1
|
Peprah F, Tarantola GE, Plaman AS, Vu EL, Huynh AB, Durr CB. Synthesis and catalytic activity of single-site group V alkoxide complexes for the ring-opening polymerization of ε-caprolactone. Dalton Trans 2024; 53:7073-7080. [PMID: 38567482 DOI: 10.1039/d4dt00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis, characterization, and ring-opening polymerization (ROP) activity of a family of niobium and tantalum alkoxide catalysts was studied. The final catalysts are made in a two-step synthesis, first by reacting the desired homoleptic metal ethoxide with a phenolketoimine ligand to form a series of synthetic intermediates, followed by reaction with catechol to produce a catalytic platform with a single ethoxide initiator. By using two separate ligands, the electronic properties of the catalyst can be tuned, and the molecular weight of the polymer can be increased. It was found that synthetic intermediates adopted a mer geometry both in solution and in the solid state. This mer geometry was retained for the final catechol derivatives, however in one case, where catechol was substituted for 3-methoxycatechol, the molecule adopted a highly distorted fac geometry. Catalytic ROP activity of the synthetic intermediates and final catechol derivatives with ε-caprolactone was studied through a kinetic analysis. In all seven cases studied the reactions proceeded through the expected coordination-insertion mechanism, following pseudo first-order kinetics and increasing in Mn linearly vs. conversion. The single-initiator catechol derivatives increased the Mn by three times compared to that of the three-initiator synthetic intermediates with little decrease in the overall reaction rate. Both the nature of the ligand and metal were found to impact the rate of reaction in these systems. By switching from an electron donating ligand to an electron withdrawing ligand, the rate was found to nearly double. Tantalum species were faster than their niobium counterparts by ∼3 times in the synthetic intermediates and ∼1.5 times in the catechol derivatives. This observed periodicity supports recent literature findings in this area.
Collapse
Affiliation(s)
- Frank Peprah
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| | - Grace E Tarantola
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| | - Alyson S Plaman
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| | - Emily L Vu
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| | - Alyssa B Huynh
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| | - Christopher B Durr
- Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, USA.
| |
Collapse
|
2
|
Liu J, Blosch SE, Volokhova AS, Crater ER, Gallin CF, Moore RB, Matson JB, Byers JA. Using Redox-Switchable Polymerization Catalysis to Synthesize a Chemically Recyclable Thermoplastic Elastomer. Angew Chem Int Ed Engl 2024; 63:e202317699. [PMID: 38168073 PMCID: PMC10873474 DOI: 10.1002/anie.202317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/05/2024]
Abstract
In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox-switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran-co-cyclohexene oxide) (poly(THF-co-CHO) copolymer as the mid-block. The orthogonal reactivity induced by changing the oxidation state of the iron-based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l-lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of -60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d-lactic acid) (PDLA) end-blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3 and ZnCl2 /PEG under reactive distillation conditions.
Collapse
Affiliation(s)
- Jiangwei Liu
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah E Blosch
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anastasia S Volokhova
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erin R Crater
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Connor F Gallin
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Robert B Moore
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
Westlie AH, Hesse SA, Tang X, Quinn EC, Parker CR, Takacs CJ, Tassone CJ, Chen EYX. All-Polyhydroxyalkanoate Triblock Copolymers via a Stereoselective-Chemocatalytic Route. ACS Macro Lett 2023; 12:619-625. [PMID: 37094112 DOI: 10.1021/acsmacrolett.3c00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Biodegradable polyhydroxyalkanoate (PHA) homopolymers and statistical copolymers are ubiquitous in microbially produced PHAs, but the step-growth polycondensation mechanism the biosynthesis operates on presents a challenge to access well-defined block copolymers (BCPs), especially higher-order tri-BCP PHAs. Here we report a stereoselective-chemocatalytic route to produce discrete hard-soft-hard ABA all-PHA tri-BCPs based on the living chain-growth ring-opening polymerization of racemic (rac) 8-membered diolides (rac-8DLR; R denotes the two substituents on the ring). Depending on the composition of the soft B block, originated from rac-8DLR (R = Et, nBu), and its ratio to the semicrystalline, high-melting hard A block, derived from rac-8DLMe, the resulting all-PHA tri-BCPs with high molar mass (Mn up to 238 kg mol-1) and low dispersity (Đ = 1.07) exhibit tunable mechanical properties characteristic of a strong and tough thermoplastic, elastomer, or a semicrystalline thermoplastic elastomer.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Celine R Parker
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
4
|
Zhang W, Hou Z, Chen S, Guo J, Hu J, Yang L, Cai G. Aspergillus oryzae lipase-mediated in vitro enzymatic degradation of poly (2,2′-dimethyltrimethylene carbonate-co-ε-caprolactone). Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
Kamavichanurat S, Jampakaew K, Hormnirun P. Controlled and effective ring-opening (co)polymerization of rac-lactide, ε-caprolactone and ε-decalactone by β-pyrimidyl enolate aluminum complexes. Polym Chem 2023. [DOI: 10.1039/d3py00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A series of β-pyrimidyl enolate aluminum complexes (1–6) were found to promote controlled and living ROP of rac-LA, ε-CL, and ε-DL. Six well-defined diblock copolymers and the perfect random copolymer poly(l-LA-r-CL) were successfully synthesized.
