1
|
Tamura I, Sakamoto DM, Yi B, Saito Y, Yamada N, Takakusagi Y, Sando S. Pimonidazole-alkyne conjugate for sensitive detection of hypoxia by Cu-catalyzed click reaction. ANAL SCI 2024; 40:1061-1070. [PMID: 38478357 PMCID: PMC11126502 DOI: 10.1007/s44211-024-00520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 05/26/2024]
Abstract
Hypoxia is involved in various diseases, such as cancers. Pimonidazole has often been used as the gold-standard marker to visualize hypoxic regions. Pimonidazole labels hypoxic regions by forming a covalent bond with a neighboring protein under hypoxic conditions in the body, which is detected by immunohistochemistry performed on tissue sections. To date, some pimonidazole-fluorophore conjugates have been reported as fluorescent probes for hypoxia imaging that do not require immunostaining. They are superior to pimonidazole because immunostaining can produce high background signals. However, large fluorophores in the conjugates may alter the original biodistribution and reactivity. Here, we report a new hypoxia marker, Pimo-yne, as a pimonidazole-alkyne conjugate. Pimo-yne has a similar hypoxia detection capability as pimonidazole because the alkyne tag is small and can be detected by Cu-catalyzed click reaction with azide-tagged fluorescent dyes. We successfully visualized hypoxic regions in tumor tissue sections using Pimo-yne with reduced background signals. The detected regions overlapped well with those detected by pimonidazole immunohistochemistry. To further reduce the background, we employed a turn-on azide-tagged fluorescent dye.
Collapse
Affiliation(s)
- Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-City, 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-City, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
2
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
3
|
Srivastava I, Moitra P, Brent KM, Wang K, Pandit S, Altun E, Pan D. Biodegradable and switchable near-infrared fluorescent probes for hypoxia detection. Nanomedicine (Lond) 2023; 18:1061-1073. [PMID: 37610080 DOI: 10.2217/nnm-2023-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Aims: Among solid tumors, hypoxia is a common characteristic and responsible for chemotherapeutic resistance. Hypoxia-sensitive imaging probes are therefore essential for early tumor detection, growth monitoring and drug-response evaluation. Despite significant efforts, detecting hypoxic oxygen levels remains challenging. Materials & methods: This paper demonstrates the use of an amine-rich carbon dot probe functionalized with an imidazole group that exhibits reversible fluorescence switching in normoxic and hypoxic environments. Results & conclusion: We demonstrate the ability to emit near-infrared light only under hypoxic conditions. The probes are found to be biodegradable in the presence of human digestive enzymes such as lipase. Ex vivo tissue imaging experiments revealed promising near-infrared signals even at a depth of 5 mm for the probe under ex vivo imaging conditions.
Collapse
Affiliation(s)
- Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kurtis M Brent
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Kevin Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Subhendu Pandit
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Esra Altun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| |
Collapse
|
4
|
Lan Y, Liang Y, Xiao X, Shi Y, Zhu M, Meng C, Yang S, Khan MT, Zhang YJ. Stoichioproteomics study of differentially expressed proteins and pathways in head and neck cancer. BRAZ J BIOL 2021; 83:e249424. [PMID: 34730606 DOI: 10.1590/1519-6984.249424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.
