1
|
Lin B, Liu Y, Chen Q, Li M, Xu L, Chen Q, Tan Y, Liu Z. DNA Nanostructures-Based In Situ Cancer Vaccines: Mechanisms and Applications. SMALL METHODS 2025:e2401501. [PMID: 39840607 DOI: 10.1002/smtd.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Indexed: 01/23/2025]
Abstract
Current tumor vaccines suffer from inadequate immune responsive due to the insufficient release of tumor antigens, low tumor infiltration, and immunosuppressive microenvironment. DNA nanostructures with their ability to precisely engineer, controlled release, biocompatibility, and the capability to augment the immunogenicity of tumor microenvironment, have gained significant attention for their potential to revolutionize vaccine designing. This review summarizes various applications of DNA nanostructures in the construction of in situ cancer vaccines, which can generate tumor-associated antigens directly from damaged tumors for cancer immune-stimulation. The mechanisms and components of cancer vaccines are listed, the specific strategies for constructing in situ vaccines using DNA nanostructures are explored and their underlying mechanisms of action are elucidated. The immunogenic cell death (ICD) induced by chemotherapeutic agents, photothermal therapy (PTT), photodynamic therapy (PDT), and radiation therapy (RT) and the related cancer vaccines building strategies are systematically summarized. The applications of different DNA nanostructures in various cancer immunotherapy are elaborated, which exerts precise, long-lasting, and robust immune responses. The current challenges and future prospectives are proposed. This review provides a holistic understanding of the evolving role of DNA nanostructures for in situ vaccine development.
Collapse
Affiliation(s)
- Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
2
|
Kim YM, Nam K, Kim HY, Yang K, Kim BS, Luo D, Roh YH. Multifunctional DNA-Metal Nanohybrids Derived From DNA-MgPPi Microhybrids by Rolling Circle Amplification. SMALL METHODS 2025:e2401881. [PMID: 39743964 DOI: 10.1002/smtd.202401881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Rolling circle amplification (RCA)-derived ultra-long DNA is highly attractive and versatile because of its diverse functionalities conferred by repeated DNA nanostructures. However, magnesium pyrophosphate (MgPPi) crystals, as byproducts of RCA, electrostatically interact with the DNA to form DNA microhybrids and hamper its broad bioapplications, as its large size is unfavorable for cellular uptake and decreases the density of functional DNA nanostructures. In this study, finely tuned synthesis strategies are developed to condense the microhybrids and replace non-functional MgPPi crystals with various functional metal nanostructures by reducing metal ions. By applying this condensation and reduction process to DNA templated by microhybrids, the particle size of organic-inorganic DNA-MgPPi microhybrids is gradually reconfigured into DNA-Au nanohybrids (≈15 fold difference). The effects of the ion concentration and metal ion type on the reduction process are systematically explored through morphological, structural, and compositional analyses. Upon formation of the nanohybrids, the preservation of Au nanostructures and polymerized DNA nanostructure-driven functions are evaluated. The nanohybrids demonstrated not only metal nanoparticle-based near-infrared absorbance but also DNA aptamer-mediated targeted intracellular delivery, indicating successful hybridization of functional organic-inorganic molecules. This synthesis method for RCA-originated ultra-long DNA-metal nanohybrids shows potential for a variety of biological applications.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hee Yeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Byeong-Su Kim
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dan Luo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
3
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Yip T, Qi X, Yan H, Chang Y. Therapeutic applications of RNA nanostructures. RSC Adv 2024; 14:28807-28821. [PMID: 39263430 PMCID: PMC11387945 DOI: 10.1039/d4ra03823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
RNA-based therapeutics have gained wide public interest in recent years. RNA is a versatile molecule that exists in many forms including mRNA, siRNA, miRNA, ribozymes, and other non-coding RNAs and is primarily applied for gene therapy. RNA is also used as a modular building block to construct RNA nanostructures. The programmable nature of RNA nanostructures enables the generation of simple, modulable, and multi-functional RNA-based therapeutics. Although the therapeutic application of RNA may be limited due to its structural instability, advances in RNA nanotechnology have improved the stability of RNA nanostructures for greater application. Various strategies have been developed to enhance the stability of RNA nanostructures enabling their application in vivo. In this review, we examine the therapeutic applications of RNA nanostructures. Non-immunogenic RNA nanostructures can be rationally designed with functional RNA molecules to modulate gene expression for gene therapy. On the other hand, nucleic acids can be sensed by cellular receptors to elicit an innate immune response, for which certain DNA and RNA motifs can function as adjuvants. Taking advantage of this adjuvant potential, RNA nanostructures can be used for immunotherapy and be designed for cancer vaccines. Thus, we examine the therapeutic application of immunogenic RNA nanostructures for cancer immunotherapy. RNA nanostructures represent promising platforms to design new nanodrugs, gene therapeutics, immunotherapeutic adjuvants, and cancer vaccines. Ongoing research in the field of RNA nanotechnology will continue to empower the development of RNA nanostructure-based therapeutics with high efficacy and limited toxicity.
