1
|
Karki S, Jalife S, Wang X, Lin YH, Wu JI, Miljanić OŠ. Columnar Organization of Nonalternant Fluorinated Dehydrobenzannulenes. Chemistry 2024; 30:e202402913. [PMID: 39189940 DOI: 10.1002/chem.202402913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Two new partially fluorinated dehydrobenzannulenes have been prepared by inter- and intramolecular oxidative homocoupling of diyne precursors. These systems contain fluorinated and nonfluorinated arene rings in a desymmetrized non-alternant arrangement. Both macrocycles are roughly planar and organize into extended columns in the solid state. The assembly of these columns is mediated by the combination of dispersion interactions, slipped [π⋅⋅⋅π] stacking interactions of the perfluorinated rings with each other, and their association with the nonfluorinated rings in the molecules of the neighboring macrocycles. These results suggest that partial fluorination of dehydrobenzannulenes can serve as a versatile motif for their assembly into columnar superstructures.
Collapse
Affiliation(s)
- Sumitra Karki
- Department of Chemistry, University of Houston, United States of America
| | - Said Jalife
- Department of Chemistry, University of Houston, United States of America
| | - Xiqu Wang
- Department of Chemistry, University of Houston, United States of America
| | - Yun-Hsien Lin
- Department of Chemistry, University of Houston, United States of America
| | - Judy I Wu
- Department of Chemistry, University of Houston, United States of America
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, United States of America
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
3
|
Ohishi Y, Chiba J, Inouye M. Chiral Assemblies of Planar and Achiral meta-Arylene Ethynylene Macrocycles Induced by Saccharide Recognition. J Org Chem 2022; 87:10825-10835. [PMID: 35938888 DOI: 10.1021/acs.joc.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We created chiral assemblies of planar and achiral macrocycles by saccharide recognition. To achieve this, we synthesized stackable meta-arylene ethynylene macrocycles consisting of pyridine-acetylene-phenol and pyridine-acetylene-aniline units. 1H NMR, absorption, and fluorescence emission spectroscopy indicated that these macrocycles formed 1:1 and 2:1 complexes with lipophilic alkyl glycosides. The 2:1 complex of the pyridine-acetylene-phenol macrocycle showed induced circular dichroism (ICD) bands, meaning that two achiral macrocycles are arranged in an asymmetrically twisted manner. CD spectroscopy revealed that the helical sense was affected by the chirality of guest saccharides. On the other hand, strong CD bands were observed after solid-liquid extraction of native saccharides into lipophilic solvents using the pyridine-acetylene-aniline macrocycle.
Collapse
Affiliation(s)
- Yuki Ohishi
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Junya Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Sun B, Oakley MS, Yoshida K, Yang Y, Tommasini M, Zanchi C, Lucotti A, Ferguson MJ, Hampel F, Klobukowski M, Tykwinski RR. The Effects of Ring Strain on Cyclic Tetraaryl[5]cumulenes. Chemistry 2022; 28:e202200616. [DOI: 10.1002/chem.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bozheng Sun
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Meagan S. Oakley
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Kota Yoshida
- Department of Chemistry Graduate School of Science Kyoto University Kyoto 606-8502 Japan
| | - Yanwen Yang
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| | - Matteo Tommasini
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Chiara Zanchi
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Andrea Lucotti
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano Italy
| | | | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) University of Erlangen-Nuremberg Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
| | | | - Rik R. Tykwinski
- Department of Chemistry University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
5
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
6
|
Devibala P, Balambiga B, Mohamed Imran P, Bhuvanesh NSP, Nagarajan S. Butterfly-Like Triarylamines with High Hole Mobility and On/Off Ratio in Bottom-Gated OFETs. Chemistry 2021; 27:15375-15381. [PMID: 34536306 DOI: 10.1002/chem.202102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/05/2022]
Abstract
Highly π-extended butterfly-shaped triarylamine dyads with aryleneethynylene spacer were constructed using an efficient synthetic route. These aryleneethynylene-bridged dyads are highly fluorescent and exhibited high HOMO levels, and low bandgaps, which are suitable for high-performance p-type OFETs. The field-effect transistors were fabricated through a solution-processable method and exhibited promising p-type performance with field-effect mobility up to 4.3 cm2 /Vs and high Ion/off of 108 under ambient conditions.
