring of CP stands out because, in the last two decades, there has been an important evolution in the design of various types of nanostructures, with a strong focus on their synergistic combination with other types of materials. This bibliographic compilation reviews state of the art in this area, with a special focus on how nanostructured CP would contribute to the search for new materials for the development of energy storage devices, based mainly on the morphology they present and on their versatility to be combined with other materials, which allows notable improvements in aspects such as reduction in ionic diffusion trajectories and electronic transport, optimization of spaces for ion penetration, a greater number of electrochemically active sites and better stability in charge/discharge cycles.
Collapse
Affiliation(s)
- M. A. del Valle
- Laboratorio de Electroquímica de Polímeros, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago 7820436, Chile
| | - M. A. Gacitúa
- Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Ejército 441, Santiago 8370191, Chile
| | - F. Hernández
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| | - M. Luengo
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| | - L. A. Hernández
- Laboratorio de Electroquímica, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso 2340000, Chile
| |
Collapse
|
9
|
Luhakhra N, Tiwari SK. Polaron and bipolaron mediated photocatalytic activity of polypyrrole nanoparticles under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Ul Hoque MI, Holze R. Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers (Basel) 2023; 15:730. [PMID: 36772032 PMCID: PMC9920322 DOI: 10.3390/polym15030730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers ICPs can be combined with further electrochemically active materials into composites for use as active masses in supercapacitor electrodes. Typical examples are inspected with particular attention to the various roles played by the constituents of the composites and to conceivable synergistic effects. Stability of composite electrode materials, as an essential property for practical application, is addressed, taking into account the observed causes and effects of materials degradation.
Collapse
Affiliation(s)
- Md. Ikram Ul Hoque
- Discipline of Chemistry, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rudolf Holze
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
- Institut für Chemie, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Lisovskiy V, Minenkov A, Dudin S, Bogatyrenko S, Platonov P, Yegorenkov V. Synthesis of Nanoparticles and Theoretical Model of Their Retention in Plasma of RF Capacitive Discharge with Vertically Arranged Electrodes in Acetylene. ACS OMEGA 2022; 7:47941-47955. [PMID: 36591135 PMCID: PMC9798781 DOI: 10.1021/acsomega.2c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In the present research, experiments on the formation and retention of nanoparticles (NPs) in the plasma of radio frequency (RF) capacitive discharge in acetylene were carried out with vertically positioned internal electrodes. It has been shown via SEM and TEM techniques that NPs found on the horizontal tube wall after the discharge operation have a spherical shape with a predominant diameter of approximately 400-600 nm. HRTEM analysis reveals their amorphous structure. At the same time, such NPs were not found on vertical electrodes, only a polymer film was deposited. To elucidate the possibility of NPs leaving the plasma in the direction of vertical electrodes, a model of NP retention in the near-electrode sheath of an RF capacitive discharge was elaborated. The model has shown that nanometer- and even micrometer-sized particles formed in the plasma cannot cross the near-electrode sheath and reach the electrode surface. For the plasma consisting of three charged components (positive ions, electrons, and NPs), an analytical model of ambipolar diffusion was developed. Applying this model, it has been shown that the ambipolar electric field can keep the micrometer-sized NPs in the plasma if their concentration is low. However, in the case of a high concentration of NPs, they can be retained with a diameter of no more than a few hundred nanometers due to a significant decrease in the ambipolar electric field. The calculation results are in agreement with our experimental data.
Collapse
Affiliation(s)
- Valeriy Lisovskiy
- School
of Physics and Technology, V.N. Karazin
Kharkiv National University, Kharkiv61022, Ukraine
| | - Alexey Minenkov
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface and Nanoanalytics, Johannes Kepler
University Linz, Linz4040, Austria
| | - Stanislav Dudin
- School
of Physics and Technology, V.N. Karazin
Kharkiv National University, Kharkiv61022, Ukraine
| | - Sergiy Bogatyrenko
- School
of Physics and Technology, V.N. Karazin
Kharkiv National University, Kharkiv61022, Ukraine
| | - Pavel Platonov
- School
of Physics and Technology, V.N. Karazin
Kharkiv National University, Kharkiv61022, Ukraine
| | - Vladimir Yegorenkov
- School
of Physics and Technology, V.N. Karazin
Kharkiv National University, Kharkiv61022, Ukraine
| |
Collapse
|
12
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
13
|
Zhang R, Zhang S, Yin Q, Jiang B, Wang Y, Du K, Yin Q. Polyaniline doped with copper phthalocyanine disulfonic acid and their unique thermoelectric performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Norrrahim MNF, Knight VF, Nurazzi NM, Jenol MA, Misenan MSM, Janudin N, Kasim NAM, Shukor MFA, Ilyas RA, Asyraf MRM, Naveen J. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors. Polymers (Basel) 2022; 14:polym14204461. [PMID: 36298039 PMCID: PMC9608972 DOI: 10.3390/polym14204461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Muhammad Faizan A. Shukor
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
15
|
A Biodegradable Polymer-Based Plastic Chip Electrode as a Current Collector in Supercapacitor Application. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, we report the performance of a biodegradable polymer-based Plastic chip Electrode (PCE) as a current collector in supercapacitor applications. Its production was evaluated using two redox materials (conducting polymers polyaniline and poly(3,4-ethylene dioxythiophene)) and a layered material, rGO. The conducting polymers were directly deposited over the Eco-friendly PCE (EPCE) using the galvanostatic method. The rGO was prepared in the conventional way and loaded over the EPCE using a binder. Both conducting polymers and rGO showed proper specific capacitance compared to previous studies with regular current collectors. Electrodes were found highly stable during experiments in high acidic medium. The supercapacitive performance was evaluated with cyclic voltammetry, charge–discharge measurements, and impedance spectroscopy. The supercapacitive materials were also characterized for their electrical and microscopic properties. Polyaniline and PEDOT were deposited over EPCEs showing >150 Fg−1 and >120 Fg−1 specific capacitance, respectively, at 0.5 Ag−1. rGO continued to show higher particular capacitance of >250 Fg−1 with excellent charge–discharge cyclic stability. The study concludes that EPCs can be used as promising electrodes for electrical energy storage applications.
Collapse
|
16
|
Kausar A. Nanocone—versatile nanofiller for cutting-edge polymeric nanocomposite. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
17
|
Kim J, Lee W, Kim H, Ryu DY, Ahn H, Chae B. In-depth probing of thermally-driven phase separation behavior of lamella-forming PS-b-PMMA films by infrared nanoscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121095. [PMID: 35279517 DOI: 10.1016/j.saa.2022.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
A non-invasive, image-based analytic method utilizing scattering-type scanning near-field optical microscopy (s-SNOM) is suggested to evaluate the phase separation behavior of lamella-forming polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. Taking advantage of the penetrability of the tip-enhanced IR signal into the films, the spatio-spectral maps of each component are constructed. Subsequently, the effect of a sole and combinatorial applications of the self-assembly procedures, such as solvent vapor annealing (SVA) and/or thermal annealing (TA), on the spatial distribution of PS or PMMA components is quantitatively assessed in terms of the areal portions of the PS domain, PMMA domain, and the mixed zone that is adjacent to the domain border. Additionally, by statistically comparing the local concentration profiles, the chemical contrast between the domains turns out to be dependent upon the annealing procedures (namely, SVA and SVA + TA). This technique can pave the way to an uncomplicated but precise investigation of the polymer nanostructure-based thin film devices whose performances are critically governed by the spatial arrangement of the chemical elements.
