1
|
Novák M, Milasheuskaya Y, Srb M, Podzimek Š, Bouška M, Jambor R. Synthesis of star-shaped poly(lactide)s, poly(valerolactone)s and poly(caprolactone)s via ROP catalyzed by N-donor tin(ii) cations and comparison of their wetting properties with linear analogues. RSC Adv 2024; 14:23273-23285. [PMID: 39049884 PMCID: PMC11267256 DOI: 10.1039/d4ra03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
In this study, we report the use of N-coordinated tin(ii) cations [L1→Sn(H2O)][OTf]2·THF (1) and [L1→SnCl][SnCl3] (2) (L1 = 1,2-(C5H4N-2-CH = N)2CH2CH2) as efficient ROP catalysts, which, in combination with benzyl alcohol, afford well-defined linear poly(ε-caprolactone) (PCL) and poly(δ-valerolactones) (PVL) via an activated monomer mechanism (AMM). Thanks to the versatility of complexes 1 and 2 as catalysts, star-shaped PCL, PVL and PLA were also prepared using three-, four-, five- and six-functional alcohols. The number of arms was determined by SEC-MALS-Visco analysis. Spin-coated thin layers of linear and selected six-armed polymers were further studied in terms of their wettability to water. Attention was focused on the influence of the composition and structure of the polymers. Finally, to increase the hydrophobic properties of the studied polymers, stannaboroxines L2(Ph)Sn[(OB-(C6H4-4-CF3))2O] and L2(Ph)Sn[(OB-(C6H4-3,5-CF3)2)2O] (L2 = C6H3-2,6-(Me2NCH2)2) were applied.
Collapse
Affiliation(s)
- Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Michael Srb
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Štěpán Podzimek
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| |
Collapse
|
2
|
Palenzuela M, Mula E, Blanco C, Sessini V, Shakaroun RM, Li H, Guillaume SM, Mosquera MEG. Copolymerization of β-Butyrolactones into Functionalized Polyhydroxyalkanoates Using Aluminum Catalysts: Influence of the Initiator in the Ring-Opening Polymerization Mechanism. Macromol Rapid Commun 2024; 45:e2400091. [PMID: 38690992 DOI: 10.1002/marc.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Within bioplastics, natural poly(3-hydroxybutyrate) (PHB) stands out as fully biocompatible and biodegradable, even in marine environments; however, its high isotacticity and crystallinity limits its mechanical properties and hence its applications. PHB can also be synthesized with different tacticities via a catalytic ring-opening polymerization (ROP) of rac-β-butyrolactone (BBL), paving the way to PHB with better thermomechanical and processability properties. In this work, the catalyst family is extended based on aluminum phenoxy-imine methyl catalyst [AlMeL2], that reveals efficient in the ROP of BBL, to the halogeno analogous complex [AlClL2]. As well, the impact on the ROP mechanism of different initiators is further explored with a particular focus in dimethylaminopyridine (DMAP), a hardly studied initiator for the ROP of BBL. A thorough mechanistic study is performed that evidences the presence of two concomitant DMAP-mediated mechanisms, that lead to either a DMAP or a crotonate end-capping group. Besides, in order to increase the possibilities of PHB post-polymerization functionalization, the introduction of a side-chain functionality is explored, establishing the copolymerization of BBL with β-allyloxymethylene propiolactone (BPLOAll), resulting in well-defined P(BBL-co-BPLOAll) copolymers.