Collapse
Affiliation(s)
- Theresa Yip
- School of Life Sciences, Arizona State University Tempe AZ 85281 USA
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| | - Xiaodong Qi
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
- School of Molecular Sciences, Arizona State University Tempe AZ 85281 USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
- School of Molecular Sciences, Arizona State University Tempe AZ 85281 USA
| | - Yung Chang
- School of Life Sciences, Arizona State University Tempe AZ 85281 USA
- Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA
| |
Collapse
|
6
|
Xu X, Hong Y, Fan H, Guo Z. Nucleic Acid Materials-Mediated Innate Immune Activation for Cancer Immunotherapy. ChemMedChem 2024; 19:e202400111. [PMID: 38622787 DOI: 10.1002/cmdc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Abnormally localized nucleic acids (NAs) are considered as pathogen associated molecular patterns (PAMPs) in innate immunity. They are recognized by NAs-specific pattern recognition receptors (PRRs), leading to the activation of associated signaling pathways and subsequent production of type I interferons (IFNs) and pro-inflammatory cytokines, which further trigger the adaptive immunity. Notably, NAs-mediated innate immune activation is highly dependent on the conformation changes, especially the aggregation of PRRs. Evidence indicates that the characteristics of NAs including their length, concentration and even spatial structure play essential roles in inducing the aggregation of PRRs. Therefore, nucleic acid materials (NAMs) with high valency of NAs and high-order structures hold great potential for activating innate and adaptive immunity, making them promising candidates for cancer immunotherapy. In recent years, a variety of NAMs have been developed and have demonstrated significant efficacy in achieving satisfactory anti-tumor immunity in multiple mouse models, exhibiting huge potential for clinical application in cancer treatment. This review aims to discuss the mechanisms of NAMs-mediated innate immune response, and summarize their applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuxuan Hong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Brown C, Bilynsky CSM, Gainey M, Young S, Kitchin J, Wayne EC. Exploratory mapping of tumor associated macrophage nanoparticle article abstracts using an eLDA topic modeling machine learning approach. PLoS One 2024; 19:e0304505. [PMID: 38889180 PMCID: PMC11185481 DOI: 10.1371/journal.pone.0304505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of 854 abstracts of peer-reviewed literature for the most common usages of nanoparticle targeting of tumor associated macrophages (TAMs) in solid tumors. The data spans 20 years of literature, providing a broad perspective of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of "birds-eye-view" analysis provides a useful assessment tool for exploring new and emerging themes within a large field.
Collapse
Affiliation(s)
- Chloe Brown
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Colette S. M. Bilynsky
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Gainey
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Young
- Carnegie Mellon University Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - John Kitchin
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth C. Wayne
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Oda W, Umemura K, Ito K, Kawamoto Y, Takahashi Y, Takakura Y. Development of potent unmethylated CpG DNA hydrogel by introducing i-motifs into long single-stranded DNA. Int J Pharm 2023; 646:123438. [PMID: 37741558 DOI: 10.1016/j.ijpharm.2023.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) DNA is recognized by Toll-like receptor 9, expressed in the endosomes of immune cells, and induces the secretion of proinflammatory cytokines. CpG DNA is, therefore, expected to be used as vaccine adjuvants, but there are many obstacles for its therapeutic application, such as poor cellular uptake and biostability. Long single-stranded DNA (lssDNA) synthesized by rolling circle amplification can be a useful delivery carrier for CpG DNA because of its cellular uptake efficiency, but the immunostimulatory effect is transient because it is easily degraded in endosomes. To improve its stability, we constructed lssDNA which forms hydrogel by i-motifs in an acidic environment mimicking endosome, and incorporated CpG DNA into lssDNA (i-CpG-lssDNA). We synthesized lssDNA containing the optimized i-motif sequence, and confirmed the formation of a DNA hydrogel in an acidic environment. The i-CpG-lssDNA elicited a potent proinflammatory cytokine production in murine macrophages, compared to CpG DNA-containing lssDNA without i-motifs. Consistently, its intradermal administration induced potent inflammatory cytokines at the regional lymph nodes. These results suggested that i-CpG-lssDNA could serve as a novel type of adjuvant for the induction of a potent immune response.
Collapse
Affiliation(s)
- Wakana Oda
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keisuke Umemura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Ito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Fan Y, Zhan M, Liang J, Yang X, Zhang B, Shi X, Hu Y. Programming Injectable DNA Hydrogels Yields Tumor Microenvironment-Activatable and Immune-Instructive Depots for Augmented Chemo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302119. [PMID: 37541435 PMCID: PMC10582419 DOI: 10.1002/advs.202302119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Injectable hydrogels have attracted increasing attention for promoting systemic antitumor immune response through the co-delivery of chemotherapeutics and immunomodulators. However, the biosafety and bioactivity of conventional hydrogel depots are often impaired by insufficient possibilities for post-gelling injection and means for biofunction integration. Here, an unprecedented injectable stimuli-responsive immunomodulatory depot through programming a super-soft DNA hydrogel adjuvant is reported. This hydrogel system encoded with adenosine triphosphate aptamers can be intratumorally injected in a gel formulation and then undergoes significant molecular conformation change to stimulate the distinct release kinetics of co-encapsulated therapeutics. In this scenario, doxorubicin is first released to induce immunogenic cell death that intimately works together with the polymerized cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) in gel scaffold for effectively recruiting and activating dendritic cells. The polymerized CpG ODN not only enhances tumor immunogenicity but minimizes free CpG-induced splenomegaly. Furthermore, the subsequently released anti-programmed cell death protein ligand 1 (aPDL1) blocks the corresponding immune inhibitory checkpoint molecule on tumor cells to sensitize antitumor T-cell immunity. This work thus contributes to the first proof-of-concept demonstration of a programmable super-soft DNA hydrogel system that perfectly matches the synergistic therapeutic modalities based on chemotherapeutic toxicity, in situ vaccination, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Yu Fan
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Mengsi Zhan
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
| | - Junhao Liang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Xingsen Yang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Beibei Zhang
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Xiangyang Shi
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yong Hu
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| |
Collapse
|
10
|
Brown C, Bilynsky C, Gainey M, Young S, Kitchin J, Wayne E. Meta-analysis of macrophage nanoparticle targeting across blood and solid tumors using an eLDA Topic modeling Machine Learning approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547096. [PMID: 37425888 PMCID: PMC10327218 DOI: 10.1101/2023.06.29.547096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The role of macrophages in regulating the tumor microenvironment has spurned the exponential generation of nanoparticle targeting technologies. With the large amount of literature and the speed at which it is generated it is difficult to remain current with the most up-to-date literature. In this study we performed a topic modeling analysis of the most common usages of nanoparticle targeting of macrophages in solid tumors. The data spans 20 years of literature, providing an extensive meta-analysis of the nanoparticle strategies. Our topic model found 6 distinct topics: Immune and TAMs, Nanoparticles, Imaging, Gene Delivery and Exosomes, Vaccines, and Multi-modal Therapies. We also found distinct nanoparticle usage, tumor types, and therapeutic trends across these topics. Moreover, we established that the topic model could be used to assign new papers into the existing topics, thereby creating a Living Review. This type of meta-analysis provides a useful assessment tool for aggregating data about a large field.