Collapse
Affiliation(s)
- Jiho Kim
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wooseop Lee
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeji Kim
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyungju Ahn
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Boknam Chae
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
18
|
Khan S, Alkhedher M, Raza R, Ahmad MA, Majid A, Din EMTE. Electrochemical Investigation of PANI:PPy/AC and PANI:PEDOT/AC Composites as Electrode Materials in Supercapacitors. Polymers (Basel) 2022; 14:polym14101976. [PMID: 35631859 PMCID: PMC9148101 DOI: 10.3390/polym14101976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
The electrochemical deposition of the composites polyaniline (PANI):polypyrrole (PPy)/activated carbon (AC) and polyaniline (PANI): 3, 4-polyethylenedioxythiophene (PEDOT)/AC films is carried out in this work. The electrochemical character of the fabricated samples is investigated via cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) using a three-electrode setup. The values of the specific capacitance of the composites PANI:PPy/AC and PANI:PEDOT/AC at a current density of 1 Ag−1 are evaluated as 586 Fg−1 and 611 Fg−1, respectively. The values of energy density are 40 Whkg−1 and 2094 Wkg−1, whereas power density is recorded as 44 Whkg−1 and 2160 Wkg−1 for respective composites PANI:PPy/AC and PANI:PEDOT/AC. Moreover, the respective composites appeared to retain cyclic stabilities of 92% and 90%. This study points to the potential of the prepared composites for application as electrodes in supercapacitors.
Collapse
Affiliation(s)
- Shahbaz Khan
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan;
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, Abu Dhabi 111188, United Arab Emirates;
| | - Rizwan Raza
- Clean Energy Research Lab (CERL), Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (R.R.); (M.A.A.)
| | - Muhammad Ashfaq Ahmad
- Clean Energy Research Lab (CERL), Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (R.R.); (M.A.A.)
| | - Abdul Majid
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan;
- Correspondence:
| | - ElSayed M. Tag El Din
- Electrical Engineering Department, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt;
| |
Collapse
|
19
|
Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02946-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Lehane RA, Gamero-Quijano A, Malijauskaite S, Holzinger A, Conroy M, Laffir F, Kumar A, Bangert U, McGourty K, Scanlon MD. Electrosynthesis of Biocompatible Free-Standing PEDOT Thin Films at a Polarized Liquid|Liquid Interface. J Am Chem Soc 2022; 144:4853-4862. [PMID: 35262332 PMCID: PMC8949726 DOI: 10.1021/jacs.1c12373] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Conducting polymers
(CPs) find applications in energy conversion
and storage, sensors, and biomedical technologies once processed into
thin films. Hydrophobic CPs, like poly(3,4-ethylenedioxythiophene)
(PEDOT), typically require surfactant additives, such as poly(styrenesulfonate)
(PSS), to aid their aqueous processability as thin films. However,
excess PSS diminishes CP electrochemical performance, biocompatibility,
and device stability. Here, we report the electrosynthesis of PEDOT
thin films at a polarized liquid|liquid interface, a method nonreliant
on conductive solid substrates that produces free-standing, additive-free,
biocompatible, easily transferrable, and scalable 2D PEDOT thin films
of any shape or size in a single step at ambient conditions. Electrochemical
control of thin film nucleation and growth at the polarized liquid|liquid
interface allows control over the morphology, transitioning from 2D
(flat on both sides with a thickness of <50 nm) to “Janus”
3D (with flat and rough sides, each showing distinct physical properties,
and a thickness of >850 nm) films. The PEDOT thin films were p-doped (approaching the theoretical limit), showed high
π–π conjugation, were processed directly as thin
films without insulating PSS and were thus highly conductive without
post-processing. This work demonstrates that interfacial electrosynthesis
directly produces PEDOT thin films with distinctive molecular architectures
inaccessible in bulk solution or at solid electrode–electrolyte
interfaces and emergent properties that facilitate technological advances.
In this regard, we demonstrate the PEDOT thin film’s superior
biocompatibility as scaffolds for cellular growth, opening immediate
applications in organic electrochemical transistor (OECT) devices
for monitoring cell behavior over extended time periods, bioscaffolds,
and medical devices, without needing physiologically unstable and
poorly biocompatible PSS.
Collapse
Affiliation(s)
- Rob A Lehane
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Alonso Gamero-Quijano
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Angelika Holzinger
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Michele Conroy
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Fathima Laffir
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Amit Kumar
- School of Mathematics and Physics, Queen's University Belfast (QUB), Belfast BT71 NN, UK
| | - Ursel Bangert
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Health Research Institute (HRI), University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Micheál D Scanlon
- Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland.,Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.,The Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin (TCD), Dublin 2 D02 PN40, Ireland
| |
Collapse
|
21
|
Zhang T, Huang H, Zhang W, Lu Z, Shen M, Liu T, Bai J, Yang Y, Zhang J. Free-standing hybrid film for separation of dye pollutant with self-cleaning ability under visible light. CHEMOSPHERE 2022; 291:132725. [PMID: 34718025 DOI: 10.1016/j.chemosphere.2021.132725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The development of low cost and environmental-friendly materials has long been an ambition for effective removal of dye pollutants in complex water environments. In this study, a free-standing separation film of bacterial cellulose reinforced/functionalized by graphitic phase carbon nitride is developed by a facile suction filtration strategy, of which the former is precoated by polypyrrole, and the latter is pre-doped by oxygen to endow the as-obtained film an enhanced photocatalytic performance and self-cleaning ability. The as-obtained film exhibits a high tensile stress of 51.8 ± 1.1 MPa, and a high resistance to cold, heat, acid and alkali. For typical dyes of methylene blue and rhodamine B, a high dye rejection rate of 99.9% at 138 L/m2•h•bar feed flux is obtained by the as-obtained film. Even at a salt concentration higher than 5%, it still maintained high dye removal rates and achieves effective separation of dye and salt. Simultaneously, a high dye photocatalytic degradation of the composite films rates up to 98% in only 90 min, and a high self-cleaning ability demonstrated by recovery of flux after light treatment in cyclic tests. The density functional theory calculation validates the beneficial effects of improved light response range and separated photogenerated electron/holes for the effective degradation of dyes by oxygen-doped carbon nitride coupled with one-dimensional polypyrrole chains. Overall, this study proposes a new direction for the separation of dye pollutants with a high visible-light self-cleaning capacity by structural tailoring of bacterial cellulose with carbon nitride.