Collapse
Affiliation(s)
- Miguel Palenzuela
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Esther Mula
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Carlos Blanco
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Valentina Sessini
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Rama M Shakaroun
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Hui Li
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Sophie M Guillaume
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Marta E G Mosquera
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| |
Collapse
|
3
|
Yang J, Yang JC, Lu XB, Liu Y. Preparation of Poly(β-malic acid) via Direct Carbonylative Polymerization of Benzyl Glycidate. Macromol Rapid Commun 2023; 44:e2200694. [PMID: 36412066 DOI: 10.1002/marc.202200694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/13/2022] [Indexed: 11/23/2022]
Abstract
Poly(malic acid) (PMLA) is a water-soluble, biodegradable, biocompatible, and nontoxic polyester in the poly(hydroxyalkanoate) (PHA) family. it features various applications in pharmaceutical field. Herein, NaCo(CO)4 and pyridine derivatives are employed for direct carbonylative polymerization of benzyl glycidate (BG) for poly(β-malic acid) production. Further investigation on reaction mechanism reveals that this polymerization undergoes a direct chain growth, rather than a sequential process involving β-lactone intermediate. The low cost and facile preparation of epoxide substrate render this methodology extremely appealing that avoids the rather tedious procedures for β-malolactonate synthesis required toward ring opening polymerization. This study also represents an alternative strategy over traditional methods for poly(β-malic acid) production using step growth polycondensation of malic acid.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jin-Chuang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
4
|
Westlie AH, Quinn EC, Parker CR, Chen EYX. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Functional biopolyesters based on cross-linked Poly( -malic acid): Network engineering towards tailoring brittle-ductile transition and shape-memory performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021. [DOI: 10.1039/d0py01534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxygenated block copolymers with biodegradable polyester segments can be prepared in one-pot through sequential or simultaneous addition of monomers. This review highlights the state of the art in this area.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| | | |
Collapse
|
7
|
Novák M, Jambor R, Růžičková Z, Podzimek Š. Unique reactivity of an α-ketiminopyridine ligand with metal–alkyls: Synthesis and ROP of ε-caprolactone. NEW J CHEM 2021. [DOI: 10.1039/d0nj05498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of an α-ketimininopyridine ligand 2-((Me)CN(C6H3-2,6-iPr2))-6-(OMe)C5H3N (L1) with metal–alkyls, such as MeLi, Et2Zn, Me3Al and Me2AlCl, was studied.
Collapse
Affiliation(s)
- Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| | - Štěpán Podzimek
- Institute of Chemistry and Technology of Macromolecular Materials
- Faculty of Chemical Technology
- University of Pardubice
- 53210 Pardubice
- Czech Republic
| |
Collapse
|
8
|
Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers (Basel) 2020; 12:polym12081705. [PMID: 32751402 PMCID: PMC7464256 DOI: 10.3390/polym12081705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.
Collapse
|
9
|
García-Valle FM, Cuenca T, Mosquera ME, Milione S, Cano J. Ring-Opening Polymerization (ROP) of cyclic esters by a versatile aluminum Diphenoxyimine Complex: From polylactide to random copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Shakaroun RM, Jéhan P, Alaaeddine A, Carpentier JF, Guillaume SM. Organocatalyzed ring-opening polymerization (ROP) of functional β-lactones: new insights into the ROP mechanism and poly(hydroxyalkanoate)s (PHAs) macromolecular structure. Polym Chem 2020. [DOI: 10.1039/d0py00125b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The organocatalyzed ROP of some 4-alkoxymethylene-β-propiolactones (BPLORs) towards the formation of the corresponding poly(hydroxyalkanoate)s (PHAs; PBPLORs) is investigated simply using basic organocatalysts of the guanidine (TBD), amidine (DBU) or phosphazene (BEMP) type.