Collapse
|
6
|
Gregory GL, Sulley GS, Kimpel J, Łagodzińska M, Häfele L, Carrodeguas LP, Williams CK. Block Poly(carbonate-ester) Ionomers as High-Performance and Recyclable Thermoplastic Elastomers. Angew Chem Int Ed Engl 2022; 61:e202210748. [PMID: 36178774 PMCID: PMC9828403 DOI: 10.1002/anie.202210748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Thermoplastic elastomers based on polyesters/carbonates have the potential to maximize recyclability, degradability and renewable resource use. However, they often underperform and suffer from the familiar trade-off between strength and extensibility. Herein, we report well-defined reprocessable poly(ester-b-carbonate-b-ester) elastomers with impressive tensile strengths (60 MPa), elasticity (>800 %) and recovery (95 %). Plus, the ester/carbonate linkages are fully degradable and enable chemical recycling. The superior performances are attributed to three features: (1) Highly entangled soft segments; (2) Fully reversible strain-induced crystallization and (3) Precisely placed ZnII -carboxylates dynamically crosslinking the hard domains. The one-pot synthesis couples controlled cyclic monomer ring-opening polymerization and alternating epoxide/anhydride ring-opening copolymerization. Efficient convresion to ionomers is achieved by reacting vinyl-epoxides to install ZnII -carboxylates.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Gregory S. Sulley
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Joost Kimpel
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Matylda Łagodzińska
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Lisa Häfele
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | | |
Collapse
|
7
|
Development of Biodegradable Polyesters: Study of Variations in Their Morphological and Thermal Properties through Changes in Composition of Alkyl-Substituted (ε-DL) and Non-Substituted (ε-CL, EB, L-LA) Monomers. Polymers (Basel) 2022; 14:polym14204278. [PMID: 36297855 PMCID: PMC9612037 DOI: 10.3390/polym14204278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Three series of polyesters based on monomer combinations of ε-caprolactone (ε-CL), ethylene brassylate (EB), and l-Lactide (LLA) with the alkyl substituted lactone ε-decalactone (ε-DL) were synthesized at different molar ratios. Copolymers were obtained via ring opening polymerization (ROP) employing TBD (1,5,7-triazabicyclo-[4.4.0]-dec-5-ene), an organic catalyst which can be handled under normal conditions, avoiding the use of glove box equipment. The molar monomer composition of resulting copolymers differed from theoretical values due to lower ε-DL reactivity; their Mn and Mw values were up to 14 kDa and 22.8 kDa, respectively, and distributions were (Ɖ) ≤ 2.57. The thermal stability of these materials suffered due to variations in their ε-DL molar content. Thermal transitions such as melting (Tm) and crystallization (Tc) showed a decreasing tendency as ε-DL molar content increased, while glass transition (Tg) exhibited minor changes. It is worth mentioning that changes in monomer composition in these polyesters have a strong impact on their thermal performance, as well as in their crystallization degree. Consequently, variations in their chemical structure may have an effect on hydrolyic degradation rates. It should be noted that, in future research, some of these copolymers will be exposed to hydrolytic degradation experiments, including characterizations of their mechanical properties, to determine their adequacy in potential use in the development of soft medical devices.