Collapse
Affiliation(s)
- Tianmeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China.
| | - Haimeng Huang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China.
| | - Weiwei Zhang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China.
| | - Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China.
| | - Mingxia Shen
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China.
| | - Tao Liu
- N-Tech Environment Protection Science and Technology (ChangZhou) Co., Ltd., Changzhou, 213100, China.
| | - Jie Bai
- N-Tech Environment Protection Science and Technology (ChangZhou) Co., Ltd., Changzhou, 213100, China.
| | - Yan Yang
- Jiangsu Engineering Research Center on Utilization of Alternative Water Resources, Hohai University, Nanjing, 211100, China.
| | - Jianfeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China; Jiangsu Engineering Research Center on Utilization of Alternative Water Resources, Hohai University, Nanjing, 211100, China.
| |
Collapse
|
22
|
Sariyer S, Ghosh A, Dambasan SN, Halim EM, El Rhazi M, Perrot H, Sel O, Demir-Cakan R. Aqueous Multivalent Charge Storage Mechanism in Aromatic Diamine-Based Organic Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8508-8520. [PMID: 35119810 DOI: 10.1021/acsami.1c19607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rechargeable batteries employing aqueous electrolytes are more reliable and cost-effective as well as possess high ionic conductivity compared to the flammable organic electrolyte solutions. Among these types of batteries, aqueous batteries with multivalent ions attract more attention in terms of providing high energy density. Herein, electrochemical behavior of an organic electrode based on a highly aromatic polymer containing 2,3-diaminophenazine repeating unit, namely poly(ortho-phenylenediamine) (PoPD), is tested in two different multivalent ions (Zn2+ and Al3+) containing aqueous electrolytes, that is, in zinc sulfate and aluminum chloride solutions. PoPD is synthesized via electropolymerization, and its ion transport and storage mechanism are comprehensively investigated by structural and electrochemical analyses. The electrochemical quartz crystal microbalance, time-dependent Fourier transform infrared, and electrochemical impedance spectroscopy analyses as well as ex situ X-ray diffraction observations established that along with the Zn2+ or Al3+ ions, reversible proton insertion/extraction also takes place. Contrary to the most of the organic electrodes that requires the use of conductive carbon additives, the electrodeposited PoPD electrode is intrinsically electrically conductive enough, resulting in a binder and additive free electrode assembly. In addition, its discharge products do not dissolve in aqueous medium. As a whole, the resulting PoPD electrode delivers excellent rate performances with prolonged cycle life in which discharge capacities of ∼110 mAh g-1 in 0.25 M AlCl3 and ∼93 mAh g-1 in 1 M ZnSO4 aqueous electrolyte after 1000 cycles at a current density of 5C have been achieved.
Collapse
Affiliation(s)
- Selin Sariyer
- Department of Chemical Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Arpita Ghosh
- Laboratoire Interfaces et Systèmes Electrochimiques, LISE, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sevde Nazli Dambasan
- Department of Chemical Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - El Mahdi Halim
- Laboratoire Interfaces et Systèmes Electrochimiques, LISE, Sorbonne Université, CNRS, 75005 Paris, France
- Laboratory of Materials, Membranes and Environment - BP 146, Faculty of Sciences and Technology, University of Hassan II of Casablanca, 20650 Mohammedia, Morocco
| | - Mama El Rhazi
- Laboratory of Materials, Membranes and Environment - BP 146, Faculty of Sciences and Technology, University of Hassan II of Casablanca, 20650 Mohammedia, Morocco
| | - Hubert Perrot
- Laboratoire Interfaces et Systèmes Electrochimiques, LISE, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ozlem Sel
- Laboratoire Interfaces et Systèmes Electrochimiques, LISE, Sorbonne Université, CNRS, 75005 Paris, France
| | - Rezan Demir-Cakan
- Department of Chemical Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
23
|
Jeon B, Kidanemariam A, Noh J, Hyun C, Mun HJ, Park K, Jung SJ, Jeon Y, Yoo PJ, Park J, Jung HT, Shin TJ, Park J. Strong Bathochromic Shift of Conjugated Polymer Nanowires Assembled with a Liquid Crystalline Alkyl Benzoic Acid via a Film Dispersion Process. ACS OMEGA 2021; 6:34876-34888. [PMID: 34963971 PMCID: PMC8697608 DOI: 10.1021/acsomega.1c05556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
We present aqueous dispersions of conjugated polymer nanowires (CPNWs) with improved light absorption properties aimed at aqueous-based applications. We assembled films of a donor-acceptor-type conjugated polymer and liquid crystalline 4-n-octylbenzoic acid by removing a cosolvent of their mixture solutions, followed by annealing of the films, and then formed aqueous-dispersed CPNWs with an aspect ratio >1000 by dispersing the films under ultrasonication at a basic pH. X-ray and spectroscopy studies showed that the polymer and liquid crystal molecules form independent domains in film assemblies and highly organized layer structures in CPNWs. Our ordered molecular assemblies in films and aqueous dispersions of CPNWs open up a new route to fabricate nanowires of low-band-gap linear conjugated polymers with the absorption maximum at 794 nm remarkably red-shifted from 666 nm of CPNWs prepared by an emulsion process. Our results suggest the presence of semicrystalline polymorphs β1 and β2 phases in CPNWs due to long-range π-π stacking of conjugated backbones in compactly organized lamellar structures. The resulting delocalization with a reduced energy bang gap should be beneficial for enhancing charge transfer and energy-conversion efficiencies in aqueous-based applications such as photocatalysis.
Collapse
Affiliation(s)
- Byoung
Yun Jeon
- Department
of Intelligent Energy and Industry, School of Chemical Engineering
and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Alemayehu Kidanemariam
- Department
of Intelligent Energy and Industry, School of Chemical Engineering
and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Juran Noh
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Chohee Hyun
- UNIST
Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology
(UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Jung Mun
- UNIST
Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology
(UNIST), Ulsan 44919, Republic of Korea
| | - Kangho Park
- Department
of Chemical and Biomolecular Engineering (BK-21 Plus) & KAIST
Institute for NanoCentury, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung-Jin Jung
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Yejee Jeon
- Department
of Intelligent Energy and Industry, School of Chemical Engineering
and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Pil J. Yoo
- School
of
Chemical Engineering, SKKU Advanced Institute of nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - JaeHong Park
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Hee-Tae Jung
- Department
of Chemical and Biomolecular Engineering (BK-21 Plus) & KAIST
Institute for NanoCentury, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Joo Shin
- UNIST
Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology
(UNIST), Ulsan 44919, Republic of Korea
| | - Juhyun Park
- Department
of Intelligent Energy and Industry, School of Chemical Engineering
and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Mondal D, Roy S, Bardhan S, Roy J, Kanungo I, Basu R, Das S. Recent advances in piezocatalytic polymer nanocomposites for wastewater remediation. Dalton Trans 2021; 51:451-462. [PMID: 34889319 DOI: 10.1039/d1dt02653d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among several forms of water pollutants, common pesticides, herbicides, organic dyes and heavy metals present serious and persistent threats to human health due to their severe toxicity. Recently, piezocatalysis based removal of pollutants has become a promising field of research to combat such pollutions by virtue of the piezoelectric effect. In reality, piezoelectric materials can produce electron-hole separation upon external vibration, which greatly enhances the production of various reactive oxygen species (ROS) and further increases the pollutant degradation rate. Piezocatalysis does not alter the quality or composition of water, like several other conventional techniques (adsorption and photocatalysis), which makes this technique non-invasive. The simplicity and tremendously high efficacy of piezocatalysis have attracted researchers worldwide and thus various functional materials are employed for piezocatalytic wastewater remediation. In this frontier, we highlight and demonstrate recent developments on polymer based piezocatalytic nanocomposites to treat industrial wastewater in a facile manner that holds strong potential to be translated into a clean and green technology.