Collapse
|
11
|
Liu S, Zhang M, Yu H, Sun X, Li Q, Yang M, Qiu X, Su H, Gong A, Du F. Immunoinducible Carbon Dot-Incorporated Hydrogels as a Photothermal-Derived Antigen Depot to Trigger a Robust Antitumor Immune Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7700-7712. [PMID: 36719405 DOI: 10.1021/acsami.2c18371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immunogenic tumor cell death (ICD) induced by photothermal therapy (PTT) fails to elicit a robust antitumor immune response partially due to its inherent immunosuppressive microenvironment and poor antigen presentation. To address these issues, we developed an immunoinducible carbon dot-incorporated hydrogel (iCD@Gel) through a dynamic covalent Schiff base reaction using mannose-modified aluminum-doped carbon dots (M/A-CDs) as a cross-linking agent. The M/A-CDs possessed superior photothermal conversion efficiency and served as nanocarriers to load cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) for inducing the maturation of dendritic cells (DCs) via mannose receptor-mediated targeting delivery. Upon intratumoral injection, the as-prepared iCD@Gel induced ICD, and damage-associated molecular patterns (DAMPs) were released via photothermal ablation under 808 nm NIR irradiation. Subsequently, the iCD@Gel synergized with the DAMPs to significantly promote the maturation and antigen cross-presentation ability of DCs. This work provides a promising strategy to develop carbon dot-based therapeutic hydrogels for photothermal therapy and immune activation.
Collapse
Affiliation(s)
- Suwan Liu
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang212002, P. R. China
| | - Miaomiao Zhang
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Huijun Yu
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Xin Sun
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Qianzhe Li
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Mengyu Yang
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Xiaonan Qiu
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Hang Su
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Aihua Gong
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| | - Fengyi Du
- Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, P. R. China
| |
Collapse
|
12
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
13
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol 2022; 40:1195-1212. [PMID: 35450779 PMCID: PMC10439010 DOI: 10.1016/j.tibtech.2022.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
Abstract
Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, UK.
| |
Collapse
|
15
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
|
17
|
Xu Y, Lv Z, Yao C, Yang D. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications. Biomater Sci 2022; 10:3054-3061. [DOI: 10.1039/d2bm00445c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-based materials exhibit great potential in biomedical applications due to the excellent sequence programmability and unique functional designability. Rolling circle amplification (RCA) is an efficient isothermal enzymatic amplification strategy to...
Collapse
|
18
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
19
|
Wu S, Xia Y, Hu Y, Ma G. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Adv Drug Deliv Rev 2021; 176:113871. [PMID: 34311014 DOI: 10.1016/j.addr.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.