Collapse
Affiliation(s)
- Y Lan
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Liang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - X Xiao
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Shi
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - M Zhu
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - C Meng
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - S Yang
- Ningxia University, School of Life Sciences, Xixia, Yinchuan, Ningxia, P.R. China
| | - M T Khan
- The University of Lahore-Pakistan, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - Y J Zhang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| |
Collapse
|
5
|
Kwon YD, Oh JM, Chun S, Kim HK. Synthesis and evaluation of multivalent nitroimidazole-based near-infrared fluorescent agents for neuroblastoma and colon cancer imaging. Bioorg Chem 2021; 113:104990. [PMID: 34051414 DOI: 10.1016/j.bioorg.2021.104990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Hypoxia is one of key characteristics of microenvironments of solid tumors, and evaluation of hypoxia status in solid tumors is important to determine cancer stage and appropriate treatment. In the present study, novel, multivalent, near-infrared (NIR) fluorescent imaging agents were developed to measure tumor hypoxia. These agents were synthesized using an amino acid as a backbone to connect mono-, bis-, or tris-2-nitroimidazole as a hypoxia-sensitive moiety to enhance uptake by the tumor and to attach sulfo-Cyanine 5.5 as an NIR fluorophore to visualize tumor accumulation. Studies of physical characteristics demonstrated that the novel NIR imaging agents showed suitable optical properties for in vitro and in vivo imaging and were stable in serum. In vitro cellular uptake studies in SK-N-BE(2) and SW620 cell lines demonstrated that NIR imaging agents bearing 2-nitroimidazole structures showed significantly higher tumor uptake in hypoxic cells than in normoxic cells. Moreover, in vivo optical imaging studies using SK-N-BE(2) and SW620 xenografted mice demonstrated that novel, multivalent, 2-nitroimadazole NIR imaging agents with two or three 2-nitroimidazole moieties showed higher uptake in tumor than the control agents with only one 2-nitroimidazole. These observations suggest that novel, multivalent, NIR agents could serve as potential optical imaging agents for evaluating tumor hypoxia.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea.
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
6
|
Huang Y, Jin C, Yu J, Wang L, Lu W. A novel multifunctional 2-nitroimidazole-based bioreductive linker and its application in hypoxia-activated prodrugs. Bioorg Chem 2020; 101:103975. [PMID: 32474180 DOI: 10.1016/j.bioorg.2020.103975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we designed, optimized and synthesized a new multifunctional bioreductive linker (12) containing an alkynyl group (potential click chemistry fragment); the linker is based on 2-nitroimidazole which was expected to simultaneously overcome the drawbacks of hypoxia-activated prodrugs (poor selectivity and unsatisfactory water solubility). Furthermore, a hypoxia-activated, water-soluble SN-38 prodrug was obtained, and it was stable under physiological conditions and was rapidly released as an active drug under hypoxic conditions.
Collapse
Affiliation(s)
- Ying Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Chen Jin
- Xingliu (Shanghai) Pharmaceutical Technology Co., Ltd, Room A406, 1#Building, No. 1976 Middle Gaoke Road, Shanghai 201210, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
7
|
Gulzar A, Wang Z, He F, Yang D, Zhang F, Gai S, Yang P. An 808 nm Light-Sensitized Upconversion Nanoplatform for Multimodal Imaging and Efficient Cancer Therapy. Inorg Chem 2020; 59:4909-4923. [DOI: 10.1021/acs.inorgchem.0c00170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fangmei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
- College of Sciences, Heihe University, Heihe, Heilongjiang 164300, PR China
| |
Collapse
|
8
|
Wang L, Dietz C, Zhou F, Erfanzadeh M, Zhu Q, Smith MB, Yao X. Treasure hunt for peptides with undefined chemical modifications: Proteomics identification of differential albumin adducts of 2-nitroimidazole-indocyanine green in hypoxic tumor. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4376. [PMID: 31128078 DOI: 10.1002/jms.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
2-Nitroimidazole is a well-known chemical probe targeting hypoxic environments of solid tumors, and its derivatives are widely used as imaging agents to investigate tissue and tumor hypoxia. However, the underlying chemistry for the hypoxia-detection capability of 2-nitroimidazole is still unclear. In this study, we deployed a biotin conjugate of 2-nitroimidazole-indocyanine green (2-nitro-ICG) for the investigation of in vivo hypoxia-probing mechanism of 2-nitro-ICG compounds. By implementing mass spectrometry-based proteomics and exhaustive data mining, we report that 2-nitro-ICG and its fragments modify mouse serum albumin as the primary protein target but at two structurally distinct sites and possibly via two different mechanisms. The identification of probe-modified peptides not only contributes to the understanding of the in vivo metabolism of 2-nitroimidazole compounds but also demonstrates a competent analytical workflow that enables the search for peptides with undefined modifications in complex proteome digests.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269
| | - Christopher Dietz
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269
| | - Feifei Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269
| | - Quing Zhu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130
| | - Michael B Smith
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269
| |
Collapse
|
9
|
Ji C, Deng Y, Yuan H, Wu Y, Yuan W. Hypoxia and temperature dual-stimuli-responsive random copolymers: facile synthesis, self-assembly and controlled release of drug. NEW J CHEM 2020. [DOI: 10.1039/d0nj02114h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The micelles self-assembled from P(NIPAM-co-AA-co-NIA) copolymers presented hypoxia and temperature dual-stimuli-responsive properties and a controlled release of drug was achieved using them.