Collapse
|
8
|
Jia Y, Sun Z, Hu C, Pang X. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties. Chempluschem 2022; 87:e202200220. [PMID: 36071346 DOI: 10.1002/cplu.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Indexed: 11/11/2022]
Abstract
With the global demand for sustainable development, there has been an increasing interest in using natural biomass as raw resources to produce sustainable polymers as an alternative to petroleum-based polymers. Because monocomponent biodegradable polymers are often insufficient in performance, copolymers with well-engineered block structures are synthesized to reach wide tunability. Switchable polymerization is such a practical strategy to produce biodegradable block copolymers with diverse performance. This review focus on the performance of block copolymers bearing biodegradable polymer segments produced by diverse switchable polymerization. We highlight two main segments that are critical for biodegradable block copolymers, i. e., polyester and polycarbonate, summarize the multiple characters of materials from switchable polymerization such as antibacterial, shape memory, adhesives, etc. The state-of-the-art research on biodegradable block copolymers, as well as an outlook on the preparation and application of novel materials, are presented.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
9
|
Nishiwaki Y, Masutani K, Kimura Y, Lee C. Synthesis and mechanochemical properties of biobased
ABCBA
‐type pentablock copolymers comprising poly‐
d
‐lactide (A), poly‐
l
‐lactide (B) and poly(1,2‐propylene succinate) (C). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yasumasa Nishiwaki
- Department of Biobased Materials Science Kyoto Institute of Technology Kyoto Japan
| | - Kazunari Masutani
- Center for Fiber and Textile Science Kyoto Institute of Technology Kyoto Japan
| | - Yoshiharu Kimura
- Center for Fiber and Textile Science Kyoto Institute of Technology Kyoto Japan
| | - Chan‐Woo Lee
- Department of Innovative Industrial Technology Hoseo University Asan South Korea
| |
Collapse
|
10
|
Gregory GL, Williams CK. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers. Macromolecules 2022; 55:2290-2299. [PMID: 35558439 PMCID: PMC9084597 DOI: 10.1021/acs.macromol.2c00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 01/26/2023]
Abstract
![]()
Thermoplastic
elastomers (TPEs) that are closed-loop recyclable
are needed in a circular material economy, but many current materials
degrade during recycling, and almost all are pervasive hydrocarbons.
Here, well-controlled block polyester TPEs featuring regularly placed
sodium/lithium carboxylate side chains are described. They show significantly
higher tensile strengths than unfunctionalized analogues, with high
elasticity and elastic recovery. The materials are prepared using
controlled polymerizations, exploiting a single catalyst that switches
between different polymerization cycles. ABA block polyesters of high
molar mass (60–100 kg mol–1; 21 wt % A-block)
are constructed using the ring-opening polymerization of ε-decalactone
(derived from castor oil; B-block), followed by the alternating ring-opening
copolymerization of phthalic anhydride with 4-vinyl-cyclohexene oxide
(A-blocks). The polyesters undergo efficient functionalization to
install regularly placed carboxylic acids onto the A blocks. Reacting
the polymers with sodium or lithium hydroxide controls the extent
of ionization (0–100%); ionized polymers show a higher tensile
strength (20 MPa), elasticity (>2000%), and elastic recovery (>80%).
In one case, sodium functionalization results in 35× higher stress
at break than the carboxylic acid polymer; in all cases, changing
the quantity of sodium tunes the properties. A leading sample, 2-COONa75 (Mn 100 kg mol–1, 75% sodium), shows a wide operating temperature range (−52
to 129 °C) and is recycled (×3) by hot-pressing at 200 °C,
without the loss of mechanical properties. Both the efficient synthesis
of ABA block polymers and precision ionization in perfectly alternating
monomer sequences are concepts that can be generalized to many other
monomers, functional groups, and metals. These materials are partly
bioderived and have degradable ester backbone chemistries, deliver
useful properties, and allow for thermal reprocessing; these features
are attractive as future sustainable TPEs.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K. Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
11
|
Mundil R, Zhigunov A, Uchman M. Metal-free synthesis and self-assembly of poly(ethylene glycol) methyl ether-block-poly(ε-decalactone)-block-poly(methyl methacrylate) triblock terpolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
KAYSER F, Fleury G, thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various substituted δ/ε-lactones have been copolymerized with ε-caprolactone (ε-CL) with the aim to inhibit the crystallization of polycaprolactone (PCL). Among the studied co-monomers, the best results were obtained with the...
Collapse
|
14
|
Ramos-Durán G, González-Zarate ADC, Enríquez-Medrano FJ, Salinas-Hernández M, De Jesús-Téllez MA, Díaz de León R, López-González HR. Synthesis of copolyesters based on substituted and non-substituted lactones towards the control of their crystallinity and their potential effect on hydrolytic degradation in the design of soft medical devices. RSC Adv 2022; 12:18154-18163. [PMID: 35800320 PMCID: PMC9210866 DOI: 10.1039/d2ra01861f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 01/22/2023] Open
Abstract
ROP synthesis of polyesters at different molar ratios of monomers ε-caprolactone (ε-CL) in combination with alkyl substituted lactones δ-decalactone (δ-DL), ε-decalactone (ε-DL) and δ-dodecalactone (δ-DD), as well copolymers based on ε-DL and δ-DD.