Collapse
|
20
|
Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int J Nanomedicine 2021; 16:5281-5299. [PMID: 34385817 PMCID: PMC8352601 DOI: 10.2147/ijn.s317626] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer has been a serious health hazard to the people all over the world with its high incidence and horrible mortality. In recent years, tumor vaccines in immunotherapy have become a hotspot in cancer therapy due to their many practical advantages and good therapeutic potentials. Among the various vaccines, nanovaccine utilized nanoparticles (NPs) as the carrier and/or adjuvant has presented significant therapeutic effect in cancer treatment. For tumor nanovaccines, unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) is a commonly used adjuvant. It has been reported that CpG ODN was the most effective immune stimulant among the currently known adjuvants. It could be recognized by toll-like receptor 9 (TLR9) to activate humoral and cellular immunity for preventing or treating cancer. In this review, the topic of CpG-based nanovaccines for cancer immunotherapy will be focused. The types and properties of different CpG will be introduced in detail first, and then some representative tumor nanovaccines will be reviewed according to the diverse loading modes of CpG, such as electrostatic adsorption, covalent bonding, hydrophilic and hydrophobic interaction, and DNA self-assembly, for summarizing the current progress of CpG-based tumor nanovaccines. Finally, the challenges and future perspectives will be discussed. It is hoped that this review will provide valuable references for the development of nanovaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
21
|
Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J Mater Chem B 2021; 8:3527-3533. [PMID: 31737891 DOI: 10.1039/c9tb01610d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The major drawbacks of traditional RNA cancer therapies include low cellular uptake in vitro or in vivo, instability of in vivo circulation, nonspecific bio-distribution, and lack of targeting ability, which result in poor silencing efficiency. Herein, we developed a novel RNA-triple-helix hydrogel for the treatment of triple negative breast cancers (TNBCs) by incorporating RNA-triple-helix and siRNA duplexes of CXCR4 into the same RNA nanoparticles with no synthetic polycationic reagents added. The RNA-triple-helix consists of one tumour suppressor miRNA (miRNA-205) and one oncomiR inhibitor (miRNA-221), both of which showed an outstanding effect in synergistically abrogating tumours. The siRNA duplexes of CXCR4 were embedded into the RNA hydrogel to block breast cancer metastasis and conjugation of the LXL-DNA aptamer (apt-DNA-Chol) is an effective target DNA sequence for MDA-MB-231 cells. The self-assembly of the RNA-triple-helix hydrogel exhibited high selectivity of in vitro and in vivo absorption and controlling miRNA expression when compared to free miRNA and RNA transcripts. The well-developed gene delivery system provided a potential treatment with high specificity and selectivity toward TNBCs. This strategy can be implemented in triplex-helix hydrogel design to form novel miRNA combinations to treat various human cancers.
Collapse
Affiliation(s)
- Lairong Ding
- Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong, College of Chemistry, Shandong Normal University, Jinan 250014, P. R. China
| | | | | | | | | | | |
Collapse
|
22
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
23
|
Bai H, Bu S, Liu W, Wang C, Li Z, Hao Z, Wan J, Han Y. An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. Analyst 2020; 145:7340-7348. [PMID: 32930195 DOI: 10.1039/d0an01258k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7. The stable cocoon-like DNA nanostructures synthesized by the rolling circle amplification reaction were loaded with hemin as electrochemical signal tags to amplify the signals. The single-stranded DNA capture probes were modified on the surface of a Au electrode via a Au-S bond. The E. coli O157:H7 specific aptamer and capture probe formed double-stranded DNA structures on the Au electrode. The aptamer preferentially bound to E. coli O157:H7, causing the dissociation of some aptamer-capture probes and releasing some capture probes. Subsequently, the free capture probes hybridized with the DNA nanostructures through the cDNA sequence. Under optimal conditions, the change in the electrochemical signal was proportional to the logarithm of E. coli O157:H7 concentration, from 10 to 106 CFU mL-1, and the detection limit was estimated to be 10 CFU mL-1. The electrochemical aptasensor could be readily used to detect various pathogenic bacteria and to provide a new method of early diagnosis of pathogenic microorganisms.
Collapse
Affiliation(s)
- Huasong Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lv J, Dong Y, Gu Z, Yang D. Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics. Chemistry 2020; 26:14512-14524. [DOI: 10.1002/chem.202002242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jigang Lv
- Frontier Science Center for Synthetic Biology Key Laboratory of, Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yuhang Dong
- Frontier Science Center for Synthetic Biology Key Laboratory of, Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology Key Laboratory of, Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
25
|
Abdou P, Wang Z, Chen Q, Chan A, Zhou DR, Gunadhi V, Gu Z. Advances in engineering local drug delivery systems for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1632. [PMID: 32255276 PMCID: PMC7725287 DOI: 10.1002/wnan.1632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aims to leverage the immune system to suppress the growth of tumors and to inhibit metastasis. The recent promising clinical outcomes associated with cancer immunotherapy have prompted research and development efforts towards enhancing the efficacy of immune checkpoint blockade, cancer vaccines, cytokine therapy, and adoptive T cell therapy. Advancements in biomaterials, nanomedicine, and micro-/nano-technology have facilitated the development of enhanced local delivery systems for cancer immunotherapy, which can enhance treatment efficacy while minimizing toxicity. Furthermore, locally administered cancer therapies that combine immunotherapy with chemotherapy, radiotherapy, or phototherapy have the potential to achieve synergistic antitumor effects. Herein, the latest studies on local delivery systems for cancer immunotherapy are surveyed, with an emphasis on the therapeutic benefits associated with the design of biomaterials and nanomedicines. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Amanda Chan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Daojia R. Zhou
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Vivienne Gunadhi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Hanikoglu A, Ozben H, Hanikoglu F, Ozben T. Hybrid Compounds & Oxidative Stress Induced Apoptosis in Cancer Therapy. Curr Med Chem 2020; 27:2118-2132. [PMID: 30027838 DOI: 10.2174/0929867325666180719145819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Hakan Ozben
- Department of Orthopaedics and Traumatology, Hand and Microsurgery Unit, Koc University School of Medicine, Istanbul, Turkey
| | - Ferhat Hanikoglu
- Faculty of Pharmacy, Department of Biochemistry, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
27
|
Ming J, Zhang J, Shi Y, Yang W, Li J, Sun D, Xiang S, Chen X, Chen L, Zheng N. A trustworthy CpG nanoplatform for highly safe and efficient cancer photothermal combined immunotherapy. NANOSCALE 2020; 12:3916-3930. [PMID: 32003377 DOI: 10.1039/c9nr09402d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Palladium nanosheets (Pd NSs) have recently attracted increasing research interest in the biomedical field due to their excellent near-infrared absorption, photothermal conversion capability and biocompatibility. However, the application of Pd NSs in immunotherapy has not been reported. Here, Pd NSs were used as the carriers of immunoadjuvant CpG ODNs for not only efficient delivery of CpG but also for enhancing the immunotherapeutic effects of CpG by the Pd NS-based photothermal therapy (PTT). Pd NSs had no influence on the immune system, and the prepared Pd-CpG nanocomposites, especially Pd(5)-CpG(PS), could significantly increase the uptake of CpG by immune cells and enhance the immunostimulatory activity of CpG in vitro and in vivo. With the combination of Pd(5)-CpG(PS) mediated PTT and immunotherapy, highly efficient tumor inhibition was achieved and the survival rate of the tumor-bearing mice was greatly increased depending on Pd(5)-CpG(PS) with safe near-infrared (NIR) irradiation (808 nm laser, 0.15 W cm-2). Importantly, the combination therapy induced tumor cell death and released tumor-associated antigens, which could be effectively taken up and presented by antigen presenting cells with the assistance of CpG, leading to increased TNF-α and IL-6 production and enhanced cytotoxic T lymphocyte (CTL) activity. This work provides a new paradigm of utilizing photothermal nanomaterials for safe and highly efficient cancer photothermal combined immunotherapy.