Collapse
Affiliation(s)
- Dhananjoy Mondal
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Shubham Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Ishita Kanungo
- Department of Physics, Jadavpur University, Kolkata-700032, India. .,Department of Physics, Jogamaya Devi College, Kolkata-700026, India
| | - Ruma Basu
- Department of Physics, Jogamaya Devi College, Kolkata-700026, India
| | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
25
|
Cuttaz EA, Chapman CAR, Goding JA, Vallejo-Giraldo C, Syed O, Green RA. Flexible Nanowire Conductive Elastomers for Applications in Fully Polymeric Bioelectronic Devices . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5872-5875. [PMID: 34892455 DOI: 10.1109/embc46164.2021.9629903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, flexible polymer-based bioelectronics are a promising approach to minimize the chronic inflammatory reactions associated with metallic devices, impairing long-term device reliability and functionality. This work demonstrates the fabrication of conductive elastomers (CEs) consisting of chemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires embedded within a polyurethane (PU) elastomeric matrix, resulting in soft and flexible, fully polymeric electrode materials. Increasing PEDOT nanowire loadings resulted in an improvement in electrochemical properties and conductivity, an increased Young's modulus and reduced strain at failure. Nanowire CEs were also found to have significantly improved electrochemical performance compared to one of the standard electrode materials, platinum (Pt). Indirect in vitro cytocompatibility test was carried out to investigate the effect of leachable substances from the CE on primary rodent cells. Nanowire CEs provide a promising alternative to metals for the fabrication of soft bioelectronics.
Collapse
|
26
|
Ozkan SZ, Karpacheva GP, Efimov MN, Vasilev AA, Muratov DG, Petrov VA, Chernavskii PA, Pankina GV. One-step synthesis, characterization and properties of novel hybrid electromagnetic nanomaterials based on polydiphenylamine and Co-Fe particles in the absence and presence of single-walled carbon nanotubes. RSC Adv 2021; 11:24772-24786. [PMID: 35481017 PMCID: PMC9036972 DOI: 10.1039/d1ra03114g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
A one-step preparation method for hybrid electromagnetic nanomaterials based on polydiphenylamine (PDPA) and bimetallic Co-Fe particles in the absence and presence of single-walled carbon nanotubes (SWCNT) was proposed. During IR heating of PDPA in the presence of Co(ii) and Fe(iii) salts in an inert atmosphere at T = 450-600 °C, the polycondensation of diphenylamine (DPA) oligomers and dehydrogenation of phenyleneamine units of the polymer with the formation of C[double bond, length as m-dash]N bonds and reduction of metals by evolved hydrogen with the formation of bimetallic Co-Fe particles dispersed in a polymer matrix occur simultaneously. When carbon nanotubes are introduced into the reaction system, a nanocomposite material is formed, in which bimetallic Co-Fe particles immobilized on SWCNT are distributed in the matrix of the polymer. According to XRD data, reflection peaks of bimetallic Co-Fe particles at diffraction scattering angles 2θ = 69.04° and 106.5° correspond to a solid solution based on the fcc-Co crystal lattice. According to SEM and TEM data, a mixture of particles with sizes of 8-30 nm and 400-800 nm (Co-Fe/PDPA) and 23-50 nm and 400-1100 nm (Co-Fe/SWCNT/PDPA) is formed in the nanocomposites. The obtained multifunctional Co-Fe/PDPA and Co-Fe/SWCNT/PDPA nanomaterials demonstrate good thermal, electrical and magnetic properties. The saturation magnetization of the nanomaterials is M S = 14.99-31.32 emu g-1 (Co-Fe/PDPA) and M S = 29.48-48.84 emu g-1 (Co-Fe/SWCNT/PDPA). The electrical conductivity of the nanomaterials reaches 3.5 × 10-3 S cm-1 (Co-Fe/PDPA) and 1.3 S cm-1 (Co-Fe/SWCNT/PDPA). In an inert medium, at 1000 °C the residue is 71-77%.
Collapse
Affiliation(s)
- Sveta Zhiraslanovna Ozkan
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Galina Petrovna Karpacheva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Mikhail Nikolaevich Efimov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Andrey Aleksandrovich Vasilev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Dmitriy Gennad'evich Muratov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Valeriy Alekseevich Petrov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
| | - Petr Aleksandrovich Chernavskii
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
- Department of Chemistry, Lomonosov Moscow State University 1-3 Leninskie Gory Moscow 119991 Russia
| | - Galina Viktorovna Pankina
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 29 Leninsky Prospect Moscow 119991 Russia
- Department of Chemistry, Lomonosov Moscow State University 1-3 Leninskie Gory Moscow 119991 Russia
| |
Collapse
|
27
|
Yang J, Zeng Q, Wang L. Electrochemical Polymerization Induced Chirality Fixation of Crystalline Pillararene-Based Polymer and Its Application in Interfacial Chiral Sensing. Anal Chem 2021; 93:9965-9969. [PMID: 34251808 DOI: 10.1021/acs.analchem.1c01941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new strategy has been developed for the direct chirality fixation, which is induced by electrochemical polymerization, of macrocyclic hosts pillar[5]arene. Taking advantage of electrochemical polymerization, thiophene-modified pillar[5]arene monomers (Th-P[5]A) have been regularly arranged under the action of an electric field to form chiral nanofiber-like crystalline pillar[5]arene-based polymers (poly-Th-P[5]A), showing a significant circular dichroism (CD) signal. With the active photochemical properties, poly-Th-P[5]A is first used as a photoelectrochemical (PEC) chiral sensor for the identification and determination of l- and d-ascorbic acid (l-AA, d-AA) without adding any extra photoactive probes. Importantly, the chiral recognition between poly-Th-P[5]A and l-AA also triggers a polarity conversion for the photocurrent of the polymer, and it greatly results in a broad chiral detection range for l-AA, crossing 6 orders of magnitude. This work provides a promotional strategy for building a PEC chiral recognition platform based on pillararenes.