Collapse
Affiliation(s)
- Chenming Ji
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yinlu Deng
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Hua Yuan
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Yongzhen Wu
- EYE & ENT Hospital of Fudan University
- Shanghai 200031
- People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
10
|
Deng Y, Yuan H, Yuan W. Hypoxia-responsive micelles self-assembled from amphiphilic block copolymers for the controlled release of anticancer drugs. J Mater Chem B 2018; 7:286-295. [PMID: 32254553 DOI: 10.1039/c8tb02505c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(methacrylic acid-co-2-nitroimidazole methacrylate) (PEG-b-P(MAA-co-NIMA)) were synthesized by the combination of atom transfer radical polymerization (ATRP), hydrolysis and EDC reactions. These copolymers could self-assemble into spherical micelles in water. 2-Nitroimidazole (NI) groups presented hypoxia-responsive properties under hypoxia conditions. The hydrophobic NI groups could be converted into hydrophilic aminoimidazole (AI) groups, which would lead to the expansion of micelles. Moreover, the content of NI groups in the copolymers would affect the hydrophilic-hydrophobic balance and therefore influence the self-assembly behaviour of the copolymer and the morphologies of the micelles. The copolymer micelles were used as a drug delivery system for controlled release of anticancer drug doxorubicin (DOX). The in vitro cytotoxicity investigation revealed that the DOX-loaded micelles showed higher toxicity to hypoxic cells than to normoxic cells. As a result, the block copolymers are expected to be used as an intelligent carrier for hydrophobic drugs to treat hypoxia-associated diseases.
Collapse
Affiliation(s)
- Yinlu Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| | | | | |
Collapse
|
11
|
The Structure and Activity of Double-Nitroimidazoles. A Mini-Review. Sci Pharm 2018; 86:scipharm86030030. [PMID: 30044443 DOI: 10.3390/scipharm86030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 02/02/2023] Open
Abstract
Many interesting applications have been found for nitroimidazoles as therapeutic agents. Among others, some of these compounds can radiosensitize hypoxic tumor cells. The introduction of a second nitroimidazole ring to the molecule can improve the level of its pharmacological effect. The aim of this article is to overview the literature concerning active compounds that contain two nitroimidazole moieties in their structures.
Collapse
|
12
|
Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy 2017; 9:819-835. [DOI: 10.2217/imt-2017-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The success of any given cancer immunotherapy relies on several key factors. In particular, success hinges on the ability to stimulate the immune system in a controlled and precise fashion, select the best treatment options and appropriate therapeutic agents, and use highly effective tools to accurately and efficiently assess the outcome of the immunotherapeutic intervention. Furthermore, a deep understanding and effective utilization of tumor-associated macrophages (TAMs), nanomedicine and biomedical imaging must be harmonized to improve treatment efficacy. Additionally, a keen appreciation of the dynamic interplay that occurs between immune cells and the tumor microenvironment (TME) is also essential. New advances toward the modulation of the immune TME have led to many novel translational research approaches focusing on the targeting of TAMs, enhanced drug and nucleic acid delivery, and the development of theranostic probes and nanoparticles for clinical trials. In this review, we discuss the key cogitations that influence TME, TAM modulations and immunotherapy in solid tumors as well as the methods and resources of tracking the tumor response. The vast array of current nanomedicine technologies can be readily modified to modulate immune function, target specific cell types, deliver therapeutic payloads and be monitored using several different imaging modalities. This allows for the development of more effective treatments, which can be specifically designed for particular types of cancer or on an individual basis. Our current capacities have allowed for greater use of theranostic probes and multimodal imaging strategies that have led to better image contrast, real-time imaging capabilities leveraging targeting moieties, tracer kinetics and enabling more detailed response profiles at the cellular and molecular levels. These novel capabilities along with new discoveries in cancer biology should drive innovation for improved biomarkers for efficient and individualized cancer therapy.
