1
|
Le Guern F, Ouk TS, Arnoux P, Frochot C, Sol V. Easy and versatile cellulosic support inhibiting broad spectrum strains: synergy between photodynamic antimicrobial therapy and polymyxin B. Photochem Photobiol Sci 2024; 23:395-407. [PMID: 38300464 DOI: 10.1007/s43630-023-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Despite advances achieved in the health field over the last decade, infections caused by resistant bacterial strains are an increasingly important societal issue that needs to be addressed. New approaches have already been developed to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide a promising alternative method to eradicate microbes. This approach has already inspired the development of innovative surfaces. Interesting results were achieved against Gram-positive bacteria, but it also appeared that Gram-negative strains, especially Pseudomonas aeruginosa, were less sensitive to PACT. However, materials coated with cationic porphyrins have already proven their wide-spectrum activity, but these materials were not suitable for industrial-scale production. The main aim of this work was the design of a large-scale evolutionary material based on PACT and antibiotic prophylaxis. Transparent regenerated cellulose has been simply impregnated with a usual cationic porphyrin (N-methylpyridyl) and an antimicrobial peptide (polymyxin B). In addition to its photophysical properties, this film exhibited a wide-spectrum bactericidal activity over 4 days despite daily application of fresh bacterial inoculums. The efficiency of PACT and polymyxin B combination could help to reduce the emergence of bacterial multi-resistant strains and we believe that this kind of material would provide an excellent opportunity to prevent bacterial contamination of bandages or packaging.
Collapse
Affiliation(s)
- Florent Le Guern
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | | | - Phillipe Arnoux
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Vincent Sol
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France.
| |
Collapse
|
2
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Mazumder ZH, Sharma D, Sengupta D, Mukherjee A, Boruah JS, Basu S, Shukla PK, Jha T. Photodynamic activity attained through the ruptured π-conjugation of pyridyl groups with a porphyrin macrocycle: synthesis and the photophysical and photobiological evaluation of 5-mono-(4-nitrophenyl)-10,15,20-tris-[4-(phenoxymethyl)pyridine]-porphyrin and its Zn(ii) complex. Photochem Photobiol Sci 2020; 19:1776-1789. [PMID: 33320165 DOI: 10.1039/d0pp00319k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article compares a reported hydrophobic and photobiologically inert porphyrin synthon, (NPh)TPyP, bearing a single meso-4-nitrophenyl group and three meso-pyridyl groups (A3B type) with a new photobiologically active metal-free porphyrin, P3N, and its zinc-complex, P3NZn, which bear a meso-4-nitrophenyl group along with three distal pyridyl groups. Both P3N and P3NZn experience ruptured π-conjugation with the porphyrin macrocycle and attain hydrophilicity, as indicated via density functional theory (DFT) calculations, becoming photobiologically active under in vitro conditions. The non-invasive photodynamic activity (PDA) predominantly shown by the zinc-complex P3NZn (with higher hydrophilicity) towards KRAS-mutated human lung-cancer cells (A549) was studied. The results indicate the existence of intracellular singlet oxygen inflicted anticancer PDA, which is apparent through the upregulation of intracellular reactive oxygen species (ROS) and the downregulation of both intracellular superoxide dismutase (SOD) and intracellular reduced glutathione (GSH) levels. The trends obtained from both SOD and GSH assays were indicators of therapeutic defence against oxidative stress via neutralizing superoxide anions (SOA).
Collapse
Affiliation(s)
- Zeaul H Mazumder
- Department of Chemistry, Assam University, Silchar, Assam 788011, India.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Mazumdar ZH, Sharma D, Mukherjee A, Basu S, Shukla PK, Jha T, Sengupta D. meso-Thiophenium Porphyrins and Their Zn(II) Complexes: A New Category of Cationic Photosensitizers. ACS Med Chem Lett 2020; 11:2041-2047. [PMID: 33062190 DOI: 10.1021/acsmedchemlett.0c00266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
A new category of cationic meso-thiophenium porphyrins are introduced as possible alternatives to the popular meso-pyridinium porphyrins. Combinations of cationic porphyrins bearing meso-2-methylthiophenium and meso-4-hydroxyphenyl moieties T2(OH)2M (A2B2 type) and T(OH)3M (AB3 type) along with their zinc(II) complexes T2(OH)2MZn and T(OH)3MZn, are reported. The increase in the number of thienyl groups attached to the meso-positions of the porphyrin derivatives (A2B2 frame) has been shown to impart longer fluorescence lifetimes and stronger photocytotoxicity toward A549 lung cancer cells, as evident with T2(OH)2M and its corresponding diamagnetic metal complex T2(OH)2MZn. The photoactivated T2(OH)2MZn imparts an early stage reactive oxygen species (ROS) upregulation and antioxidant depletion in A549 cells and contributes to the strongest oxidative stress-induced cell death mechanism in the series. The DFT calculations of the singlet-triplet energy gap (ΔE) of all the four hydrophilic thiophenium porphyrin derivatives establish the potential applicability of these cationic photosensitizers as PDT agents.