Collapse
Affiliation(s)
- Jie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
28
|
Luo H, Kaneti YV, Ai Y, Wu Y, Wei F, Fu J, Cheng J, Jing C, Yuliarto B, Eguchi M, Na J, Yamauchi Y, Liu S. Nanoarchitectured Porous Conducting Polymers: From Controlled Synthesis to Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007318. [PMID: 34085735 DOI: 10.1002/adma.202007318] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Conductive polymers (CPs) integrate the inherent characteristics of conventional polymers and the unique electrical properties of metals. They have aroused tremendous interest over the last decade owing to their high conductivity, robust and flexible properties, facile fabrication, and cost-effectiveness. Compared to bulk CPs, porous CPs with well-defined nano- or microstructures possess open porous architectures, high specific surface areas, more exposed reactive sites, and remarkably enhanced activities. These attractive features have led to their applications in sensors, energy storage and conversion devices, biomedical devices, and so on. In this review article, the different strategies for synthesizing porous CPs, including template-free and template-based methods, are summarized, and the importance of tuning the morphology and pore structure of porous CPs to optimize their functional performance is highlighted. Moreover, their representative applications (energy storage devices, sensors, biomedical devices, etc.) are also discussed. The review is concluded by discussing the current challenges and future development trend in this field.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yusuf Valentino Kaneti
- JST-ERATO Yamauchi Materials Space-Tectonics and World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Engineering Physics Department, Institute of Technology Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Yan Ai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450002, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Brian Yuliarto
- Engineering Physics Department, Institute of Technology Bandung, Bandung, 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics and World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
29
|
Electrospun PEO/PEDOT:PSS Nanofibers for Wearable Physiological Flex Sensors. SENSORS 2021; 21:s21124110. [PMID: 34203743 PMCID: PMC8232244 DOI: 10.3390/s21124110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Flexible sensors are fundamental devices for human body monitoring. The mechanical strain and physiological parameters coupled sensing have attracted increasing interest in this field. However, integration of different sensors in one platform usually involves complex fabrication process-flows. Simplification, even if essential, remains a challenge. Here, we investigate a piezoresistive and electrochemical active electrospun nanofibers (NFs) mat as the sensitive element of the wearable physiological flex sensing platform. The use of one material sensitive to the two kinds of stimuli reduces the process-flow to two steps. We demonstrate that the final NFs pH-Flex Sensor can be used to monitor the deformation of a human body joint as well as the pH of the skin. A unique approach has been selected for pH sensing, based on Electrochemical Impedance Spectroscopy (EIS). A linear dependence of the both the double layer capacitance and charge transfer re-sistance with the pH value was obtained by EIS, as well as a linear trend of the electrical resistance with the bending deformation. Gauge factors values calculated after the bending test were 45.84 in traction and 208.55 in compression mode, reflecting the extraordinary piezoresistive behavior of our nanostructured NFs.
Collapse
|
30
|
Bera S, Kumari A, Ghosh S, Basu RN. Assemble of Bi-doped TiO 2 onto 2D MoS 2: an efficient p-n heterojunction for photocatalytic H 2 generation under visible light. NANOTECHNOLOGY 2021; 32:195402. [PMID: 33513599 DOI: 10.1088/1361-6528/abe152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fabrication of noble-metal-free, efficient and stable hybrid photocatalyst is essential to address the rapidly growing energy crisis and environmental pollution. Here, MoS2 has been used as the co-catalyst on Bi-doped TiO2 to form a novel heterostructure to increase the utilization of the photogenerated charge carriers for improving photocatalytic H2 evolution activity through water reduction. Significantly increased photocatalytic H2 generation has been achieved on the optimized MoS2/Bi-TiO2 nanocomposite (∼512 μmol g-1) after 4 h of visible light illumination, which is nine times higher than that of the pristine TiO2 (∼57 μmol g-1). The measurements of photocurrent, charge transfer resistance and photo-stability of MoS2/Bi-TiO2 photoanode imply that charge separation efficiency has been improved in comparison to the pure MoS2 and TiO2 photoanodes. Further, the Mott-Schottky study confirmed that a p-n heterojunction has been formed between n-type MoS2 and p-type Bi-doped TiO2, which provides a potential gradient to increase charge separation and transfer efficiency. On the basis of these experimental results, this enhanced photocatalytic activity of MoS2/Bi-TiO2 heterostructures could be ascribed to the significant visible light absorption and the efficient charge carrier separation. Thus, this work demonstrates the effect of p-n junction for achieving high H2 evolution activity and photoelectrochemical water oxidation under visible light illumination.
Collapse
Affiliation(s)
- Susmita Bera
- Energy Materials & Devices Division, (Formerly Fuel Cell & Battery Division) CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata-700032, India
| | - Ankita Kumari
- Energy Materials & Devices Division, (Formerly Fuel Cell & Battery Division) CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata-700032, India
| | - Srabanti Ghosh
- Energy Materials & Devices Division, (Formerly Fuel Cell & Battery Division) CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata-700032, India
| | - Rajendra N Basu
- Energy Materials & Devices Division, (Formerly Fuel Cell & Battery Division) CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
31
|
|
32
|
Kim W, Lee HJ, Yoo SJ, Kim Trinh C, Ahmad Z, Lee JS. Preparation of a polymer nanocomposite via the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS 2 for electrochemical energy storage. NANOSCALE 2021; 13:5868-5874. [PMID: 33724290 DOI: 10.1039/d0nr08941a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We prepared a poly(pyrrole : biphenyldisulfonic acid : pyrrole (Py:BPDSA:Py)) nanocomposite of molybdenum disulfide (MoS2), P(Py:BPDSA:Py)-MoS2, with high crystallinity. The composite is synthesized by oxidative polymerization of Py:BPDSA:Py as a two-monomer-connected precursor (TMCP) linked by ionic bonding on a molybdenum disulfide (MoS2) monolayer. The chemical, structural and morphological characterization of this composite is confirmed by Raman spectroscopy, FT-IR, X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), and scanning electron microscopy (SEM). The crystal structure is analysed by X-ray diffraction (XRD) and high-voltage electron microscopy (HVEM), which shows a face-centered cubic (FCC) crystal structure for the composite. Nitrogen adsorption-desorption isotherms show an improved specific surface area (91.3 m2 g-1). The electrochemical properties of the composite with a unique crystal structure and a large specific surface area are analysed through cyclic voltammetry (CV), which shows a specific capacitance of 681 F g-1 demonstrating that the composite can be used as an efficient electrode active material for electrochemical energy storage systems.
Collapse
Affiliation(s)
- Wonbin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea.
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ghosh S, Amariei G, Mosquera MEG, Rosal R. Conjugated polymer nanostructures displaying highly photoactivated antimicrobial and antibiofilm functionalities. J Mater Chem B 2021; 9:4390-4399. [PMID: 34018538 DOI: 10.1039/d1tb00469g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work reports the use of conjugated polymer nanostructures (CPNs) as photoactivated antimicrobial compounds against Gram-positive and Gram-negative microorganisms. Two representative CPNs of polythiophene (PEDOT) and polyaniline (PANI) were prepared as nanofibres with an average diameter of 40 nm and length in the micrometer range. Both CPNs exhibited strong antimicrobial activity under UVA irradiation with the same fluence rate as the UVA component of the solar spectrum. The effect was tested using the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The reduction of colony forming units (CFUs) reached >6 log for PEDOT concentrations as low as 33 ng mL-1. For PEDOT nanofibers, a complete inhibition of S. aureus and E. coli growth was reached at 883 ng mL-1 and 333 ng mL-1 respectively. The photoactivation effect of PANI nanofibres on S. aureus and E. coli was also high, with a CFU reduction of about 7 log and 4 log respectively for an exposure concentration of 33 ng mL-1. The antimicrobial activity was only high under light irradiation and was almost negligible for bulk PEDOT and PANI. The effect of polymeric nanofibers could be attributed to the photoinduced generation of reactive oxygen species, which may induce cell membrane damage, eventually leading to bacterial impairment and inhibition of their biofilm forming capacity. CPN PEDOT and PANI coatings were able to keep surfaces free of bacterial attachment and growth even after 20 h of previous contact with exponentially growing cultures in the dark. PEDOT and PANI CPNs demonstrated good cytocompatibility with human fibroblasts and the absence of hemolytic activity. The materials demonstrated advantages in terms of broad antibacterial spectrum, biofilm inhibition, and the absence of acute toxicity for biomedical applications.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. and Energy Materials & Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata-700032, India.
