1
|
Spijkers-Shaw S, Devlin R, Shields NJ, Feng X, Peck T, Lenihan-Geels G, Davis C, Young SL, La Flamme AC, Zubkova OV. Synthesis and Detection of BODIPY-, Biotin-, and 19 F- Labeled Single-Entity Dendritic Heparan Sulfate Mimetics. Angew Chem Int Ed Engl 2024; 63:e202316791. [PMID: 38308859 DOI: 10.1002/anie.202316791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/05/2024]
Abstract
Heparin and heparan sulfate (HS) are naturally occurring mammalian glycosaminoglycans, and their synthetic and semi-synthetic mimetics have attracted significant interest as potential therapeutics. However, understanding the mechanism of action by which HS, heparin, and HS mimetics have a biological effect is difficult due to their highly charged nature, broad protein interactomes, and variable structures. To address this, a library of novel single-entity dendritic mimetics conjugated to BODIPY, Fluorine-19 (19 F), and biotin was synthesized for imaging and localization studies. The novel dendritic scaffold allowed for the conjugation of labeling moieties without reducing the number of sulfated capping groups, thereby better mimicking the multivalent nature of HS-protein interactions. The 19 F labeled mimetics were assessed in phantom studies and were detected at concentrations as low as 5 mM. Flow cytometric studies using a fluorescently labeled mimetic showed that the compound associated with immune cells from tumors more readily than splenic counterparts and was directed to endosomal-lysosomal compartments within immune cells and cancer cells. Furthermore, the fluorescently labeled mimetic entered the central nervous system and was detectable in brain-infiltrating immune cells 24 hours after treatment. Here, we report the enabling methodology for rapidly preparing various labeled HS mimetics and molecular probes with diverse potential therapeutic applications.
Collapse
Affiliation(s)
- Sam Spijkers-Shaw
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, United States
| | - Rory Devlin
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Nicholas J Shields
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2006, Australia
| | - Xiang Feng
- MR Solutions Ltd., Guildford, Surrey, GU3 1LR, UK
- Sydney Imaging, Core Research Facility, The University of Sydney, NSW, 2006, Australia
| | - Tessa Peck
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Georgia Lenihan-Geels
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Connor Davis
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Sarah L Young
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2006, Australia
- Faculty of Science, University of Canterbury, Christchurch, New Zealand
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - Olga V Zubkova
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| |
Collapse
|
2
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
3
|
Pongener I, O'Shea C, Wootton H, Watkinson M, Miller GJ. Developments in the Chemical Synthesis of Heparin and Heparan Sulfate. CHEM REC 2021; 21:3238-3255. [PMID: 34523797 DOI: 10.1002/tcr.202100173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Heparin and heparan sulfate represent key members of the glycosaminoglycan family of carbohydrates and underpin considerable repertoires of biological importance. As such, their efficiency of synthesis represents a key requirement, to further understand and exploit the H/HS structure-to-biological function axis. In this review we focus on chemical approaches to and methodology improvements for the synthesis of these essential sugars (from 2015 onwards). We first consider advances in accessing the heparin-derived pentasaccharide anticoagulant fondaparinux. This is followed by heparan sulfate targets, including key building block synthesis, oligosaccharide construction and chemical sulfation techniques. We end with a consideration of technological improvements to traditional, solution-phase synthesis approaches that are increasingly being utilised.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Conor O'Shea
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Hannah Wootton
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Michael Watkinson
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Sheppard DJ, Cameron SA, Tyler PC, Schwörer R. Comparison of disaccharide donors for heparan sulfate synthesis: uronic acids vs. their pyranose equivalents. Org Biomol Chem 2020; 18:4728-4733. [PMID: 32531013 DOI: 10.1039/d0ob00671h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Late oxidation of hexose based building blocks or the use of uronic acid containing building blocks are two complementary strategies in the synthesis of glycosaminoglycans, the latter simplifiying the later stages of the process. Here we report the synthesis and evaluation of various disaccharide donors-uronic acids and their pyranose equivalents-for the synthesis of heparan sulfate, using an established protective group strategy. Hexose based "imidate" type donors perform well in the studied glycosylations, while their corresponding uronate esters fall short; a uronate ester thioglycoside performs equal to, if not better than, a hexose thioglycoside equivalent.
Collapse
Affiliation(s)
- Daniel J Sheppard
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Scott A Cameron
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Peter C Tyler
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Ralf Schwörer
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| |
Collapse
|
6
|
Budhadev D, Saxby K, Walton J, Davies G, Tyler PC, Schwörer R, Fascione MA. Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Org Biomol Chem 2019; 17:1817-1821. [PMID: 30543331 DOI: 10.1039/c8ob02756k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography.
Collapse
|
7
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|
8
|
Abstract
R- and S-Glycerol mycolates derived from single synthetic α-, keto- and methoxy-mycolic acids are described.
Collapse
Affiliation(s)
- Omar T Ali
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | - Mohaned M Sahb
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK
| | | | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, UK.
| |
Collapse
|
9
|
Dalton CE, Quinn SD, Rafferty A, Morten MJ, Gardiner JM, Magennis SW. Single-Molecule Fluorescence Detection of a Synthetic Heparan Sulfate Disaccharide. Chemphyschem 2016; 17:3442-3446. [PMID: 27538128 PMCID: PMC5111599 DOI: 10.1002/cphc.201600750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/11/2022]
Abstract
The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.
Collapse
Affiliation(s)
- Charlotte E Dalton
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven D Quinn
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Aidan Rafferty
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Michael J Morten
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - John M Gardiner
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven W Magennis
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|