Collapse
Affiliation(s)
- Zeaul Hoque Mazumdar
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| | - Debdulal Sharma
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata-700029, West Bengal, India
| | - Samita Basu
- Chemical Science Division Saha, Institute of Nuclear Physics, Kolkata-700064, West Bengal, India
| | - Pradeep Kumar Shukla
- Department of Physics, Assam University, Dargakona, Silchar-788011, Assam, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Devashish Sengupta
- Department of Chemistry, Assam University, Dargakona, Silchar-788011, Assam India
| |
Collapse
|
5
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
6
|
Ferino A, Nicoletto G, D'Este F, Zorzet S, Lago S, Richter SN, Tikhomirov A, Shchekotikhin A, Xodo LE. Photodynamic Therapy for ras-Driven Cancers: Targeting G-Quadruplex RNA Structures with Bifunctional Alkyl-Modified Porphyrins. J Med Chem 2020; 63:1245-1260. [PMID: 31930916 DOI: 10.1021/acs.jmedchem.9b01577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Designing small molecules able to break down G4 structures in mRNA (RG4s) offers an interesting approach to cancer therapy. Here, we have studied cationic porphyrins (CPs) bearing an alkyl chain up to 12 carbons, as they bind to RG4s while generating reactive oxygen species upon photoirradiation. Fluorescence-activated cell sorting (FACS) and confocal microscopy showed that the designed alkyl CPs strongly penetrate cell membranes, binding to KRAS and NRAS mRNAs under low-abundance cell conditions. In Panc-1 cells, alkyl CPs at nanomolar concentrations promote a dramatic downregulation of KRAS and NRAS expression, but only if photoactivated. Alkyl CPs also reduce the metabolic activity of pancreatic cancer cells and the growth of a Panc-1 xenograft in SCID mice. Propidium iodide/annexin assays and caspase 3, caspase 7, and PARP-1 analyses show that these compounds activate apoptosis. All these data demonstrate that the designed alkyl CPs are efficient photosensitizers for the photodynamic therapy of ras-driven cancers.
Collapse
Affiliation(s)
- Annalisa Ferino
- Department of Medicine, Laboratory of Biochemistry , Univeristy of Udine , P.le Kolbe 4 , 33100 Udine , Italy
| | - Giulia Nicoletto
- Department of Medicine, Laboratory of Biochemistry , Univeristy of Udine , P.le Kolbe 4 , 33100 Udine , Italy
| | - Francesca D'Este
- Department of Medicine, Laboratory of Biochemistry , Univeristy of Udine , P.le Kolbe 4 , 33100 Udine , Italy
| | - Sonia Zorzet
- Department of Life Science , University of Trieste , P.le Europa 1 , 34127 Trieste , Italy
| | - Sara Lago
- Department of Molecular Medicine , University of Padova , via A. Gabelli 63 , 35121 Padova , Italy
| | - Sara N Richter
- Department of Molecular Medicine , University of Padova , via A. Gabelli 63 , 35121 Padova , Italy
| | - Alexander Tikhomirov
- Gause Institute of New Antibiotics , B. Pirogovskaya 11 , 119021 Moscow , Russia
| | - Andrey Shchekotikhin
- Gause Institute of New Antibiotics , B. Pirogovskaya 11 , 119021 Moscow , Russia
| | - Luigi E Xodo
- Department of Medicine, Laboratory of Biochemistry , Univeristy of Udine , P.le Kolbe 4 , 33100 Udine , Italy
| |
Collapse
|
7
|
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, Acherar S, Vanderesse R, Frochot C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J Clin Med 2019; 8:E2205. [PMID: 31847227 PMCID: PMC6947424 DOI: 10.3390/jcm8122205] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