| | - Georgiana Amariei
- Department of Chemical Engineering, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Marta E G Mosquera
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
| | - Roberto Rosal
- Department of Chemical Engineering, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
35
|
Ghosh S, Das S, Mosquera MEG. Conducting Polymer-Based Nanohybrids for Fuel Cell Application. Polymers (Basel) 2020; 12:E2993. [PMID: 33333881 PMCID: PMC7765313 DOI: 10.3390/polym12122993] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Carbon materials such as carbon graphitic structures, carbon nanotubes, and graphene nanosheets are extensively used as supports for electrocatalysts in fuel cells. Alternatively, conducting polymers displayed ultrahigh electrical conductivity and high chemical stability havegenerated an intense research interest as catalysts support for polymer electrolyte membrane fuel cells (PEMFCs) as well as microbial fuel cells (MFCs). Moreover, metal or metal oxides catalysts can be immobilized on the pure polymer or the functionalized polymer surface to generate conducting polymer-based nanohybrids (CPNHs) with improved catalytic performance and stability. Metal oxides generally have large surface area and/or porous structures and showed unique synergistic effects with CPs. Therefore, a stable, environmentally friendly bio/electro-catalyst can be obtained with CPNHs along with better catalytic activity and enhanced electron-transfer rate. The mass activity of Pd/polypyrrole (PPy) CPNHs as an anode material for ethanol oxidation is 7.5 and 78 times higher than that of commercial Pd/C and bulk Pd/PPy. The Pd rich multimetallic alloys incorporated on PPy nanofibers exhibited an excellent electrocatalytic activity which is approximately 5.5 times higher than monometallic counter parts. Similarly, binary and ternary Pt-rich electrocatalysts demonstrated superior catalytic activity for the methanol oxidation, and the catalytic activity of Pt24Pd26Au50/PPy significantly improved up to 12.5 A per mg Pt, which is approximately15 times higher than commercial Pt/C (0.85 A per mg Pt). The recent progress on CPNH materials as anode/cathode and membranes for fuel cell has been systematically reviewed, with detailed understandings into the characteristics, modifications, and performances of the electrode materials.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Universidad de Alcala (UAH), 28805 Alcalá de Henares, Madrid, Spain;
| | - Suparna Das
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA;
| | - Marta E. G. Mosquera
- Department of Organic and Inorganic Chemistry, Universidad de Alcala (UAH), 28805 Alcalá de Henares, Madrid, Spain;
| |
Collapse
|
36
|
Alshehri SA, Al-Yasari A, Marken F, Fielden J. Covalently Linked Polyoxometalate–Polypyrrole Hybrids: Electropolymer Materials with Dual-Mode Enhanced Capacitive Energy Storage. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah A. Alshehri
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- School of Chemistry, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Ahmed Al-Yasari
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
- Department of Chemistry, Faculty of Science, University of Kerbala, Kerbala 56001, Iraq
| | - Frank Marken
- School of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - John Fielden
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
37
|
De Alvarenga G, Hryniewicz BM, Jasper I, Silva RJ, Klobukoski V, Costa FS, Cervantes TN, Amaral CD, Schneider JT, Bach-Toledo L, Peralta-Zamora P, Valerio TL, Soares F, Silva BJ, Vidotti M. Recent trends of micro and nanostructured conducting polymers in health and environmental applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Kumar R, Travas-Sejdic J, Padhye LP. Conducting polymers-based photocatalysis for treatment of organic contaminants in water. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Shen Y, Qin Z, Li T, Zeng F, Chen Y, Liu N. Boosting the supercapacitor performance of polyaniline nanofibers through sulfonic acid assisted oligomer assembly during seeding polymerization process. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Khokhar D, Jadoun S, Arif R, Jabin S. Functionalization of conducting polymers and their applications in optoelectronics. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1819312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Deepali Khokhar
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Sapana Jadoun
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Rizwan Arif
- Department of Chemistry, Lingaya’s Vidyapeeth, Faridabad, India
| | - Shagufta Jabin
- Department of Chemistry, Manav Rachna International Institute of Research & Studies, Faridabad, India
| |
Collapse
|
41
|
Du J, Li Y, Zhong Q, Yang J, Xiao J, Chen D, Wang F, Luo Y, Chen K, Li W. Boosting the Utilization and Electrochemical Performances of Polyaniline by Forming a Binder-Free Nanoscale Coaxially Coated Polyaniline/Carbon Nanotube/Carbon Fiber Paper Hierarchical 3D Microstructure Composite as a Supercapacitor Electrode. ACS OMEGA 2020; 5:22119-22130. [PMID: 32923770 PMCID: PMC7482095 DOI: 10.1021/acsomega.0c02151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/20/2020] [Indexed: 05/16/2023]
Abstract
Nanoscale polyaniline (PANI) is formed on a hierarchical 3D microstructure carbon nanotubes (CNTs)/carbon fiber paper (CFP) substrate via a one-step electrochemical polymerization method. The chemical and structural properties of the binder-free PANI/CNTs/CFP electrode are characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The specific capacitance of PANI/CNTs/CFP tested in a symmetric two-electrode system reaches 731.6 mF·cm-2 (1354.7 F·g-1) at a current density of 1 mA·cm-2 (1.8 A·g-1). The symmetric supercapacitor device demonstrates excellent cycling performance up to 10,000 cycles with a capacitance retention of 81.4% at a current density of 1 mA·cm-2 (1.8 A·g-1). The results demonstrate that the binder-free CNTs/CFP composite is a strong backbone for depositing ultrathin PANI layers at a high mass loading. The hierarchical 3D microstructure PANI/CNTs/CFP provides enough space and transporting channels to form an efficient electrode-electrolyte interface for the supercapacitance reaction. The formed nanoscale PANI film coaxially coated on the sidewalls of CNTs enables efficient charge transfer and a shortened diffusion length. Hence, the utilization efficiency and electrochemical performances of PANI are significantly improved. The rational design strategy of a CNT-based binder-free hierarchical 3D microstructure can be used in preparing various advanced energy-storage electrodes for electrochemical energy-storage and conversion systems.