Collapse
Affiliation(s)
- Rama M. Shakaroun
- Univ. Rennes
- CNRS
- Institut des Sciences Chimiques de Rennes
- F-35042 Rennes
- France
| | - Philippe Jéhan
- Centre Régional de Mesures Physiques de l'Ouest-CRMPO
- ScanMAT UMS 2001
- Université de Rennes 1
- France
| | - Ali Alaaeddine
- Univ. Libanaise
- Campus Universitaire Rafic Hariri Hadath
- Faculté des Sciences
- Laboratoire de Chimie Médicinale et des Produits Naturels
- Beirut
| | | | - Sophie M. Guillaume
- Univ. Rennes
- CNRS
- Institut des Sciences Chimiques de Rennes
- F-35042 Rennes
- France
| |
Collapse
|
11
|
Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly( -malic acid). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
13
|
Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Stereochemical enhancement of polymer properties. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0117-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices 2019; 16:467-482. [PMID: 31058550 DOI: 10.1080/17434440.2019.1615439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The applications of naturally obtained polymers are tremendously increased due to them being biocompatible, biodegradable, environmentally friendly and renewable in nature. Among them, polyhydroxyalkanoates are widely studied and they can be utilized in many areas of human life research such as drug delivery, tissue engineering, and other medical applications. AREAS COVERED This review provides an overview of the polyhydroxyalkanoates biosynthesis and their possible applications in drug delivery in the range of micro- and nano-size. Moreover, the possible applications in tissue engineering are covered considering macro- and microporous scaffolds and extracellular matrix analogs. EXPERT COMMENTARY The majority of synthetic plastics are non-biodegradable so, in the last years, a renewed interest is growing to develop alternative processes to produce biologically derived polymers. Among them, PHAs present good properties such as high immunotolerance, low toxicity, biodegradability, so, they are promisingly using as biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Enas Elmowafy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Abdalla Abdal-Hay
- b Dentistry and Oral Health School , The University of Queensland , Qld , Australia
| | - Athanasios Skouras
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy.,d Department of Life Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Mattia Tiboni
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Luca Casettari
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Vincenzo Guarino
- e Institute of Polymers, composites and Biomaterials , National Research Council of Italy , Naples , Italy
| |
Collapse
|
15
|
Khalil A, Cammas-Marion S, Coulembier O. Organocatalysis applied to the ring-opening polymerization of β-lactones: A brief overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ali Khalil
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials; University of Mons, Place du Parc 23; 7000, Mons Belgium
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes; CNRS, ISCR-UMR 6226; F-35000, Rennes
| | - Sandrine Cammas-Marion
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes; CNRS, ISCR-UMR 6226; F-35000, Rennes
- Univ. Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241; F-35000, Rennes France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials; University of Mons, Place du Parc 23; 7000, Mons Belgium
| |
Collapse
|
16
|
Casajus H, Saba S, Vlach M, Vène E, Ribault C, Tranchimand S, Nugier-Chauvin C, Dubreucq E, Loyer P, Cammas-Marion S, Lepareur N. Cell Uptake and Biocompatibility of Nanoparticles Prepared from Poly(benzyl malate) (Co)polymers Obtained through Chemical and Enzymatic Polymerization in Human HepaRG Cells and Primary Macrophages. Polymers (Basel) 2018; 10:E1244. [PMID: 30961169 PMCID: PMC6401887 DOI: 10.3390/polym10111244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
The design of drug-loaded nanoparticles (NPs) appears to be a suitable strategy for the prolonged plasma concentration of therapeutic payloads, higher bioavailability, and the reduction of side effects compared with classical chemotherapies. In most cases, NPs are prepared from (co)polymers obtained through chemical polymerization. However, procedures have been developed to synthesize some polymers via enzymatic polymerization in the absence of chemical initiators. The aim of this work was to compare the acute in vitro cytotoxicities and cell uptake of NPs prepared from poly(benzyl malate) (PMLABe) synthesized by chemical and enzymatic polymerization. Herein, we report the synthesis and characterization of eight PMLABe-based polymers. Corresponding NPs were produced, their cytotoxicity was studied in hepatoma HepaRG cells, and their uptake by primary macrophages and HepaRG cells was measured. In vitro cell viability evidenced a mild toxicity of the NPs only at high concentrations/densities of NPs in culture media. These data did not evidence a higher biocompatibility of the NPs prepared from enzymatic polymerization, and further demonstrated that chemical polymerization and the nanoprecipitation procedure led to biocompatible PMLABe-based NPs. In contrast, NPs produced from enzymatically synthesized polymers were more efficiently internalized than NPs produced from chemically synthesized polymers. The efficient uptake, combined with low cytotoxicity, indicate that PMLABe-based NPs are suitable nanovectors for drug delivery, deserving further evaluation in vivo to target either hepatocytes or resident liver macrophages.