Collapse
Affiliation(s)
- Saeid Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Ryan Spitler
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Gregor Hutter
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Jim Q Ho
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Mohan Pauliah
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology, Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155–6451, Iran
- Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Jin C, Zhang Q, Lu W. Synthesis and biological evaluation of hypoxia-activated prodrugs of SN-38. Eur J Med Chem 2017; 132:135-141. [PMID: 28350997 DOI: 10.1016/j.ejmech.2017.03.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/01/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
We designed new hypoxia-activated prodrugs by conjugating (1-methyl-2-nitro-1H-imidazol-5-yl)methanol with 7-ethyl-10-hydroxy camptothecin (SN-38). Initially, we improved the method of multi-gram scale synthesis of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol, which increased the yield to 42% compared to 8% by the original synthesis method. The improved method was used to synthesize evofosfamide (TH-302) and hypoxia-activated prodrugs of SN-38. Two different linkages between (1-methyl-2-nitro-1H-imidazol-5-yl)methanol and SN-38 were evaluated that afforded different hypoxia-selectivity and toxicity. Compound 16 (IOS), containing an ether linkage, was considered to be a promising hypoxia-selective antitumor agent.
Collapse
Affiliation(s)
- Chen Jin
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Qiumeng Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | - Wei Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
14
|
Luciano M, Erfanzadeh M, Zhou F, Zhu H, Bornhütter T, Röder B, Zhu Q, Brückner C. In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent. Org Biomol Chem 2017; 15:972-983. [PMID: 28059409 PMCID: PMC5302001 DOI: 10.1039/c6ob02640k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and photophysical properties of a tetra-PEG-modified and freely water-soluble quinoline-annulated porphyrin are described. We previously demonstrated the ability of quinoline-annulated porphyrins to act as an in vitro NIR photoacoustic imaging (PAI) contrast agent. The solubility of the quinoline-annulated porphyrin derivative in serum now allowed the assessment of the efficacy of the PEGylated derivative as an in vivo NIR contrast agent for the PAI of an implanted tumor in a mouse model. A multi-fold contrast enhancement when compared to the benchmark dye ICG could be shown, a finding that could be traced to its photophysical properties (short triplet lifetimes, low fluorescence and singlet oxygen sensitization quantum yields). A NIR excitation wavelength of 790 nm could be used, fully taking advantage of the optical window of tissue. Rapid renal clearance of the dye was observed. Its straight-forward synthesis, optical properties with the possibility for further optical fine-tuning, nontoxicity, favorable elimination rates, and contrast enhancement make this a promising PAI contrast agent. The ability to conjugate the PAI chromophore with a fluorescent tag using a facile and general conjugation strategy was also demonstrated.
Collapse
Affiliation(s)
- Michael Luciano
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| | - Mohsen Erfanzadeh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-4157, USA
| | - Feifei Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-4157, USA
| | - Hua Zhu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| | - Tobias Bornhütter
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Beate Röder
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Quing Zhu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-4157, USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
15
|
Elmes RBP. Bioreductive fluorescent imaging agents: applications to tumour hypoxia. Chem Commun (Camb) 2016; 52:8935-56. [DOI: 10.1039/c6cc01037g] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of new optical chemosensors for various reductases presents an ideal approach to visualise areas of tissue hypoxia.
Collapse
Affiliation(s)
- Robert B. P. Elmes
- Department of Chemistry
- Maynooth University
- National University of Ireland
- Maynooth
- Ireland
| |
Collapse
|
16
|
Liu Y, Pei Q, Chen L, Li Z, Xie Z. Reduction-responsive fluorescence off–on BODIPY–camptothecin conjugates for self-reporting drug release. J Mater Chem B 2016; 4:2332-2337. [DOI: 10.1039/c6tb00009f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reduction-responsive fluorescence off–on theranostic prodrug with self-reporting drug release was constructed based on boron dipyrromethene (BODIPY) and therapeutic drug camptothecin (CPT) with a long flexible disulfide linker.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhensheng Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|