Collapse
Affiliation(s)
- Juan Du
- School
of Metallurgy and Environment, Central South
University, Changsha, Hunan Province 410083, P. R. China
- Zhengzhou
Non-Ferrous Metals Research Institute Co. Ltd of CHALCO, Zhengzhou, Henan Province 450041, P. R. China
| | - Yahao Li
- State
Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials
and Applications for Batteries of Zhejiang Province, and Department
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, P. R. China
| | - Qifan Zhong
- School
of Metallurgy and Environment, Central South
University, Changsha, Hunan Province 410083, P. R. China
| | - Jianhong Yang
- School
of Metallurgy and Environment, Central South
University, Changsha, Hunan Province 410083, P. R. China
- School
of Material Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu Province, P. R. China
| | - Jin Xiao
- School
of Metallurgy and Environment, Central South
University, Changsha, Hunan Province 410083, P. R. China
- National
Engineering Laboratory for Efficient Utilization of Refractory Nonferrous
Metals Resources, Central South University, Changsha, Hunan Province 410083, P. R. China
| | - De Chen
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, Trondheim 7491, Norway
| | - Fangping Wang
- Zhengzhou
Non-Ferrous Metals Research Institute Co. Ltd of CHALCO, Zhengzhou, Henan Province 450041, P. R. China
| | - Yingtao Luo
- Zhengzhou
Non-Ferrous Metals Research Institute Co. Ltd of CHALCO, Zhengzhou, Henan Province 450041, P. R. China
| | - Kaibin Chen
- Zhengzhou
Non-Ferrous Metals Research Institute Co. Ltd of CHALCO, Zhengzhou, Henan Province 450041, P. R. China
| | - Wangxing Li
- School
of Metallurgy and Environment, Central South
University, Changsha, Hunan Province 410083, P. R. China
| |
Collapse
|
42
|
Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002806. [PMID: 32761793 DOI: 10.1002/smll.202002806] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Indexed: 05/13/2023]
Abstract
The development of pseudocapacitive materials for energy-oriented applications has stimulated considerable interest in recent years due to their high energy-storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery-like to the pseudocapacitive-like behavior. As a result, it becomes challenging to distinguish "pseudocapacitive" and "battery" materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery-type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid-state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state-of-the-art progress in the engineering of active materials is summarized, which will guide for the development of real-pseudocapacitive energy storage systems.
Collapse
Affiliation(s)
- Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Hong Duc Pham
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Ashok Kumar Nanjundan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joseph F S Fernando
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu, Jammu & Kashmir, 181221, India
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Young-Kyu Han
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Deepak P Dubal
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| |
Collapse
|
43
|
Kaneda C, Tanaka K, Atobe M. Electrochemical Synthesis of Porous Polypyrrole Materials Using Polyacrylonitrile Monolith Template. KAGAKU KOGAKU RONBUN 2020. [DOI: 10.1252/kakoronbunshu.46.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chinami Kaneda
- Graduate School of Science and Engineering, Yokohama National University
| | - Kenta Tanaka
- Graduate School of Science and Engineering, Yokohama National University
| | - Mahito Atobe
- Graduate School of Science and Engineering, Yokohama National University
| |
Collapse
|
44
|
Djara R, Holade Y, Merzouki A, Lacour MA, Masquelez N, Flaud V, Cot D, Rebiere B, van der Lee A, Cambedouzou J, Huguet P, Tingry S, Cornu D. Nanostructured Carbon-Nitrogen-Sulfur-Nickel Networks Derived From Polyaniline as Bifunctional Catalysts for Water Splitting. Front Chem 2020; 8:385. [PMID: 32509726 PMCID: PMC7251167 DOI: 10.3389/fchem.2020.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
The development of reliable production routes for sustainable hydrogen (H2), which is an essential feedstock for industrial processes and energy carrier for fuel cells, is needed. It appears to be an unavoidable alternative to significantly reduce the dependence on conventional energy sources based on fossil fuels without increasing the atmospheric CO2 levels. Among the different power-to-X scenarios to access high purity H2, the electrochemical approach based on electrolysis looks to be a promising sustainable solution at both the small and large industrial scales. However, the practical realization of this important opportunity faces several challenges, including the efficient design of cost-effective catalytic materials to be used as a cathode with improved intrinsic and durable activity. In this contribution, we report the design and development of efficient nanostructured catalysts for the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in aqueous media, whereby noble metal-free elements are embedded in a matrix of a conducting polymer, polyaniline (PANI). To increase the electrical conductivity and further the electrocatalytic ability toward HER of the chemically polymerized PANI in the presence of nickel (II) salt (nitrate), the PANI-based materials have first been stabilized at a mild temperature of 250-350°C in air and then carbonized at 800-1,000°C under nitrogen gas to convert the chemical species into nitrogen, sulfur, nickel, and carbon nanostructured networks (CNNs). Different physicochemical (TGA-DSC, Raman spectroscopy, XRD, SEM, EDX, ICP, CHNS, BET, and XPS) and electrochemical (voltammetry and electrochemical impedance spectrometry) methods have been integrated to characterize the as-synthesized CNNs materials and interrogate the relationship of material-to-performance. It has been found that those synthesis conditions allow for the substantial increase of the electrocatalytic performance toward HER and OER in alkaline media in terms of the onset potential and charge transfer resistance and overpotential at the specific activity of 10 milliamps per square centimeter, thus ranking the present materials among the most efficient noble metal-free catalysts and making them possible candidates for integration in practical low-energy consumption alkaline electrolyzers.
Collapse
Affiliation(s)
- Razik Djara
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Université Ferhat Abbas, Sétif, Algeria.,Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Yaovi Holade
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Abdelhafid Merzouki
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Université Ferhat Abbas, Sétif, Algeria
| | | | - Nathalie Masquelez
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Valerie Flaud
- Institut Charles Gerhardt, ICGM UMR 5253, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Didier Cot
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Bertrand Rebiere
- Institut Charles Gerhardt, ICGM UMR 5253, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Arie van der Lee
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Patrice Huguet
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Sophie Tingry
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
45
|
Synthesis and Characterization of Hollow-Sphered Poly(N-methyaniline) for Enhanced Electrical Conductivity Based on the Anionic Surfactant Templates and Doping. Polymers (Basel) 2020; 12:polym12051023. [PMID: 32369965 PMCID: PMC7284618 DOI: 10.3390/polym12051023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/17/2022] Open
Abstract
Poly(N-methylaniline) (PNMA) is a polyaniline derivative with a methyl substituent on the nitrogen atom. PNMA is of interest owing to its higher solubility in organic solvents when compared to the unsubstituted polyaniline. However, the electrical conductivity of polyaniline derivatives suffers from chemical substitution. PNMA was synthesized via emulsion polymerization using three different anionic surfactants, namely sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and dioctyl sodium sulfosuccinate (AOT). The effects of surfactant structures and concentrations on electrical conductivity, doping level, crystallinity, morphology, and thermal stability were investigated. The re-doping step using perchloric acid (HClO4) as a dopant was sequentially proceeded to enhance electrical conductivity. PNMA synthesized in SDBS at five times its critical micelle concentration (CMC) demonstrated the highest electrical conductivity, doping level, and thermal stability among all surfactants at identical concentrations. Scanning electron microscopy (SEM) images revealed that the PNMA particle shapes and sizes critically depended on the surfactant types and concentrations, and the doping mole ratios in the re-doping step. The highest electrical conductivity of 109.84 ± 20.44 S cm−1 and a doping level of 52.45% were attained at the doping mole ratio of 50:1.