Collapse
Affiliation(s)
- Panneerselvam Devibala
- Organic Electronics Division, Department of Chemistry Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Balu Balambiga
- Organic Electronics Division, Department of Chemistry Central University of Tamil Nadu, Thiruvarur, 610005, India
| | | | | | - Samuthira Nagarajan
- Organic Electronics Division, Department of Chemistry Central University of Tamil Nadu, Thiruvarur, 610005, India
| |
Collapse
|
7
|
O'Driscoll LJ, Bryce MR. A review of oligo(arylene ethynylene) derivatives in molecular junctions. NANOSCALE 2021; 13:10668-10711. [PMID: 34110337 DOI: 10.1039/d1nr02023d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligo(arylene ethynylene) (OAE) derivatives are the "workhorse" molecules of molecular electronics. Their ease of synthesis and flexibility of functionalisation mean that a diverse array of OAE molecular wires have been designed, synthesised and studied theoretically and experimentally in molecular junctions using both single-molecule and ensemble methods. This review summarises the breadth of molecular designs that have been investigated with emphasis on structure-property relationships with respect to the electronic conductance of OAEs. The factors considered include molecular length, connectivity, conjugation, (anti)aromaticity, heteroatom effects and quantum interference (QI). Growing interest in the thermoelectric properties of OAE derivatives, which are expected to be at the forefront of research into organic thermoelectric devices, is also explored.
Collapse
Affiliation(s)
- Luke J O'Driscoll
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| | - Martin R Bryce
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| |
Collapse
|
8
|
Zeng Q, He C, Zhou S, Dong K, Qiu L, Xu X. Dirhodium(II)‐Catalyzed Cyclopropanation of Alkyne‐Containing α‐Diazoacetates for the Synthesis of Cycloalkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Ciwang He
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Kuiyong Dong
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Lihua Qiu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Xinfang Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
9
|
Kiel GR, Bergman HM, Tilley TD. Site-selective [2 + 2 + n] cycloadditions for rapid, scalable access to alkynylated polycyclic aromatic hydrocarbons. Chem Sci 2020; 11:3028-3035. [PMID: 34122806 PMCID: PMC8157499 DOI: 10.1039/c9sc06102a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2 + 2 + n] reactions is demonstrated by identification of a Cp2Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion. An orthogonal [2 + 2 + n] cycloaddition/alkyne metathesis reaction sequence enables streamlined access to conjugated macrocyclic nanocarbons.![]()
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| |
Collapse
|
10
|
Hayashi T, Ohishi Y, Abe H, Inouye M. Preferential Recognition and Extraction to Pentoses over Hexoses by a D6h-Symmetrical Ethynylphenol Macrocycle with Six Inner Phenolic Hydroxy Groups. J Org Chem 2020; 85:1927-1934. [PMID: 31896252 DOI: 10.1021/acs.joc.9b02639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A macrocycle consisting of six ethynylphenol units was developed as a host architecture for saccharides. The rigid framework of the macrocycle suppressed the intramolecular hydrogen-bonding between adjacent phenolic hydroxy groups and recognized saccharides by intermolecular hydrogen-bonding within the hole. The well-defined hydrogen-bonding sites enabled the size-selective guest recognition and showed preference to pentoses over hexoses.
Collapse
Affiliation(s)
- Tomoya Hayashi
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Yuki Ohishi
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Hajime Abe
- Faculty of Pharmaceutical Sciences , Himeji Dokkyo University , Himeji , Hyogo 670-8524 , Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| |
Collapse
|
11
|
Izumi S, Higginbotham HF, Nyga A, Stachelek P, Tohnai N, Silva PD, Data P, Takeda Y, Minakata S. Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. J Am Chem Soc 2020; 142:1482-1491. [DOI: 10.1021/jacs.9b11578] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | - Aleksandra Nyga
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Patrycja Stachelek
- Physics Department, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, Kongens Lyngby 2800, Denmark
| | - Przemyslaw Data
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Physics Department, Durham University, South Road, Durham DH1 3LE, United Kingdom
- Center of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | | | | |
Collapse
|
12
|
Miki K, Ohe K. π‐Conjugated Macrocycles Bearing Angle‐Strained Alkynes. Chemistry 2019; 26:2529-2575. [DOI: 10.1002/chem.201904114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/24/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
13
|
Zeng Q, Dong K, Pei C, Dong S, Hu W, Qiu L, Xu X. Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene C(sp2)–H Insertion and the Buchner Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kuiyong Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shanliang Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Shimasaki T, Kuroda R, Akao M, Akimoto T, Ishikawa T, Iwanaga T, Teramoto N, Shibata M. Synthesis and Properties of a Conjugated Macrocyclic Molecule Incorporating Two Quinoline Moieties. CHEM LETT 2019. [DOI: 10.1246/cl.180888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiaki Shimasaki
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Ryota Kuroda
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Misaki Akao
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Takeshi Akimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Tenta Ishikawa
