1
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Zhang ZH, Peng JY, Chen YB, Wang C, Chen C, Song GL. Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2023; 12:antiox12030702. [PMID: 36978950 PMCID: PMC10045564 DOI: 10.3390/antiox12030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
3
|
Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
|
4
|
George G, Koyiparambath VP, Sukumaran S, Nair AS, Pappachan LK, Al-Sehemi AG, Kim H, Mathew B. Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms23063121. [PMID: 35328542 PMCID: PMC8953944 DOI: 10.3390/ijms23063121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, β-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.
Collapse
Affiliation(s)
- Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Sunitha Sukumaran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Leena K. Pappachan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
5
|
Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021; 201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid β (Aβ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 μM), 5a (IC50 = 0.084 ± 0.003 μM), 2c (IC50 = 0.095 ± 0.019 μM) and 2a (IC50 = 0.111 ± 0.006 μM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 μM to 15.17 ± 6.03 μM) and reduced the aggregation propensity of Aβ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 μM and 5.0 ± 1.1 μM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.
Collapse
Affiliation(s)
- Fabiola Kamecki
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Diego Carvalho
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Carolina Marcucci
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Marina Rademacher
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Alejandra Marcos
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Juan Andrés Abin-Carriquiry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Natalia Colettis
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
6
|
St-Gelais A, Alsarraf J, Legault J, Plourde J, Pichette A. Effect of the Chromone Core Substitution of Dirchromone on the Resultant Biological Activities. JOURNAL OF NATURAL PRODUCTS 2021; 84:2786-2794. [PMID: 34786945 DOI: 10.1021/acs.jnatprod.1c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dirchromone is a bioactive vinyl sulfoxide-bearing chromone first isolated from the shrub Dirca palustris. Altogether, 32 of its derivatives were prepared to assess the effect of substitution of its chromone core upon activities against cancer cell lines, Gram-positive bacteria, and fungi (such as Candida albicans). All compounds were synthesized following a synthetic strategy involving Pummerer and soft-enolization Baker-Venkataraman rearrangements. Substituent position changes induced little variability on the activities tested. There was no correlation between cytotoxic and antibacterial effects, suggesting different underlying mechanisms of action. In particular, hydroxy group and cyanide substituents diminished cytotoxicity, with the latter featuring enhanced antibacterial activity. Higher homologues of 6-alkoxydirchromones also exhibited progressively emerging antifungal activity. Other modifications had moderate effects on cytotoxicity with some derivatives leading to increased potency. This behavior highlights the robustness of the natural dirchromone pharmacophore toward decoration, thus paving the way for more elaborate future drug design.
Collapse
Affiliation(s)
- Alexis St-Gelais
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Saguenay (QC), G7H 2B1, Canada
| | - Jérôme Alsarraf
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Saguenay (QC), G7H 2B1, Canada
| | - Jean Legault
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Saguenay (QC), G7H 2B1, Canada
| | - Joanne Plourde
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Saguenay (QC), G7H 2B1, Canada
| | - André Pichette
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Saguenay (QC), G7H 2B1, Canada
| |
Collapse
|
7
|
Lachowicz JI, Lecca LI, Meloni F, Campagna M. Metals and Metal-Nanoparticles in Human Pathologies: From Exposure to Therapy. Molecules 2021; 26:6639. [PMID: 34771058 PMCID: PMC8587420 DOI: 10.3390/molecules26216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
An increasing number of pathologies correlates with both toxic and essential metal ions dyshomeostasis. Next to known genetic disorders (e.g., Wilson's Disease and β-Thalassemia) other pathological states such as neurodegeneration and diabetes are characterized by an imbalance of essential metal ions. Metal ions can enter the human body from the surrounding environment in the form of free metal ions or metal-nanoparticles, and successively translocate to different tissues, where they are accumulated and develop distinct pathologies. There are no characteristic symptoms of metal intoxication, and the exact diagnosis is still difficult. In this review, we present metal-related pathologies with the most common onsets, biomarkers of metal intoxication, and proper techniques of metal qualitative and quantitative analysis. We discuss the possible role of drugs with metal-chelating ability in metal dyshomeostasis, and present recent advances in therapies of metal-related diseases.