This study describes the employment of gold nanorods (AuNRs), known for their good reputation in hyperthermia-based cancer therapy, in a hybrid combination of photosensitizers (PS) and peptides (PP). We report here, the design and the synthesis of this nanosystem and its application as a vehicle for the selective drug delivery and the efficient photodynamic therapy (PDT). AuNRs were functionalized by polyethylene glycol, phototoxic pyropheophorbide-a (Pyro) PS, and a "KDKPPR" peptide moiety to target neuropilin-1 receptor (NRP-1). The physicochemical characteristics of AuNRs, the synthesized peptide and the intermediate PP-PS conjugates were investigated. The photophysical properties of the hybrid AuNRs revealed that upon conjugation, the AuNRs acquired the characteristic properties of Pyro concerning the extension of the absorption profile and the capability to fluoresce (Φf = 0.3) and emit singlet oxygen (ΦΔ = 0.4) when excited at 412 nm. Even after being conjugated onto the surface of the AuNRs, the molecular affinity of "KDKPPR" for NRP-1 was preserved. Under irradiation at 652 nm, in vitro assays were conducted on glioblastoma U87 cells incubated with different PS concentrations of free Pyro, intermediate PP-PS conjugate and hybrid AuNRs. The AuNRs showed no cytotoxicity in the absence of light even at high PS concentrations. However, they efficiently decreased the cell viability by 67% under light exposure. This nanosystem possesses good efficiency in PDT and an expected potential effect in a combined photodynamic/photothermal therapy guided by NIR fluorescence imaging of the tumors due to the presence of both the hyperthermic agent, AuNRs, and the fluorescent active phototoxic PS.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Nurlykyz Yesmurzayeva
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
- Kazakh National Research Technical University after K.I Satpayev, 22 Satpayev str., Almaty 050013, Kazakhstan
| | - Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | | | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| |
Collapse
|
8
|
Preuß A, Pfitzner M, Röder B. Mosquito larvae control by photodynamic inactivation of their intestinal flora - a proof of principal study on Chaoborus sp. Photochem Photobiol Sci 2019; 18:2374-2380. [PMID: 31380867 DOI: 10.1039/c9pp00156e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mosquitoes are carriers of dangerous infectious disease pathogens all over the world. Owing to travelling and global warming, tropical disease-carrying species such as Aedes, Anopheles and Culex spread beyond tropical and subtropical zones, even to Europe. The aim of this study is to investigate the potential of photodynamic agents to combat mosquito larvae. Three different photosensitizers were tested on Chaoborus sp. larvae: TMPyP and TPPS as antimicrobial photosensitizers, and mTHPC as a PDT drug against eukaryotic animal and human cells. Chaoborus sp. is a commercially available harmless species developing translucent larvae similar to the larvae of Aedes, Anopheles and Culex. The uptake of photosensitizers by the larvae was tested by fluorescence microscopy. All tested photosensitizers were observed in the intestinal tract of the living larvae, and none of the photosensitizers was found in the larval tissues. In phototoxicity tests, mTHPC and TPPS did not have any effect on the larvae, while TMPyP killed the larvae efficiently. TPPS is an antimicrobial photosensitizer, mainly phototoxic to Gram-positive bacteria. TMPyP is well known as an efficient photosensitizer against Gram-negative bacteria like most species of the intestinal flora. From this result, we conclude that the photodynamic inactivation of the intestinal flora leads to the death of mosquito larvae. The feasibility of mosquito larvae control by photodynamic inactivation of their intestinal flora instead of the direct killing of the larvae is a promising alternative to other highly toxic insecticides. Compared to insecticides and other biochemical toxins, photosensitizers are not dark toxic. No resistance against photosensitizers is known so far. Thus, the dilution of the active substances by being distributed in the environment, which promotes the development of resistance in biocides of all kinds, does not pose danger. Thus, it reduces the potential side effects on environment and human health.