Collapse
Affiliation(s)
- Gabriela Ramos-Durán
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Aracely del Carmen González-Zarate
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Francisco Javier Enríquez-Medrano
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Myrna Salinas-Hernández
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Marco A. De Jesús-Téllez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Ramon Díaz de León
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Hector Ricardo López-González
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| |
Collapse
|
15
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Liffland S, Hillmyer MA. Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Degradable Elastomers: Is There a Future in Tyre Compound Formulation? Molecules 2021; 26:molecules26154454. [PMID: 34361606 PMCID: PMC8347236 DOI: 10.3390/molecules26154454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Problems related to non-biodegradable waste coming from vulcanized rubber represent one of the pre-eminent challenges for modern society. End-of-life tyres are an important source of this typology of waste and the increasingly high accumulation in the environment has contributed over the years to enhance land and water pollution. Moreover, the release into the environment of non-degradable micro-plastics and other chemicals as an effect of tyre abrasion is not negligible. Many solutions are currently applied to reuse end-of-life tyres as a raw material resource, such as pyrolysis, thermo-mechanical or chemical de-vulcanisation, and finally crumbing trough different technologies. An interesting approach to reduce the environmental impact of vulcanised rubber wastes is represented by the use of degradable thermoplastic elastomers (TPEs) in tyre compounds. In this thematic review, after a reviewing fossil fuel-based TPEs, an overview of the promising use of degradable TPEs in compound formulation for the tyre industry is presented. Specifically, after describing the properties of degradable elastomers that are favourable for tyres application in comparison to used ones, the real scenario and future perspectives related to the use of degradable polymers for new tyre compounds will be realized.
Collapse
|
19
|
Deacy A, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J Am Chem Soc 2021; 143:10021-10040. [PMID: 34190553 PMCID: PMC8297863 DOI: 10.1021/jacs.1c03250] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/24/2022]
Abstract
There is an ever-increasing demand for higher-performing polymeric materials counterbalanced by the need for sustainability throughout the life cycle. Copolymers comprising ester, carbonate, or ether linkages could fulfill some of this demand as their monomer-polymer chemistry is closer to equilibrium, facilitating (bio)degradation and recycling; many monomers are or could be sourced from renewables or waste. Here, an efficient and broadly applicable route to make such copolymers is discussed, a form of switchable polymerization catalysis which exploits a single catalyst, switched between different catalytic cycles, to prepare block sequence selective copolymers from monomer mixtures. This perspective presents the principles of this catalysis, catalyst design criteria, the selectivity and structural copolymer characterization tools, and the properties of the resulting copolymers. Uses as thermoplastic elastomers, toughened plastics, adhesives, and self-assembled nanostructures, and for programmed degradation, among others, are discussed. The state-of-the-art research into both catalysis and products, as well as future challenges and directions, are presented.
Collapse
Affiliation(s)
| | | | - Gregory S. Sulley
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Thomas T. D. Chen
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
20
|
Bińczak J, Dziuba K, Chrobok A. Recent Developments in Lactone Monomers and Polymer Synthesis and Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2881. [PMID: 34072108 PMCID: PMC8198756 DOI: 10.3390/ma14112881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
Lactones are a group of compounds that have been known for several decades. The commercial importance of lactones results from the possibility of manufacturing of a broad scope of derivatives and polymers with a wide spectrum of applications. In this work the synthesis and characterization of simple lactones are described, which due to the easy methods of the synthesis are of high importance for the industry. The chemical as well as biochemical methods are included with special attention paid to the methods that avoid metal catalysts, initiators or toxic solvents, allowing the use of the final products for the medical applications, e.g., for controlled drug-release systems, resorbable surgical threads, implants, tissue scaffolds or for the production of drugs. Lactone-based derivatives, such as polymers, copolymers, composites or three-dimensional structures are also presented. The work is focused on the methods for the synthesis of lactones and lactones derivates, as well as on the special properties and application of the studied compounds.