Collapse
Affiliation(s)
- Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wangheng Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jingchao Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Duo Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
28
|
Chi Q, Yang Z, Xu K, Wang C, Liang H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front Pharmacol 2020; 10:1585. [PMID: 32063844 PMCID: PMC6997790 DOI: 10.3389/fphar.2019.01585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.
Collapse
Affiliation(s)
- Qingjia Chi
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Zichang Yang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Wang
- “111” Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Liu Y, Zhu X, Lu Y, Wang X, Zhang C, Sun H, Ma G. Antigen-Inorganic Hybrid Flowers-Based Vaccines with Enhanced Room Temperature Stability and Effective Anticancer Immunity. Adv Healthc Mater 2019; 8:e1900660. [PMID: 31583853 DOI: 10.1002/adhm.201900660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Indexed: 11/09/2022]
Abstract
Particle-based antigen carriers as adjuvants play an important role in vaccine development. Herein, an antigen-inorganic hybrid flower-like particle is developed as a novel vaccine carrier. Model antigen ovalbumin (OVA)-copper (II) sulfate hybrid vaccines (OVA-Cu-HVs) are mildly and facilely constructed through a biomimetic mineralization process. OVA-Cu-HVs facilitate cellular uptake in antigen-presenting cells and the internalization of OVA-Cu-HVs involves macropinocytosis-mediated endocytosis. OVA-Cu-HVs can release OVA in a pH-responsive behavior and promote cytosolic release of antigen to enhance antigen cross-presentation. Immunization with OVA-Cu-HVs promotes the maturation of dendritic cells in draining lymph nodes, induces robust antigen-specific T lymphocyte response, and inhibits tumor growth in vivo. In addition, OVA-Cu-HVs are efficacious after being stored for 4 weeks at room temperature and are expected to simplify vaccine storage and lower the cost of cold storage for transportation. Looking forward, OVA-Cu-HVs may hold strong potential to be as an effective vaccine delivery platform, which will facilitate the application of organic-inorganic hybrid flowers in biomedical areas.
Collapse
Affiliation(s)
- Yijia Liu
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Xianghui Zhu
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Yan Lu
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Xiaoli Wang
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Chuangnian Zhang
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Hongfan Sun
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Guilei Ma
- The Tianjin Key Laboratory of BiomaterialsInstitute of Biomedical EngineeringPeking Union Medical College and Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| |
Collapse
|
30
|
Liu Y, Zhao Y, Chen X. Bioengineering of Metal-organic Frameworks for Nanomedicine. Theranostics 2019; 9:3122-3133. [PMID: 31244945 PMCID: PMC6567971 DOI: 10.7150/thno.31918] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Controlled structure, tunable porosity, and readily chemical functionalizability make metal-organic frameworks (MOFs) a powerful biomedical tool. Nanoscale MOF particles have been increasingly studied as drug carriers, bioimaging agents, and therapeutic agents due to their excellent physiochemical properties. In this review, we start with MOF as a nanocarrier for drug delivery, covering therapeutic MOF agents followed by a comprehensive discussion of surface bioengineering of MOF for improved biostability, biocompatibility, and targeted delivery. Finally, we detail the challenges and prospects of the future of MOF research for biomedical applications.
Collapse
Affiliation(s)
- Yuan Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Wei Y, Xu X, Shang Y, Jiang Q, Li C, Ding B. Visualization of the intracellular location and stability of DNA flowers with a label-free fluorescent probe. RSC Adv 2019; 9:15205-15209. [PMID: 35514862 PMCID: PMC9064242 DOI: 10.1039/c9ra01769k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Rolling circle amplification (RCA) and rolling circle transcription (RCT) can be used to fabricate various structures and organize functional materials for biological applications. The full understanding of the interactions between RCA/RCT-derived structures and live cells is urgently demanded. Here, we present a label-free fluorescent strategy to study the intracellular location and stability of RCA-based DNA flowers in live cells. The DNA flower structures are co-assembled with carbazole-based biscyanine fluorophores, which are DNA detecting molecules and characterized by restriction of intramolecular rotation (RIR) induced strong fluorescent emission. When biscyanine molecules are encapsulated in the DNA flowers via electrostatic attraction, these confined RIR dyes can produce strong luminescent emission. Using this advantage, we use the RIR enhanced technique for direct visualization of the distribution and degradation of DNA flowers in live cellular systems. Our current research could be adapted to other advanced DNA-based materials, providing a new strategy to fabricate fluorescent DNA materials and realize controllable release of payloads.