Collapse
Affiliation(s)
- Hubert Casajus
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Saad Saba
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Manuel Vlach
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Elise Vène
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Catherine Ribault
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
| | - Eric Dubreucq
- Montpellier SupAgro, INRA, CIRAD, Univ Montpellier, UMR 1208 IATE, F-34060 Montpellier, France.
| | - Pascal Loyer
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France.
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
| | - Nicolas Lepareur
- Univ Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France.
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France.
| |
Collapse
|
17
|
Polyhydroxyalkanoates (PHA) for therapeutic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Moins S, Henoumont C, De Winter J, Khalil A, Laurent S, Cammas-Marion S, Coulembier O. Reinvestigation of the mechanism of polymerization of β-butyrolactone from 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Polym Chem 2018. [DOI: 10.1039/c8py00206a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The questionable mechanism initially proposed to explain how 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) allows us to ring-open β-lactones, such as β-butyrolactone (BL), is reinvestigated here.
Collapse
Affiliation(s)
- S. Moins
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons
- 7000 Mons
- Belgium
| | - C. Henoumont
- General
- Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
| | - J. De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOS)
- University of Mons
- 7000 Mons
- Belgium
| | - A. Khalil
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons
- 7000 Mons
- Belgium
| | - S. Laurent
- General
- Organic and Biomedical Chemistry
- NMR and Molecular Imaging Laboratory
- University of Mons
- 7000 Mons
| | - S. Cammas-Marion
- Univ Rennes
- ENSCR
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- 35000 Rennes
| | - O. Coulembier
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons
- 7000 Mons
- Belgium
| |
Collapse
|
19
|
Zhuo Z, Zhang C, Luo Y, Wang Y, Yao Y, Yuan D, Cui D. Stereo-selectivity switchable ROP of rac-β-butyrolactone initiated by salan-ligated rare-earth metal amide complexes: the key role of the substituents on ligand frameworks. Chem Commun (Camb) 2018; 54:11998-12001. [DOI: 10.1039/c8cc05469j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of novel salan-ligated rare-earth metal amide complexes were prepared and employed as initiators for the ROP of rac-β-butyrolactone (rac-BBL).
Collapse
Affiliation(s)
- Zhixing Zhuo
- Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Chen Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Yunjie Luo
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- People's Republic of China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Yaorong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
20
|
Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Chen GQ, Zhang J. Microbial polyhydroxyalkanoates as medical implant biomaterials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-18. [DOI: 10.1080/21691401.2017.1371185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
- Department of Chemical Engineering, MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, China
| | - Junyu Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Pappuru S, Chakraborty D, Ramkumar V, Chand DK. Ring-opening copolymerization of maleic anhydride or L-Lactide with tert-butyl glycidyl ether by using efficient Ti and Zr benzoxazole-substituted 8-Hydroxyquinolinate catalysts. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Functionalized Polyesters with Tunable Degradability Prepared by Controlled Ring-Opening (Co)polymerization of Lactones. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yue-Chao Xu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Zhou
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
24
|
Peng J, Tian C, Zhang L, Cheng Z, Zhu X. The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor. Polym Chem 2017. [DOI: 10.1039/c6py02133f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amphiphilic poly(poly(ethylene glycol)methyl ether methacrylate)-b-poly(methyl methacrylate) (PPEGMA-b-PMMA) diblock copolymer nanoparticles were successfully synthesized via polymerization-induced self-assembly (PISA) at 70 °C in a continuous tubular reactor.