Collapse
Affiliation(s)
| | | | | | - Marcello Campagna
- Division of Occupational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, 09048 Monserrato, CA, Italy; (J.I.L.); (L.I.L.); (F.M.)
| |
Collapse
|
8
|
Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer's disease. Bioorg Chem 2021; 108:104681. [PMID: 33571811 PMCID: PMC7928223 DOI: 10.1016/j.bioorg.2021.104681] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, β unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA.
| | - Sunil P Upadhyay
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans' Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
9
|
4-Benzyloxylonchocarpin and Muracatanes A-C from Ranunculus muricatus L. and Their Biological Effects. Biomolecules 2020; 10:biom10111562. [PMID: 33212893 PMCID: PMC7698453 DOI: 10.3390/biom10111562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Ranunculus muricatus L. is a spiny fruit buttercup that is used in various traditional medicinal systems. In the current investigation of R. muricatus, the new chalcone 4-benzyloxylonchocarpin (1), the new anthraquinone muracatanes A (2), the new-to-nature anthraquinone muracatanes B (3), and the new naphthalene analog muracatanes C (4) were isolated, in addition to the three previously reported compounds, 4-methoxylonchocarpin (5), β-sitosterol (6), and β-sitosterol β-D-glucopyranoside (7). Their structures were elucidated using 1D (1H and 13C) and 2D (COSY, HSQC, and HMBC) NMR spectroscopy and HR-ESI-MS. Chalcone 1 showed potent acetylcholinesterase inhibitory effects with Ki of 5.39 µM and Ki′ of 3.54 µM, but none of the isolated compounds showed inhibitory activity towards butyrylcholinesterase. Anthraquinone 3 illustrated α-glucosidase inhibitory effects with IC50-values of 164.46 ± 83.04 µM. Compound 5 displayed moderate cytotoxic activity towards ovarian carcinoma (A2780, IC50 = 25.4 µM), colorectal adenocarcinoma (HT29, IC50 = 20.2 µM), breast cancer (MCF7, IC50 = 23.7 µM), and thyroid carcinoma (SW1736, IC50 = 26.2 µM) while it was inactive towards pharynx carcinoma (FaDu: IC50 > 30 µM).
Collapse
|
10
|
Aksenov NA, Aksenov DA, Skomorokhov AA, Prityko LA, Aksenov AV, Griaznov GD, Rubin M. Synthesis of 2-(1H-Indol-2-yl)acetamides via Brønsted Acid-Assisted Cyclization Cascade. J Org Chem 2020; 85:12128-12146. [DOI: 10.1021/acs.joc.0c01344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Anton A. Skomorokhov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Lidiya A. Prityko
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Georgii D. Griaznov
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Ultrasounds-mediated 10-seconds synthesis of chalcones as potential farnesyltransferase inhibitors. Bioorg Med Chem Lett 2020; 30:127149. [PMID: 32247731 DOI: 10.1016/j.bmcl.2020.127149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
A broad range of chalcones and derivatives were easily and rapidly synthesized, following Claisen-Schmidt condensation of (hetero)aryl ketones and (hetero)aryl aldehydes using a ultrasound probe. A comparison was made with classical magnetic stirring experiments, and an optimization study was realized, showing lithium hydroxide to be the best basic catalyst of the studied condensations. By-products of the reactions (β-hydroxy-ketone, diketones, and cyclohexanols) were also isolated. All compounds were evaluated in vitro for their ability to inhibit human farnesyltransferase, a protein implicated in cancer and rare diseases and on the NCI-60 cancer cell lines panel. Molecules showed inhibitory activity on the target protein and cytostatic effect on different cell lines with particular activity against MCF7, breast cancer cells.
Collapse
|
12
|
Thamban Chandrika N, Fosso MY, Tsodikov OV, LeVine H, Garneau-Tsodikova S. Combining Chalcones with Donepezil to Inhibit Both Cholinesterases and Aβ Fibril Assembly. Molecules 2019; 25:E77. [PMID: 31878304 PMCID: PMC6983213 DOI: 10.3390/molecules25010077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
The fact that the number of people with Alzheimer's disease is increasing, combined with the limited availability of drugs for its treatment, emphasize the need for the development of novel effective therapeutics for treating this brain disorder. Herein, we focus on generating 12 chalcone-donepezil hybrids, with the goal of simultaneously targeting amyloid-β (Aβ) peptides as well as cholinesterases (i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)). We present the design, synthesis, and biochemical evaluation of these two series of novel 1,3-chalcone-donepezil (15a-15f) or 1,4-chalcone-donepezil (16a-16f) hybrids. We evaluate the relationship between their structures and their ability to inhibit AChE/BChE activity as well as their ability to bind Aβ peptides. We show that several of these novel chalcone-donepezil hybrids can successfully inhibit AChE/BChE as well as the assembly of N-biotinylated Aβ(1-42) oligomers. We also demonstrate that the Aβ binding site of these hybrids differs from that of Pittsburgh Compound B (PIB).