Collapse
Affiliation(s)
- Jakub Bińczak
- Department of Chemical Organic Technology and Petrochemistry, PhD School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland; or
- Grupa Azoty Zakłady Azotowe, Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland;
| | - Krzysztof Dziuba
- Grupa Azoty Zakłady Azotowe, Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland;
| | - Anna Chrobok
- Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
21
|
Kang H, Miao X, Li J, Li D, Fang Q. Synthesis and characterization of biobased thermoplastic polyester elastomers containing Poly(butylene 2,5-furandicarboxylate). RSC Adv 2021; 11:14932-14940. [PMID: 35424025 PMCID: PMC8697829 DOI: 10.1039/d1ra00066g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS). The P(BF-PBSS)s contain poly(butylene 2,5-furandicarboxylate) (PBF) as their hard segment and PBSS as their soft segment. The microstructures of the P(BF-PBSS)s were confirmed by nuclear magnetic resonance, demonstrating that a higher content of the soft segment was incorporated into P(BF-PBSS)s with higher PBSS content. Interestingly, dynamic mechanical analysis indicated that P(BF-PBSS)s comprised two domains: crystalline PBF and a mixture of amorphous PBF and PBSS. Consequently, the microphase separations of P(BF-PBSS)s were mainly induced by the crystallization of their PBF segments. More importantly, the thermal, crystallization, and mechanical properties could be tailored by tuning the PBSS content. Our results indicate that the as-prepared P(BF-PBSS)s are renewable, thermally stable, and nontoxic, and have good tensile properties, indicating that they could be potentially applied in biomedical materials. A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS).![]()
Collapse
Affiliation(s)
- Hailan Kang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaoli Miao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Jiahuan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Donghan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Qinghong Fang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
22
|
Guptill DM, Chinta BS, Kaicharla T, Xu S, Hoye TR. β-Methyl-δ-valerolactone-containing Thermoplastic Poly(ester-amide)s: Synthesis, Mechanical Properties, and Degradation Behavior. Polym Chem 2021; 12:1310-1316. [PMID: 34354765 PMCID: PMC8330554 DOI: 10.1039/d1py00040c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ester-amide)s (PEAs) have been prepared from (glucose-derived) β-methyl-δ-valerolactone (MVL) by reaction of MVL-derived diamidodiols with diacid chlorides in solution to form poly(ester-amide)s having alternating diester-diamide subunits. The PEAs formed by this method exhibit plastic properties and are of sufficiently high molecular weight to be tough, ductile materials (stress at break: 41-53 MPa, strain at break: 530-640%). The length of the methylene linker unit (n = 1,2,3) between amide groups of the diamidodiols affects the Young's modulus; longer linkers reduce the stiffness of the materials. This allows tuning of the properties by judicious choice of precursors. MVL was also converted to a diacid chloride that was then used to prepare a PEA that is 76 wt% MVL-derived. The degradation rates of suspensions of these new PEAs in basic aqueous media were benchmarked and their instability in aqueous acid was also observed. NMR studies were used to detect the hydrolytic degradation products of both these PEAs as well as a structurally simpler analog.
Collapse
Affiliation(s)
- David M Guptill
- Department of Chemistry University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA
| | - Bhavani Shankar Chinta
- Department of Chemistry University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA
| | - Trinadh Kaicharla
- Department of Chemistry University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA
| | - Shu Xu
- Department of Chemistry University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA
| | - Thomas R Hoye
- Department of Chemistry University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
23
|
Diment WT, Stößer T, Kerr RWF, Phanopoulos A, Durr CB, Williams CK. Ortho-vanillin derived Al(iii) and Co(iii) catalyst systems for switchable catalysis using ε-decalactone, phthalic anhydride and cyclohexene oxide. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02164d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Switchable catalysis is a useful one-pot method to prepare block polyesters utilising a single catalyst exposed to a mixture of monomers.
Collapse
Affiliation(s)
| | - Tim Stößer
- Oxford Chemistry
- Chemical Research Laboratory
- Oxford
- UK
| | | | | | | | | |
Collapse
|
24
|
Pan L, Ban J, Xu T, Liu R, Lu S. A study on sisal-based polyurethane foam with multi-shape memory properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SMPU-PSF exhibited a high compression rate, high controllability, and good shape recovery rate.