Collapse
Affiliation(s)
- Jinying Peng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Chun Tian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| |
Collapse
|
25
|
Effects of isothermal crystallization on the mechanical properties of a elastomeric medium chain length polyhydroxyalkanoate. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A, Tadayyon G, Kelly A, Rago I, Sarasua JR, Dowd E, Quinlan LR, Pandit A, Biggs MJP. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine (Lond) 2016; 11:2547-63. [DOI: 10.2217/nnm-2016-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. Materials & methods: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. Results: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. Conclusion: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eugenia Pugliese
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Aitor Larrañaga
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Marc A Fernandez-Yague
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - James J Britton
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Alexandre Trotier
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ghazal Tadayyon
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Adriona Kelly
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Ilaria Rago
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Eilís Dowd
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Leo R Quinlan
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Manus JP Biggs
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| |
Collapse
|
27
|
Vene E, Barouti G, Jarnouen K, Gicquel T, Rauch C, Ribault C, Guillaume SM, Cammas-Marion S, Loyer P. Opsonisation of nanoparticles prepared from poly(β-hydroxybutyrate) and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells. Int J Pharm 2016; 513:438-452. [PMID: 27640247 DOI: 10.1016/j.ijpharm.2016.09.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.
Collapse
Affiliation(s)
- Elise Vene
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Thomas Gicquel
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Claudine Rauch
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Catherine Ribault
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institute des Sciences Chimiques de Rennes, Université de Rennes 1, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Pascal Loyer
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France.
| |
Collapse
|
28
|
Barouti G, Khalil A, Orione C, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles. Chemistry 2016; 22:2819-30. [PMID: 26791328 DOI: 10.1002/chem.201504824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Ali Khalil
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Clement Orione
- Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 11 Allée de Beaulieu CS 50837, 35708, Rennes Cedex, France
| | - Pascal Loyer
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
29
|
Yao H, Wei D, Che X, Cai L, Tao L, Liu L, Wu L, Chen GQ. Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-ethylmethacrylate) for controllable protein adsorption. Polym Chem 2016. [DOI: 10.1039/c6py01235c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters produced by many bacteria grown on sustainable bio-resources such as glucose or fatty acids.
Collapse
Affiliation(s)
- Hui Yao
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Daixu Wei
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Xuemei Che
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Longwei Cai
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Linping Wu
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Copenhagen 2100
- Denmark
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| |
Collapse
|
30
|
Michalak M, Kwiecień M, Kawalec M, Kurcok P. Oxidative degradation of poly(3-hydroxybutyrate). A new method of synthesis for the malic acid copolymers. RSC Adv 2016. [DOI: 10.1039/c5ra27041c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Herein was presented by the first time the green way to obtain poly(3-hydroxybutyrate-co-3-malic acid) from natural origin poly(3-hydroxybutyrate).
Collapse
Affiliation(s)
- Michał Michalak
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Michał Kwiecień
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Michał Kawalec
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| |
Collapse
|
31
|
Barouti G, Guillaume SM. Polyhydroxybutyrate (PHB)-based triblock copolymers: synthesis of hydrophobic PHB/poly(benzyl β-malolactonate) and amphiphilic PHB/poly(malic acid) analogues by ring-opening polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00910g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(benzyl β-malolactonate)-b-poly(3-hydroxybutyrate)-b-poly(benzyl β-malolactonate), PMLABe-b-PHB-b-PMLABe, and its analogous poly(β-malic acid), PMLA-b-PHB-b-PMLA, triblock copolymers are synthesized and fully characterized.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes (ISCR)
- UMR 6226 CNRS - Université de Rennes 1
- Campus de Beaulieu
- F-35042 Rennes Cedex
- France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes (ISCR)
- UMR 6226 CNRS - Université de Rennes 1
- Campus de Beaulieu
- F-35042 Rennes Cedex
- France
| |
Collapse
|