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Marina Y. Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| | - Harry LeVine
- Center on Aging, School of Medicine, University of Kentucky, Lexington, KY 40536-0230, USA;
- Department of Molecular and Cellular Biochemistry, School of Medicine, University of Kentucky, Lexington, KY 40536-0230, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (N.T.C.); (M.Y.F.); (O.V.T.)
| |
Collapse
|
13
|
Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug Dev Res 2019; 81:165-183. [PMID: 31820476 DOI: 10.1002/ddr.21587] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), a complex neurodegenerative disorder causing multiple cellular changes including impaired cholinergic system, beta-amyloid (βA) aggregation, tau hyperphosphorylation, metal dyshomeostasis, neuroinflammation, and many other pathways are involved in the pathogenesis of the disease. However, the exact cause of the disease is not known. Natural products such as flavonoids, alkaloids, resveratrol, and curcumin have multifunctional properties, and have drawn the attention of the researchers because these molecules are capable of interacting concurrently with the multiple targets of AD. Therefore, natural products and their derivatives with proven efficacy could be used in the management of the neurodegenerative disorders. This review focuses on the natural product based multitarget directed ligands like tacrine-coumarin, tacrine-huperzine A, harmine-isoxazoline, berberine-thiophenyl, galantamine-indole, pyridoxine-resveratrol, donepezil-curcumin and their mode of action.
Collapse
Affiliation(s)
- Pooja Patil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India.,Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Jeet Singh Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
15
|
Rani A, Anand A, Kumar K, Kumar V. Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin Drug Discov 2019; 14:249-288. [DOI: 10.1080/17460441.2019.1573812] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Kewal Kumar
- Department of Applied Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
16
|
Mphahlele MJ, Agbo EN, Gildenhuys S. Synthesis and Evaluation of the 4-Substituted 2-Hydroxy-5-Iodochalcones and Their 7-Substituted 6-Iodoflavonol Derivatives for Inhibitory Effect on Cholinesterases and β-Secretase. Int J Mol Sci 2018; 19:ijms19124112. [PMID: 30567381 PMCID: PMC6321475 DOI: 10.3390/ijms19124112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 11/24/2022] Open
Abstract
A series of 2-aryl-3-hydroxy-6-iodo-4H-chromen-4-ones substituted at the 7-position with a halogen atom (X = F, Cl and Br) or methoxy group and their corresponding 4-substituted 2-hydroxy-5-iodochalcone precursors were evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase (BACE1) activities. Although moderate inhibitory effect was observed for the chalcones against AChE, derivatives 2h, 2j and 2n exhibited significant inhibitory effect against BChE and BACE-1. The 2-aryl-7-fluoro-8-iodoflavonols 3b and 3c, on the other hand, exhibited increased activity and selectivity against AChE and reduced effect on BACE-1. The flavonols 3h, 3i, 3k, 3l and 3p exhibited moderate inhibitory effect against AChE, but significant inhibition against BChE. Compounds 2j and 3l exhibited non-competitive mode of inhibition against BACE-1. Molecular docking predicted strong interactions with the protein residues in the active site of BACE-1 implying these compounds bind with the substrate. Similarly docking studies predicted interaction of the most active compounds with both CAS and PAS of either AChE or BChE with mixed type of enzyme inhibition confirmed by kinetic studies.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Emmanuel N Agbo
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|
17
|
Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules 2018; 23:molecules23123252. [PMID: 30544832 PMCID: PMC6321525 DOI: 10.3390/molecules23123252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
A series of 22 donepezil analogues were synthesized through alkylation/benzylation and compared to donepezil and its 6-O-desmethyl adduct. All the compounds were found to be potent inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes responsible for the hydrolysis of the neurotransmitter acetylcholine in Alzheimer’s disease patient brains. Many of them displayed lower inhibitory concentrations of EeAChE (IC50 = 0.016 ± 0.001 µM to 0.23 ± 0.03 µM) and EfBChE (IC50 = 0.11 ± 0.01 µM to 1.3 ± 0.2 µM) than donepezil. One of the better compounds was tested against HsAChE and was found to be even more active than donepezil and inhibited HsAChE better than EeAChE. The analogues with the aromatic substituents were generally more potent than the ones with aliphatic substituents. Five of the analogues also inhibited the action of β-secretase (BACE1) enzyme.