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Tetsuo Iwanaga
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Mitsuhiro Shibata
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
15
|
Ohishi Y, Yamamoto N, Abe H, Inouye M. Nonplanar Macrocycle Consisting of Four Pyridine and Phenol Units Connected with Acetylene Bonds Displaying Preferential Binding to Maltoside over Monosaccharides. J Org Chem 2018; 83:5766-5770. [DOI: 10.1021/acs.joc.8b00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuki Ohishi
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Naoto Yamamoto
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hajime Abe
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Suzuki D, Abe H, Minami T, Matsumoto S, Inouye M. Preparation and Higher-order Structures of 2,6-Pyridylene and 2,6-Pyrazylene Alternating Macrocycle with the Inner Nitrogen Atoms in All the Aromatic Rings. CHEM LETT 2017. [DOI: 10.1246/cl.170815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daiki Suzuki
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194
| | - Hajime Abe
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194
| | - Takaya Minami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa 240-8501
| | - Shinya Matsumoto
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa 240-8501
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194
| |
Collapse
|
17
|
Okochi KD, Monfregola L, Dickerson SM, McCaffrey R, Domaille DW, Yu C, Hafenstine GR, Jin Y, Cha JN, Kuchta RD, Caruthers M, Zhang W. Synthesis of Small-Molecule/DNA Hybrids through On-Bead Amide-Coupling Approach. J Org Chem 2017; 82:10803-10811. [PMID: 28282138 DOI: 10.1021/acs.joc.6b02942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs. Metal catalysts and moisture- and air-free conditions are not required. The products can be easily analyzed by LC-MS with accurate mass resolution. We also explored nanometer-sized shape-persistent macrocycles as novel multitopic organic linkers to prepare SMDHs. SMDHs bearing up to six ODNs were successfully prepared through the coupling of arylenethynylene macrocycles with ODNs, which were used to mediate the assembly of gold nanoparticles.
Collapse
Affiliation(s)
- Kenji D Okochi
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Luca Monfregola
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Sarah Michelle Dickerson
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Ryan McCaffrey
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Dylan W Domaille
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Chao Yu
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Glenn R Hafenstine
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Yinghua Jin
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Jennifer N Cha
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Marvin Caruthers
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry and Biochemistry and ‡Department of Chemical and Biological Engineering, University of Colorado at Boulder Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Chen TH, Popov I, Miljanić OŠ. A Zirconium Macrocyclic Metal-Organic Framework with Predesigned Shape-Persistent Apertures. Chemistry 2016; 23:286-290. [DOI: 10.1002/chem.201605079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Teng-Hao Chen
- Department of Chemistry; Tamkang University; No.151, Yingzhuan Rd., Tamsui Dist. New Taipei City 25137 Taiwan
| | - Ilya Popov
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Ognjen Š. Miljanić
- Department of Chemistry; University of Houston; 112 Fleming Building Houston TX 77204-5003 USA
| |
Collapse
|
19
|
Abe H, Yoneda T, Ohishi Y, Inouye M. D3h-Symmetrical Shape-Persistent Macrocycles Consisting of Pyridine-Acetylene-Phenol Conjugates as an Efficient Host Architecture for Saccharide Recognition. Chemistry 2016; 22:18944-18952. [DOI: 10.1002/chem.201603987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Hajime Abe
- Graduate School of Pharmaceutical Sciences; University of Toyama, Sugitani 2630; Toyama 930-0194 Japan
| | - Tetsuhiro Yoneda
- Graduate School of Pharmaceutical Sciences; University of Toyama, Sugitani 2630; Toyama 930-0194 Japan
| | - Yuki Ohishi
- Graduate School of Pharmaceutical Sciences; University of Toyama, Sugitani 2630; Toyama 930-0194 Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences; University of Toyama, Sugitani 2630; Toyama 930-0194 Japan
| |
Collapse
|
20
|
|
21
|
Ramsay WJ, Rizzuto FJ, Ronson TK, Caprice K, Nitschke JR. Subtle Ligand Modification Inverts Guest Binding Hierarchy in MII8L6 Supramolecular Cubes. J Am Chem Soc 2016; 138:7264-7. [DOI: 10.1021/jacs.6b03858] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- William J. Ramsay
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Felix J. Rizzuto
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Kenji Caprice
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom CB2 1EW
| |
Collapse
|
22
|
Suzuki D, Abe H, Inouye M. Discrete Molecular Recognition Induced Higher-Order Structures: Fibrous Formation Triggered by Melamine Recognition with a Cationic Ethynylpyridine Macrocyclic Host. Org Lett 2016; 18:320-3. [DOI: 10.1021/acs.orglett.5b03502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daiki Suzuki
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hajime Abe
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical
Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
23
|
Ji Q, Le HTM, Wang X, Chen YS, Makarenko T, Jacobson AJ, Miljanić OŠ. Cyclotetrabenzoin: Facile Synthesis of a Shape-Persistent Molecular Square and Its Assembly into Hydrogen-Bonded Nanotubes. Chemistry 2015; 21:17205-9. [DOI: 10.1002/chem.201503851] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 01/07/2023]
|