Collapse
Affiliation(s)
- Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
| | | | | |
Collapse
|
9
|
Spectroscopic, thermodynamic and molecular docking studies on the interaction of two water-soluble asymmetric cationic porphyrins with calf thymus DNA. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01609-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Leroy-Lhez S, Rezazgui O, Issawi M, Elhabiri M, Calliste CA, Riou C. Why are the anionic porphyrins so efficient to induce plant cell death? A structure-activity relationship study to solve the puzzle. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.09.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Carneiro J, Gonçalves A, Zhou Z, Griffin KE, Kaufman NEM, Vicente MDGH. Synthesis and in vitro PDT evaluation of new porphyrins containing meso-epoxymethylaryl cationic groups. Lasers Surg Med 2018; 50:566-575. [PMID: 29691890 DOI: 10.1002/lsm.22824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Photodynamic therapy (PDT) is an effective cancer treatment that uses photosensitizers, light, and oxygen to destroy malignant cells. Porphyrins, and in particular the cationic derivatives, are the most investigated photosensitizers for PDT. In this context, it is important to study new methodologies to develop efficient cationic photosensitizers for use in PDT. MATERIALS AND METHODS New porphyrins bearing cationic epoxymethylaryl groups were synthesized and characterized. Their cellular uptake, intracellular localization, and phototoxicity were evaluated in human HEp2 cells, and compared with their methylated analogs. RESULTS All cationic porphyrins were efficient generators of singlet oxygen, with quantum yields in the range 0.35-0.61. The two methylated derivatives (3 and 4) accumulated the most within cells at all times investigated, up to 24 hours. Of these two porphyrins, 4 was the most phototoxic to the cells (LD50 = 2.4 μM at 1.5 J/cm2 ); however, porphyrin 3 also showed high phototoxicity (LD50 = 7.4 μM at 1.5 J/cm2 ). The epoxymethyl-containing porphyrins were found to be less phototoxic than the methylated derivatives, with LD50 > 38 μM. The neutral porphyrins showed no phototoxicity up to the 100 μM concentrations investigated, and had the lowest singlet oxygen quantum yields. All cationic porphyrins localized mainly in the cell ER, Golgi apparatus, and lysosomes. CONCLUSION Our results suggest that cationic methylated porphyrin derivatives are promising PDT photosensitizing agents. The epoxymethyl-containing derivatives showed increased efficacy relative to the neutral analogs, and are good candidates for further investigation. Lasers Surg. Med. 50:566-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jaqueline Carneiro
- Department of Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Alan Gonçalves
- Department of Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| | - Kaitlin E Griffin
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| | | | | |
Collapse
|
12
|
Youssef Z, Jouan-Hureaux V, Colombeau L, Arnoux P, Moussaron A, Baros F, Toufaily J, Hamieh T, Roques-Carmes T, Frochot C. Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2018; 22:115-126. [PMID: 29581041 DOI: 10.1016/j.pdpdt.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
In this study, light-sensitive photosensitizers (Chlorin e6, Ce6) were linked to TiO2 and SiO2 nanoparticles (NPs) in order to develop new kinds of NP-based drug delivery systems for cancer treatment by PDT. TiO2 or SiO2 NPs were modified either by the growth of a polysiloxane layer constituted of two silane reagents ((3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS)) around the core (PEGylated NPs: TiO2@4Si-Ce6-PEG, SiO2@4Si-Ce6-PEG) or simply modified by APTES alone (APTES-modified NPs: TiO2-APTES-Ce6, SiO2-APTES-Ce6). Ce6 was covalently attached onto the modified TiO2 and SiO2 NPs via an amide bond. The absorption profile of the hybridized NPs was extended to the visible region of the light. The physicochemical properties of these NPs were explored by TEM, HR-TEM, XRD, FTIR and zeta potential. The photophysical characteristics including the light absorption, the fluorescence properties and the production reactive oxygen species (1O2 and HO) were also addressed. In vitro experiments on glioblastoma U87 cells were performed to evaluate the photodynamic efficiency of the new hybridized NPs. The cells were exposed to different concentrations of NPs and illuminated (λexc = 652 nm, fluence rate 10 J/cm2). In contrast to the PEGylated NPs, the APTES-modified nanosystems were found to be more efficient for PDT. An interesting photodynamic effect was observed in the case of TiO2-APTES-Ce6 NPs. After illumination, the viability of U87 was decreased by 89% when they were exposed to 200 μg/mL of TiO2-APTES-Ce6 NPs, which corresponds to 0.22 μM of Ce6. The same effect can be obtained with free photosensitizer but using a higher concentration of 10 μM of Ce6.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France; Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon.
| | - Valérie Jouan-Hureaux
- Centre de Recherche en Automatique de Nancy, UMR 7039, Université de Lorraine-CNRS, Vandœuvre-lès-Nancy, France.
| | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France.