Collapse
|
18
|
Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg Chem 2018; 80:86-93. [DOI: 10.1016/j.bioorg.2018.06.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 12/19/2022]
|
19
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK, Lawrenz MB, Garneau-Tsodikova S, Perry RD. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2018; 9:757-772. [PMID: 28540946 DOI: 10.1039/c7mt00126f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reinvestigation of synthesis of halo-substituted 3-phenyl-1-(2-pyridyl)-2-propen-1-ones (azachalcones). A tandem reaction for formation of penta-substituted cyclohexanols. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Zhao FC, Wu Y, Song XJ. Design and Development of a Novel Chalcone Derivative as an Anticholinesterase Inhibitor for Possible Treatment of Dementia. Med Sci Monit 2017; 23:3311-3317. [PMID: 28687725 PMCID: PMC5513680 DOI: 10.12659/msm.901842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cognitive decline (e.g., memory loss), which mainly occurs in the elderly, is termed dementia. In the present study, we intended to explore the cholinesterase inhibitory activity of some novel synthesized chalcones, together with their effect on β-amyloid anti-aggregation. MATERIAL AND METHODS A novel class of chalcone derivatives have been synthesized and characterized by FT-IR, ¹H-NMR, ¹³C-NMR, and mass and elemental analysis. These derivatives were later used for the determination of acetylcholinesterase (AChE) inhibitory and b-amyloid anti-aggregation activity. RESULTS The results of the study showed that among the developed compounds, 8g inhibits AChE more prominently than BuChE, as suggested by a selectivity index (SI) of 2.88. Furthermore, the most potent compound, 8g, showed considerable action in inhibition of β-secretase and Aβ aggregation, but not as prominent as that of curcumin as a standard. CONCLUSIONS In conclusion, our study revealed a novel class of chalcone derivatives as a selective inhibitor of AChE with considerably action against β-secretase and Aβ aggregation. Our results may be useful in developing AD drug therapy and warrant further investigation to generate more advanced analogues.
Collapse
Affiliation(s)
- Fu-Chun Zhao
- Department of Neurology, Linyi People’s Hospital, Linyi, Shandong, P.R. China
| | - Yan Wu
- Department of Reproductive Medicine, Linyi, People’s Hospital, Linyi, Shandong, P.R. China
| | - Xiao-Jie Song
- Department of Neurology, Linyi People’s Hospital, Linyi, Shandong, P.R. China
| |
Collapse
|
23
|
Abstract
AIM Alzheimer's disease is a still untreatable multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this picture, the recent reformulation of the cholinergic hypothesis renewed the interest for acetylcholinesterase inhibitors. In this paper, a series of naturally inspired chalcone-based carbamates was designed to target cholinesterase enzymes and possibly generate fragments endowed with neuroprotective activity in situ. Results & methodology: All compounds presented in this study showed nanomolar potency for cholinesterase inhibition. Notably, fragment 11d also displayed an interesting neuroprotective profile. CONCLUSION These new derivatives are able to simultaneously modulate different key targets involved in Alzheimer's disease, and could be regarded as promising starting points for the development of disease-modifying drug candidates. [Formula: see text].
Collapse
|
24
|
Hu M, Xing F, Zhao Y, Bai YL, Li MX, Zhu S. Phenolacetyl Viologen as Multifunctional Chromic Material for Fast and Reversible Sensor of Solvents, Base, Temperature, Metal Ions, NH 3 Vapor, and Grind in Solution and Solid State. ACS OMEGA 2017; 2:1128-1133. [PMID: 31457495 PMCID: PMC6641105 DOI: 10.1021/acsomega.7b00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 06/09/2023]
Abstract
Electron-withdrawing/coordinating o-phenolacetyl-substituted viologen can act as a visual sensor for solvents, bases, and temperature in organic solvents. Due to chelating phenolacetyl groups, this viologen can coordinate to Fe(III), Cu(II), and ZnCl2 in aqueous and DMF solutions. Interestingly, this viologen can respond to temperature, grind, and NH3 vapor in its solid state. Stimuli response is visible, fast, and fully reversible in air at room temperature. The color change is attributed to the enolic and/or free radical structure. This is the most versatile chromic material that responds to chemical and physical stimuli in both solution and solid state.
Collapse
|
25
|
Pergomet JL, Bracca ABJ, Kaufman TS. Total syntheses of gerberinol I and the pterophyllins 2 and 4 using the Casnati–Skattebøl reaction under different conditions. Org Biomol Chem 2017; 15:7040-7049. [DOI: 10.1039/c7ob01471f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The total syntheses of the title compounds were achieved from a single coumarin precursor, taking advantage of the temperature-dependent divergent outcomes of the Casnati–Skattebøl reaction.
Collapse
Affiliation(s)
- Jorgelina L. Pergomet
- Instituto de Química Rosario (IQUIR
- CONICET-UNR)
- and Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- S2002LRK Rosario
| | - Andrea B. J. Bracca
- Instituto de Química Rosario (IQUIR
- CONICET-UNR)
- and Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- S2002LRK Rosario
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR
- CONICET-UNR)
- and Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- S2002LRK Rosario
| |
Collapse
|
26
|
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Fosso MY, McCarty K, Head E, Garneau-Tsodikova S, LeVine H. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils. ACS Chem Neurosci 2016; 7:171-6. [PMID: 26682772 DOI: 10.1021/acschemneuro.5b00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.
Collapse
Affiliation(s)
- Marina Y. Fosso
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | |
Collapse
|