Collapse
Affiliation(s)
- Yu Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University 200030 Shanghai China
| | - Xuehui Xu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology 11 BeiYiTiao, ZhongGuanCun 100190 Beijing China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology 11 BeiYiTiao, ZhongGuanCun 100190 Beijing China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology 11 BeiYiTiao, ZhongGuanCun 100190 Beijing China
| | - Can Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University 200030 Shanghai China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology 11 BeiYiTiao, ZhongGuanCun 100190 Beijing China
| |
Collapse
|
32
|
Kim D, Kim H, Han S, Scatena M, Kim DH, Lee JB. Immunostimulatory Effects Triggered by Self-Assembled Microspheres with Tandem Repeats of Polymerized RNA Strands. Adv Healthc Mater 2019; 8:e1801395. [PMID: 30657652 DOI: 10.1002/adhm.201801395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Indexed: 12/19/2022]
Abstract
Self-assembled RNA particles have been exploited widely to maximize the therapeutic potential of RNA. However, the immune response via RNA particles is not fully understood. In addition, the investigation of the immunogenicity from RNA-based particles is required owing to inherent immunostimulatory effects of RNA for clinical translation. To examine the immune stimulating potency, rationally designed microsized RNA particles, called RNA microspheres (RMSs), are generated with single or double strands via rolling circle transcription. The RMSs show an exceptional stability in the presence of serum, while they are selectively degraded under endolysosomal conditions. With precisely controlled size, both RMSs are successfully taken up by macrophages. Unlike the nature of RNA fragments, RMSs induce only basal-level expression of inflammatory cytokines as well as type I interferon from macrophages, suggesting that RMSs are immunocompatible in the therapeutic dose range. Taken together, this study could help accelerate clinical translation and broaden the applicability of the self-assembled RNA-based particles without being limited by their potential immunotoxicity, while a systematic controllability study observing the release of RNA fragments from RMSs would provide self-assembled RNA-based structures with a great potential for immunomodulation.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
| | - Sangwoo Han
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Marta Scatena
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
- Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA 98109 USA
| | - Deok-Ho Kim
- Department of Bioengineering; University of Washington; Seattle WA 98195 USA
- Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA 98109 USA
| | - Jong Bum Lee
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| |
Collapse
|
33
|
Musetti S, Huang L. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS NANO 2018; 12:11740-11755. [PMID: 30508378 DOI: 10.1021/acsnano.8b05893] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
Collapse
Affiliation(s)
- Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
34
|
Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev 2018; 134:65-78. [PMID: 30125604 PMCID: PMC6239901 DOI: 10.1016/j.addr.2018.08.005] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to specifically bind with target molecules. Aptamers can be relatively easily screened, reproducibly manufactured, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 2018; 47:4954-4980. [PMID: 29911725 DOI: 10.1039/c8cs00028j] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, one of the most effective and powerful public health measures, have saved countless lives over the past century and still have a tremendous global impact. As an indispensable component of modern vaccines, adjuvants play a critical role in strengthening and/or shaping a specific immune response against infectious diseases as well as malignancies. The application of nanotechnology provides the possibility of precisely tailoring the building blocks of nanoadjuvants towards modern vaccines with the desired immune response. The last decade has witnessed great academic progress in inorganic nanomaterials for vaccine adjuvants in terms of nanometer-scale synthesis, structure control, and functionalization design. Inorganic adjuvants generally facilitate the delivery of antigens, allowing them to be released in a sustained manner, enhance immunogenicity, deliver antigens efficiently to specific targets, and induce a specific immune response. In particular, the recent discovery of the intrinsic immunomodulatory function of inorganic nanomaterials further allows us to shape the immune response towards the desired type and increase the efficacy of vaccines. In this article, we comprehensively review state-of-the-art research on the use of inorganic nanomaterials as vaccine adjuvants. Attention is focused on the physicochemical properties of versatile inorganic nanoadjuvants, such as composition, size, morphology, shape, hydrophobicity, and surface charge, to effectively stimulate cellular immunity, considering that the clinically used alum adjuvants can only induce strong humoral immunity. In addition, the efforts made to date to expand the application of inorganic nanoadjuvants in cancer vaccines are summarized. Finally, we discuss the future prospects and our outlook on tailoring inorganic nanoadjuvants towards next-generation vaccines.