Collapse
|
46
|
Ma D, Li J, Liu A, Chen C. Carbon Gels-Modified TiO 2: Promising Materials for Photocatalysis Applications. MATERIALS 2020; 13:ma13071734. [PMID: 32276332 PMCID: PMC7178632 DOI: 10.3390/ma13071734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022]
Abstract
Carbon gels are a kind of porous organic polymer, which play pivotal roles in electrode, supercapacitor, hydrogen storage, and catalysis. Carbon gels are commonly prepared by the condensation of resorcinol and formaldehyde. The as-prepared polymers are further aged and sintered at a high temperature in an inert atmosphere to form cross-linked and intertwined porous structures. Owing to its large specific area and narrow pore size distribution, this kind of material is very appropriate for mass transfer, substrate absorption, and product desorption from the pores. In recent years, carbon gels have been discovered to function as effective hybrid materials with TiO2 for photocatalytic applications. They could act as efficient deep-traps for photo-induced holes, which decreases the recombination probability of photo-induced carriers and lengthens their lifetime. In this mini-review, we will discuss the state-of-the-art paragon examples of carbon gels/TiO2 composite materials applied in photo(electro)catalysis. The major challenges and gaps of its application in this field will also be emphasized.
Collapse
Affiliation(s)
- Dongge Ma
- School of Science, Beijing Technology and Business University, Beijing 100048, China;
- Correspondence: ; Tel.: +86-010-68985573
| | - Jundan Li
- School of Science, Beijing Technology and Business University, Beijing 100048, China;
| | - Anan Liu
- Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, China;
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
47
|
Simari C, Enotiadis A, Lo Vecchio C, Baglio V, Coppola L, Nicotera I. Advances in hybrid composite membranes engineering for high-performance direct methanol fuel cells by alignment of 2D nanostructures and a dual-layer approach. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Maity N, Dawn A. Conducting Polymer Grafting: Recent and Key Developments. Polymers (Basel) 2020; 12:E709. [PMID: 32210062 PMCID: PMC7182814 DOI: 10.3390/polym12030709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of conductive polyacetylene, conductive electroactive polymers are at the focal point of technology generation and biocommunication materials. The reasons why this research never stops growing, are twofold: first, the demands from the advanced technology towards more sophistication, precision, durability, processability and cost-effectiveness; and second, the shaping of conducting polymer research in accordance with the above demand. One of the major challenges in conducting polymer research is addressing the processability issue without sacrificing the electroactive properties. Therefore, new synthetic designs and use of post-modification techniques become crucial than ever. This quest is not only advancing the field but also giving birth of new hybrid materials integrating merits of multiple functional motifs. The present review article is an attempt to discuss the recent progress in conducting polymer grafting, which is not entirely new, but relatively lesser developed area for this class of polymers to fine-tune their physicochemical properties. Apart from conventional covalent grafting techniques, non-covalent approach, which is relatively new but has worth creation potential, will also be discussed. The aim is to bring together novel molecular designs and strategies to stimulate the existing conducting polymer synthesis methodologies in order to enrich its fascinating chemistry dedicated toward real-life applications.
Collapse
Affiliation(s)
- Nabasmita Maity
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Arnab Dawn
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-514, USA
| |
Collapse
|
49
|
Thakur A, Kumar P, Kaur D, Devunuri N, Sinha RK, Devi P. TiO 2 nanofibres decorated with green-synthesized P Au/Ag@CQDs for the efficient photocatalytic degradation of organic dyes and pharmaceutical drugs. RSC Adv 2020; 10:8941-8948. [PMID: 35496552 PMCID: PMC9050055 DOI: 10.1039/c9ra10804a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
Organic pollutants such as dyes and pharmaceutical drugs have become an environmental menace, particularly in water bodies owing to their unregulated discharge. It is thus required to develop an economically viable and environment-friendly approach for their degradation in water bodies. In this study, for the first time, we report green route-synthesized plasmonic nanostructures (PM-CQDs (where M: Au and Ag)) decorated onto TiO2 nanofibers for the treatment of toxic dye- and pharmaceutical drug-based wastewater. PM-CQDs are efficaciously synthesized using carbon quantum dots (CQDs) as the sole reducing and capping agent, wherein CQDs are derived via a green synthesis approach from Citrus limetta waste. The characteristic electron-donating property of CQDs played a key role in the reduction of Au3+ to Au0 and Ag+ to Ag0 under visible light irradiation to obtain PAu-CQDs and PAg-CQDs, respectively. Thus, the obtained CQDs, PAu-CQDs, and PAg-CQDs are loaded onto TiO2 nanofibers to obtain a PM-CQD/TiO2 nanocomposite (NC), and are further probed via transmission electron microscopy, scanning electron microscopy and UV-visible spectrophotometry. The degradation of organic pollutants and pharmaceutical drugs using methylene blue and erythromycin as model pollutants is mapped with UV-vis and NMR spectroscopy. The results demonstrate the complete MB dye degradation in 20 minutes with 1 mg mL-1 of PAu-CQD/TiO2 NC, which otherwise is 30 minutes for PAg@CQD/TiO2 dose under visible light irradiation. Similarly, the pharmaceutical drug was found to degrade in 150 minutes with PAu-CQD/TiO2 photocatalysts. These findings reveal the enhanced photocatalytic performance of the green-synthesized Au decorated with TiO2 nanofibers and are attributed to the boosted SPR effect and aqueous-phase stability of Au nanostructures. This study opens a new domain of utilizing waste-derived and green-synthesized plasmonic nanostructures for the degradation of toxic/hazardous dyes and pharmaceutical pollutants in water.
Collapse
Affiliation(s)
- Anupma Thakur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science Kolkata-700030 India
| | - Devinder Kaur
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology & Research Guntur Andhra Pradesh - 522213 India
| | - R K Sinha
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Pooja Devi
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| |
Collapse
|
50
|
Griffith MJ, Holmes NP, Elkington DC, Cottam S, Stamenkovic J, Kilcoyne ALD, Andersen TR. Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. NANOTECHNOLOGY 2020; 31:092002. [PMID: 31726444 DOI: 10.1088/1361-6528/ab57d0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Printed electronics is simultaneously one of the most intensely studied emerging research areas in science and technology and one of the fastest growing commercial markets in the world today. For the past decade the potential for organic electronic (OE) materials to revolutionize this printed electronics space has been widely promoted. Such conviction in the potential of these carbon-based semiconducting materials arises from their ability to be dissolved in solution, and thus the exciting possibility of simply printing a range of multifunctional devices onto flexible substrates at high speeds for very low cost using standard roll-to-roll printing techniques. However, the transition from promising laboratory innovations to large scale prototypes requires precise control of nanoscale material and device structure across large areas during printing fabrication. Maintaining this nanoscale material control during printing presents a significant new challenge that demands the coupling of OE materials and devices with clever nanoscience fabrication approaches that are adapted to the limited thermodynamic levers available. In this review we present an update on the strategies and capabilities that are required in order to manipulate the nanoscale structure of large area printed organic photovoltaic (OPV), transistor and bioelectronics devices in order to control their device functionality. This discussion covers a range of efforts to manipulate the electroactive ink materials and their nanostructured assembly into devices, and also device processing strategies to tune the nanoscale material properties and assembly routes through printing fabrication. The review finishes by highlighting progress in printed OE devices that provide a feedback loop between laboratory nanoscience innovations and their feasibility in adapting to large scale printing fabrication. The ability to control material properties on the nanoscale whilst simultaneously printing functional devices on the square metre scale is prompting innovative developments in the targeted nanoscience required for OPV, transistor and biofunctional devices.
Collapse
Affiliation(s)
- Matthew J Griffith
- School of Mathematical and Physical Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia. Centre for Organic Electronics, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | | | | | | | |
Collapse
|