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France.
| | - Albert Moussaron
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France; Institut Lumière Matière, Université Claude Bernard Lyon 1-CNRS, F-69622, Lyon, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France.
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon.
| | - Tayssir Hamieh
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon.
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, UMR 7274, Université de Lorraine-CNRS, Nancy, France.
| |
Collapse
|
13
|
İşci Ü, Topal SZ, Önal E, Fidan İ, Berber S, Ahsen V, Parejo C, Sastre-Santos Á, Dumoulin F. Synthesis and characterization of a new meso-tetra-dihydro benzocyclobutacenaphthylene free-base porphyrin. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A meso-tetra-6b,10b-dihydrobenzo[j]cyclobut[a]acenaphthylene free-base porphyrin was synthesised and its photophysical, photochemical and electrochemical properties were compared with those of free-base meso-tetraphenylporphyrin. The frontier orbitals and the HOMO–LUMO energy gaps of both compounds were also determined. It was demonstrated that the meso6b,10b-Dihydrobenzo[j]cyclobut[a]acenaphthylene porphyrin retained the same properties as the tetraphenylporphyrin.
Collapse
Affiliation(s)
- Ümit İşci
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Sevinc Zehra Topal
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Emel Önal
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - İsmail Fidan
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Savaş Berber
- Gebze Technical University, Department of Physics, 41400 Gebze, Kocaeli, Turkey
| | - Vefa Ahsen
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Concepción Parejo
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
| | - Fabienne Dumoulin
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
14
|
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:12-22. [PMID: 28554072 DOI: 10.1016/j.jphotobiol.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022]
Abstract
Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment.
Collapse
|
15
|
Stallivieri A, Le Guern F, Vanderesse R, Meledge E, Jori G, Arnoux P, Frochot C, Acherar S. Synthesis and photophysical properties of photoactivable cationic porphyrin 5-(4- N -dodecylpyridyl)-10,15,20-tri(4- N -methylpyridyl)-21 H , 23 H -porphyrin tetraiodide for anti PDT. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Gazzali AM, Colombeau L, Arnoux P, Wahab HA, Frochot C, Vanderesse R, Acherar S. Synthesis of mono-, di- and triporphyrin building blocks by click chemistry for photodynamic therapy application. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Yoho J, Wogensthal K, Bennett TL, Palmer J, Comfort KK, Kango-Singh M, Swavey S, Stuart CH, Gmeiner WH. Water-Soluble Zinc Porphyrin Capable of Light-Induced Photocleavage of DNA: Cell Localization Studies inDrosophila Melanogasterand Light Activated Treatment of Lung Cancer Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Joshua Yoho
- Department of Biology; University of Dayton; 300 College Park Dayton OH USA
| | - Kevin Wogensthal
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | - Thomas L. Bennett
- Department of Chemical and Materials Engineering; University of Dayton; SupraMolecular Applied Research and Technology Center; 300 College Park Dayton OH USA
| | - Jessica Palmer
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering; University of Dayton; SupraMolecular Applied Research and Technology Center; 300 College Park Dayton OH USA
| | | | - Shawn Swavey
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | | | - William H. Gmeiner
- Department of Cancer Biology; Department of Molecular Medicine and Translation Science; Wake Forest School of Medicine; 27157 Winston-Salem NC USA
| |
Collapse
|
18
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Moura NMM, Ramos CIV, Linhares I, Santos SM, Faustino MAF, Almeida A, Cavaleiro JAS, Amado FML, Lodeiro C, Neves MGPMS. Synthesis, characterization and biological evaluation of cationic porphyrin–terpyridine derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra25373c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of cationic porphyrin–terpyridine derivatives was prepared. These new compounds are able to generate 1O2 and show high efficiency in the photoinactivation of bioluminescent Gram-negative E. coli.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Catarina I. V. Ramos
- Mass Spectrometry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Inês Linhares
- Department of Biology
- CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sérgio M. Santos
- CICECO
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - M. Amparo F. Faustino
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Adelaide Almeida
- Department of Biology
- CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José A. S. Cavaleiro
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Francisco M. L. Amado
- Mass Spectrometry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Carlos Lodeiro
- BIOSCOPE Research Team
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
| | | |
Collapse
|