Collapse
Affiliation(s)
- Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
36
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
37
|
Zhang Y, Liu C, Wang F, Liu Z, Ren J, Qu X. Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem Commun (Camb) 2018; 53:1840-1843. [PMID: 28111662 DOI: 10.1039/c6cc09280b] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have demonstrated the ability of iron carboxylate metal-organic frameworks to efficiently deliver unmethylated cytosine-phosphate-guanine oligonucleotides. The nanoconjugates induced a stronger immune response than did free cytosine-phosphateguanine oligonucleotides and showed T2-magnetic resonance imaging ability both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
38
|
Ni Q, Zhang F, Zhang Y, Zhu G, Wang Z, Teng Z, Wang C, Yung BC, Niu G, Lu G, Zhang L, Chen X. In Situ shRNA Synthesis on DNA-Polylactide Nanoparticles to Treat Multidrug Resistant Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705737. [PMID: 29333658 DOI: 10.1002/adma.201705737] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Nanomedicine has shown unprecedented potential for cancer theranostics. Nucleic acid (e.g., DNA and RNA) nanomedicines are of particular interest for combination therapy with chemotherapeutics. However, current nanotechnologies to construct such nucleic acid nanomedicines, which rely on chemical conjugation or physical complexation of nucleic acids with chemotherapeutics, have restrained their clinical translation due to limitations such as low drug loading efficiency and poor biostability. Herein, in situ rolling circle transcription (RCT) is applied to synthesize short hairpin RNA (shRNA) on amphiphilic DNA-polylactide (PLA) micelles. Core-shell PLA@poly-shRNA structures that codeliver a high payload of doxorubicin (Dox) and multidrug resistance protein 1 (MDR1) targeted shRNA for MDR breast cancer (BC) therapy are developed. DNA-PLA conjugates are first synthesized, which then self-assemble into amphiphilic DNA-PLA micelles; next, using the conjugated DNA as a promoter, poly-shRNA is synthesized on DNA-PLA micelles via RCT, generating PLA@poly-shRNA microflowers; and finally, microflowers are electrostatically condensed into nanoparticles using biocompatible and multifunctional poly(ethylene glycol)-grafted polypeptides (PPT-g-PEG). These PLA@poly-shRNA@PPT-g-PEG nanoparticles are efficiently delivered into MDR breast cancer cells and accumulated in xenograft tumors, leading to MDR1 silencing, intracellular Dox accumulation, potentiated apoptosis, and enhanced tumor therapeutic efficacy. Overall, this nanomedicine platform is promising to codeliver anticancer nucleic acid therapeutics and chemotherapeutics.
Collapse
Affiliation(s)
- Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Yunlei Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chunyan Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
39
|
Sahoo JK, Braegelman AS, Webber MJ. Immunoengineering with Supramolecular Peptide Biomaterials. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0060-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Jung H, Kim D, Kang YY, Kim H, Lee JB, Mok H. CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells. RSC Adv 2018; 8:6608-6615. [PMID: 35540407 PMCID: PMC9078369 DOI: 10.1039/c7ra13293j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2019] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
As emerging evidence supports the immune stimulating capability of the CpG oligodeoxynucleotides (ODN), CpG-based adjuvants have been widely used. For efficient induction of immune responses, current issues affecting the use of nucleic acid-based adjuvants, e.g. stability in physiological conditions, delivery to immune cells, and successful release within the phagolysosome, should be addressed. Here, we present CpG-based DNA microparticles (DNA-MPs) fabricated by complementary rolling circle amplification (cRCA) as adjuvants for enhancing immune response and production of selective antibody production. Using cRCA method, the sizes of CpG-based DNA-MPs were finely controlled (0.5 and 1 μm) with superior and provided mismatched single stranded form of CpG ODN region for specific cleavage site by DNase II within the phagolysosome. Fabricated CpG-based 1 μm DNA-MPs (DNA-MP-1.0) were successfully internalized into primary macrophages and macrophage cell line (RAW264.7 cells), and elicited superior cytokine production e.g. TNF-α and IL-6, compared to conventional CpG ODNs. After in vivo administration of DNA-MP-1.0 with model antigen ovalbumin (OVA), significantly elevated OVA-specific antibody production was observed. With this in mind, DNA-MP-1.0 could serve as a novel type of adjuvant for the activation of macrophages and the following production of selective antibodies without any noticeable toxicity in vitro and in vivo. As emerging evidence supports the immune stimulating capability of the CpG oligodeoxynucleotides (ODN), CpG-based adjuvants have been widely used.![]()
Collapse
Affiliation(s)
- Heejung Jung
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Dajeong Kim
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 05029
- Republic of Korea
| |
Collapse
|
41
|
Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, Cheng S, Wang Z, Lu N, Yung BC, Wang Z, Lang L, Fu X, Jin A, Weiss ID, Vishwasrao H, Niu G, Shroff H, Klinman DM, Seder RA, Chen X. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun 2017; 8:1954. [PMID: 29203865 PMCID: PMC5715147 DOI: 10.1038/s41467-017-02191-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Subunit vaccines have been investigated in over 1000 clinical trials of cancer immunotherapy, but have shown limited efficacy. Nanovaccines may improve efficacy but have rarely been clinically translated. By conjugating molecular vaccines with Evans blue (EB) into albumin-binding vaccines (AlbiVax), here we develop clinically promising albumin/AlbiVax nanocomplexes that self-assemble in vivo from AlbiVax and endogenous albumin for efficient vaccine delivery and potent cancer immunotherapy. PET pharmacoimaging, super-resolution microscopies, and flow cytometry reveal almost 100-fold more efficient co-delivery of CpG and antigens (Ags) to lymph nodes (LNs) by albumin/AlbiVax than benchmark incomplete Freund's adjuvant (IFA). Albumin/AlbiVax elicits ~10 times more frequent peripheral antigen-specific CD8+ cytotoxic T lymphocytes with immune memory than IFA-emulsifying vaccines. Albumin/AlbiVax specifically inhibits progression of established primary or metastatic EG7.OVA, B16F10, and MC38 tumors; combination with anti-PD-1 and/or Abraxane further potentiates immunotherapy and eradicates most MC38 tumors. Albumin/AlbiVax nanocomplexes are thus a robust platform for combination cancer immunotherapy.