Collapse
Affiliation(s)
- Lulu Pan
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Jianfeng Ban
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Tiwen Xu
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Ruiquan Liu
- School of Materials Science and Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| |
Collapse
|
25
|
Gregory GL, Sulley GS, Carrodeguas LP, Chen TTD, Santmarti A, Terrill NJ, Lee KY, Williams CK. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem Sci 2020; 11:6567-6581. [PMID: 34094122 PMCID: PMC8159401 DOI: 10.1039/d0sc00463d] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Collapse
Affiliation(s)
- Georgina L Gregory
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory S Sulley
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Thomas T D Chen
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alba Santmarti
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Nicholas J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Harwell OX11 0DE UK
| | - Koon-Yang Lee
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Charlotte K Williams
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
26
|
Nishiwaki Y, Masutani K, Kimura Y, Lee C. Controlling the thermomechanical properties of biobased ABA triblock copolymers comprising polylactide (A) and poly(1,2‐propylene succinate) (B) with high molecular weight. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yasumasa Nishiwaki
- Department of Biobased Materials ScienceKyoto Institute of Technology Kyoto Japan
| | - Kazunari Masutani
- Center for Fiber and Textile ScienceKyoto Institute of Technology Kyoto Japan
| | - Yoshiharu Kimura
- Center for Fiber and Textile ScienceKyoto Institute of Technology Kyoto Japan
| | - Chan‐Woo Lee
- Department of Innovative Industrial TechnologyHoseo University Asan Chungnam South Korea
| |
Collapse
|
27
|
Jin C, Leng X, Zhang M, Wang Y, Wei Z, Li Y. Fully biobased biodegradable poly(
l
‐lactide)‐
b
‐poly(ethylene brassylate)‐
b
‐poly(
l
‐lactide) triblock copolymers: synthesis and investigation of relationship between crystallization morphology and thermal properties. POLYM INT 2020. [DOI: 10.1002/pi.5958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenhao Jin
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Manwen Zhang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yanshai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical EngineeringDalian University of Technology Dalian China
| |
Collapse
|
28
|
Cederholm L, Olsén P, Hakkarainen M, Odelius K. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polym Chem 2020. [DOI: 10.1039/d0py00270d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extending the use of natural δ-lactones in circular materials via a synthetic strategy yielding thermodynamically stable polyesters with triggered recyclability.
Collapse
Affiliation(s)
- Linnea Cederholm
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Peter Olsén
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Minna Hakkarainen
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| | - Karin Odelius
- Wallenberg Wood Science Center
- WWSC
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 100 44 Stockholm
| |
Collapse
|
29
|
Haugan IN, Lee B, Maher MJ, Zografos A, Schibur HJ, Jones SD, Hillmyer MA, Bates FS. Physical Aging of Polylactide-Based Graft Block Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Seamus D. Jones
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
30
|
Kernbichl S, Reiter M, Mock J, Rieger B. Terpolymerization of β-Butyrolactone, Epoxides, and CO2: Chemoselective CO2-Switch and Its Impact on Kinetics and Material Properties. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01777] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sebastian Kernbichl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Reiter
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Josef Mock
- Chair of Nanoelectronics, Technical University Munich, Theresienstrasse 90, 80333 Munich, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
31
|
Thongkham S, Monot J, Martin-Vaca B, Bourissou D. Simple In-Based Dual Catalyst Enables Significant Progress in ε-Decalactone Ring-Opening (Co)polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somprasong Thongkham
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Blanca Martin-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
32
|
D'Auria I, D'Alterio MC, Tedesco C, Pellecchia C. Tailor-made block copolymers of l-, d- and rac-lactides and ε-caprolactone via one-pot sequential ring opening polymerization by pyridylamidozinc(ii) catalysts. RSC Adv 2019; 9:32771-32779. [PMID: 35529720 PMCID: PMC9073191 DOI: 10.1039/c9ra07133d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
Three-coordinated Zn(ii) complexes bearing sterically encumbered bidentate monoanionic [N,N -] pyridylamido ligands efficiently catalyze the ring opening polymerization of lactide (LA) and ε-caprolactone (CL). Owing to the polymerization controlled nature and high rate, precise stereodiblock poly(LLA-b-DLA) with different block lengths can be easily produced by one-pot sequential monomer addition at room temperature in short reaction times. NMR, SEC and DSC analyses confirm the production of highly isotactic diblock copolymers which crystallize in the high melting stereocomplex phase. Stereo-triblock and tetrablock copolymers of l-LA, d-LA and rac-LA have been synthesized similarly. Finally, a diblock poly(CL-b-LA) has been easily obtained by sequential addition of ε-caprolactone and lactide under mild conditions.
Collapse
Affiliation(s)
- Ilaria D'Auria
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | | | - Consiglia Tedesco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| |
Collapse
|
33
|
Toplishek M, Žagar E, Pahovnik D. Synthesis of dicyano-substituted ε-caprolactone and its (co)polymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Kiriratnikom J, Robert C, Guérineau V, Venditto V, Thomas CM. Stereoselective Ring-Opening (Co)polymerization of β-Butyrolactone and ε-Decalactone Using an Yttrium Bis(phenolate) Catalytic System. Front Chem 2019; 7:301. [PMID: 31192185 PMCID: PMC6541034 DOI: 10.3389/fchem.2019.00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
An effective route for ring-opening copolymerization of β-butyrolactone (BBL) with ε-decalactone (ε-DL) is reported. Microstructures of the block copolymers characterized by 13C NMR spectroscopy revealed syndiotactic-enriched poly(3-hydroxybutyrate) (PHB) blocks. Several di- and triblock copolymers (PDL-b-PHB and PDL-b-PHB-b-PDL, respectively) were successfully synthesized by sequential addition of the monomers using (salan)Y(III) complexes as catalysts. The results from MALDI-ToF mass spectrometry confirmed the presence of the copolymers. Moreover, thermal properties of the block copolymers were also investigated and showed that the microphase separation of PDL-b-PHB copolymers into PHB- and PDL-rich domains has an impact on the glass transition temperatures of both blocks.
Collapse
Affiliation(s)
- Jiraya Kiriratnikom
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Carine Robert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Vincent Guérineau
- CNRS UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Vincenzo Venditto
- INSTM Research Unit, Department of Chemistry and Biology A. Zambelli, University of Salerno, Fisciano, Italy
| | - Christophe M. Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| |
Collapse
|
36
|
Isodimorphic aliphatic copolyester as midblock of poly(l-lactide)-based triblock copolymers towards largely enhanced impact toughness. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Wilson R, Divakaran AV, S K, Varyambath A, Kumaran A, Sivaram S, Ragupathy L. Poly(glycerol sebacate)-Based Polyester-Polyether Copolymers and Their Semi-Interpenetrated Networks with Thermoplastic Poly(ester-ether) Elastomers: Preparation and Properties. ACS OMEGA 2018; 3:18714-18723. [PMID: 30613821 PMCID: PMC6312632 DOI: 10.1021/acsomega.8b02451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Poly(glycerol sebacate) (PGS), produced from renewable monomers such as sebacic acid and glycerol, has been explored extensively for various biomedical applications. However, relatively less attention has been paid to explore PGS as sustainable materials in applications such as elastomers and rigid plastics, primarily because of serious deficiencies in physical properties of PGS. Here, we present two new approaches for enhancing the properties of PGS; (i) synthesizing block copolymers of PGS with poly(tetramethylene oxide)glycol (PTMO) and (ii) preparing a blend of PGS-b-PTMO with a poly(ester-ether) thermoplastic elastomer. The consequence of molar ratio (hard and soft segments) and M n of soft segment on tensile properties of the material was investigated. The PGS-b-PTMO with 25:75 mole ratios of hard and soft segments and having a medium M n soft segment (5350 g mol-1) exhibits an appreciable increase in percentage of elongation that is from 32% for PGS to 737%. Blends of PGS-b-PTMO and a thermoplastic polyester elastomer, Hytrel 3078, form a semi-interpenetrated polymer network, which exhibits increased tensile strength to 2.11 MPa and percentage of elongation to 2574. An elongation of such magnitude is unprecedented in the literature for predominantly aliphatic polyesters and demonstrates that the simple polyester can be tailored for superior performance.
Collapse
Affiliation(s)
- Runcy Wilson
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Anumon V. Divakaran
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Kiran S
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Anuraj Varyambath
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Alaganandam Kumaran
- Corporate
R&D Center, HLL Lifecare Limited, Akkulam PO, Sreekaryam, Trivandrum 695017, India
| | - Swaminathan Sivaram
- Indian
Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
38
|
Konwar DB, Satapathy BK, Jacob J. Influence of aliphatic polycarbonate middle block on mechanical and microstructural behaviour of triblock copolymers based on poly(l
-lactide) and polycarbonate. POLYM INT 2018. [DOI: 10.1002/pi.5723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debanga B Konwar
- Department of Materials Science and Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Josemon Jacob
- Department of Materials Science and Engineering; Indian Institute of Technology Delhi; New Delhi India
| |
Collapse
|
39
|
Zhang D, Dumont MJ. 5-Hydroxymethylfurfural Derivative Based Thermoplastic Elastomers Synthesized via Thiol-Michael Addition Reaction Utilizing Poly(lactic acid) as Hard End Blocks. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daihui Zhang
- Department of Bioresource Engineering; McGill University; 21111 Lakeshore Rd Sainte-Anne-de-Bellevue H9X 3V9 QC Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering; McGill University; 21111 Lakeshore Rd Sainte-Anne-de-Bellevue H9X 3V9 QC Canada
| |
Collapse
|
40
|