Collapse
Affiliation(s)
- Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yi Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Huimin Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Siyuan Cheng
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiao Fu
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Ido D Weiss
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, MD, USA.,Section on High Resolution Optical Imaging, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Zhu G, Mei L, Vishwasrao HD, Jacobson O, Wang Z, Liu Y, Yung BC, Fu X, Jin A, Niu G, Wang Q, Zhang F, Shroff H, Chen X. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun 2017; 8:1482. [PMID: 29133898 PMCID: PMC5684198 DOI: 10.1038/s41467-017-01386-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Nanomedicines that co-deliver DNA, RNA, and peptide therapeutics are highly desirable yet remain underdeveloped for cancer theranostics. Herein, we report self-assembled intertwining DNA-RNA nanocapsules (iDR-NCs) that efficiently delivered synergistic DNA CpG and short hairpin RNA (shRNA) adjuvants, as well as tumor-specific peptide neoantigens into antigen presenting cells (APCs) in lymph nodes for cancer immunotherapy. These nanovaccines were prepared by (1) producing tandem CpG and shRNA via concurrent rolling circle replication and rolling circle transcription, (2) self-assembling CpG and shRNA into DNA-RNA microflowers, (3) shrinking microflowers into iDR-NCs using PEG-grafted cationic polypeptides, and (4) physically loading neoantigen into iDR-NCs. CpG and shRNA in iDR-NCs synergistically activate APCs for sustained antigen presentation. Remarkably, iDR-NC/neoantigen nanovaccines elicit 8-fold more frequent neoantigen-specific peripheral CD8+ T cells than CpG, induce T cell memory, and significantly inhibit the progression of neoantigen-specific colorectal tumors. Collectively, iDR-NCs represent potential DNA/RNA/peptide triple-co-delivery nanocarriers and synergistic tumor immunotherapeutic nanovaccines. Nucleic acid nanomedicines are promising for cancer drug delivery. Here, the authors show using a mouse model the tumor immunotherapeutic efficacy of nanovaccines based on intertwining DNA-RNA nanocapsules loaded with DNA CpG, Stat3-silencing short hairpin RNA and tumor-specific peptide neoantigens.
Collapse
Affiliation(s)
- Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, 20742, USA
| | | | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiao Fu
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, 20742, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD, 20892, USA.,Section on High Resolution Optical Imaging, NIBIB, NIH, Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114:60-78. [PMID: 28392305 PMCID: PMC6262758 DOI: 10.1016/j.addr.2017.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The immune system is an awe-inspiring control structure that maintains a delicate and constantly changing balance between pro-immune functions that fight infection and cancer, regulatory or suppressive functions involved in immune tolerance, and homeostatic resting states. These activities are determined by integrating signals in space and time; thus, improving control over the densities, combinations, and durations with which immune signals are delivered is a central goal to better combat infectious disease, cancer, and autoimmunity. Self-assembly presents a unique opportunity to synthesize materials with well-defined compositions and controlled physical arrangement of molecular building blocks. This review highlights strategies exploiting these capabilities to improve the understanding of how precisely-displayed cues interact with immune cells and tissues. We present work centered on fundamental properties that regulate the nature and magnitude of immune response, highlight pre-clinical and clinical applications of self-assembled technologies in vaccines, cancer, and autoimmunity, and describe some of the key manufacturing and regulatory hurdles facing these areas.
Collapse
Key Words
- Autoimmunity and tolerance
- Biomaterial
- Cancer
- Immunomodulation
- Manufacturing, regulatory approval and FDA
- Nanoparticle, microparticle, micelle, liposome, polyplex, lipoplex, polyelectrolyte multilayer
- Nanotechnology
- Non-covalent, hydrophobic, hydrogen bonding, and electrostatic interaction
- Self-assembly
- Sensor, diagnostic, and theranostic
- Vaccine and immunotherapy
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
44
|
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. NATURE REVIEWS. MATERIALS 2017; 2:17024. [PMID: 29075517 PMCID: PMC5654564 DOI: 10.1038/natrevmats.2017.24] [Citation(s) in RCA: 723] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.
Collapse
Affiliation(s)
- Hongmin Chen
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS NANO 2017; 11:2387-2392. [PMID: 28277646 DOI: 10.1021/acsnano.7b00978] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vaccines hold tremendous potential for cancer immunotherapy by treating the immune system. Subunit vaccines, including molecular adjuvants and cancer-associated antigens or cancer-specific neoantigens, can elicit potent antitumor immunity. However, subunit vaccines have shown limited clinical benefit in cancer patients, which is in part attributed to inefficient vaccine delivery. In this Perspective, we discuss vaccine delivery by synthetic nanoparticles or naturally derived nanoparticles for cancer immunotherapy. Nanovaccines can efficiently codeliver adjuvants and multiepitope antigens into lymphoid organs and into antigen-presenting cells, and the intracellular release of vaccine and cross-presentation of antigens can be fine-tuned via nanovaccine engineering. Aside from peptide antigens, antigen-encoding mRNA for cancer immunotherapy delivered by nanovaccine will also be discussed.
Collapse
Affiliation(s)
- Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
46
|
Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MGM, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF. Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. NANOSCALE 2016; 8:19592-19604. [PMID: 27748778 DOI: 10.1039/c6nr05583d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Meriem Bourajjaj
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Ebel H Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Jian Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| |
Collapse
|