Jin C, Wei Z, Yu Y, Sui M, Leng X, Li Y. Copolymerization of ethylene brassylate with δ-valerolactone towards isodimorphic random copolyesters with continuously tunable mechanical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Zhu Y, Radlauer MR, Schneiderman DK, Shaffer MSP, Hillmyer MA, Williams CK. Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02690] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yunqing Zhu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Madalyn R. Radlauer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Deborah K. Schneiderman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Charlotte K. Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
42
|
Nasiri M, Saxon DJ, Reineke TM. Enhanced Mechanical and Adhesion Properties in Sustainable Triblock Copolymers via Non-covalent Interactions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02248] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammadreza Nasiri
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Derek J. Saxon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
43
|
Zhou C, Wei Z, Jin C, Wang Y, Yu Y, Leng X, Li Y. Fully biobased thermoplastic elastomers: Synthesis of highly branched linear comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly(β-myrcene)-graft-poly(l-lactide) copolymers with tunable mechanical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Tang B, Schneiderman DK, Zare Bidoky F, Frisbie CD, Lodge TP. Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid. ACS Macro Lett 2017; 6:1083-1088. [PMID: 35650946 DOI: 10.1021/acsmacrolett.7b00582] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have designed printable, biocompatible, and degradable ion gels by combining a novel ABA triblock aliphatic polyester, poly(ε-decalactone)-b-poly(dl-lactide)-b-poly(ε-decalactone), and a low toxicity ionic liquid, 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimide ([P14][TFSI]). Due to the favorable compatibility between amorphous poly(dl-lactide) and [P14][TFSI] and the insolubility of the poly(ε-decalactone), the triblock polymer forms self-assembled micellar cross-links similar to thermoplastic elastomers, which ensures similar processing conditions and mechanical robustness during the fabrication of printed electrolyte-gated organic transistor devices. Additionally, the ester backbone in the polymer structure enables efficient hydrolytic degradation of these ion gels compared to those made previously using carbon-backbone polymers.
Collapse
Affiliation(s)
- Boxin Tang
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Deborah K. Schneiderman
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fazel Zare Bidoky
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Ferrari R, Agostini A, Brunel L, Morosi L, Moscatelli D. Self-assembling amphiphilic block copolymer from renewable δ-decalactone and δ-dodecalactone. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raffaele Ferrari
- Department of Chemistry and Applied Biosciences; Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1; Zurich 8093 Switzerland
| | - Azzurra Agostini
- Department of Chemistry, Materials and Chemical Engineering; Politecnico di Milano, Via Mancinelli 7; Milano 20131 Italy
| | - Lucia Brunel
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road; Evanston Illinois 60208
| | - Lavinia Morosi
- IRCSS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19; Milano 20156 Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering; Politecnico di Milano, Via Mancinelli 7; Milano 20131 Italy
| |
Collapse
|
47
|
Jing Z, Shi X, Zhang G, Gu J. Synthesis and properties of poly(lactide)/poly(ε-caprolactone) multiblock supramolecular polymers bonded by the self-complementary quadruple hydrogen bonding. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Watts A, Kurokawa N, Hillmyer MA. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. Biomacromolecules 2017; 18:1845-1854. [PMID: 28467049 DOI: 10.1021/acs.biomac.7b00283] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol-1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment-segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.
Collapse
Affiliation(s)
- Annabelle Watts
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Naruki Kurokawa
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| |
Collapse
|
49
|
Mechanical properties and state of miscibility in poly(racD,L-lactide-co-glycolide)/(L-lactide-co-ε-caprolactone) blends. J Mech Behav Biomed Mater 2017; 71:372-382. [PMID: 28411547 DOI: 10.1016/j.jmbbm.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022]
Abstract
Polymers based on lactic acid (PLA) are a very promising category of biopolymers. As they are multi-stimuli responsive, can, in many ways, positively interact with the host, stimulating the innate reparative machinery of the human body. Since biopolymers for medical applications are subject to restrictive regulations, blending stands out as an effective method for obtaining tailored properties within a reduced time to market if compared to synthesis. Hence, in this study a set of PDLGA/PLCL blends was obtained by means of thermoplastic techniques and then further characterized. Evaluation techniques include GPC, NMR, DSC, tensile testing and SEM. Although mixtures proved to be immiscible, a full range of tensile properties was achieved. Observation of the surfaces of fracture provided visual evidence of the deformation mechanisms that occurred during the tensile tests which in the end led to failure. Interpretation of the thermal events based on molecular characterization parameters revealed phase separation, crystallization and plasticisation mechanisms that are relevant to any potential applications based on mechanical performance and shape memory behaviour.
Collapse
|
50
|
Ethylene brassylate: Searching for new comonomers that enhance the ductility and biodegradability of polylactides. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|