1
|
Yu CH, Hsiao YW, Löffler J, Kaiser N, Huang BH, Lee CH, Hung CH, Shen JS, Yap GPA, Gessner VH, Ong TG. Increasing the Donor Strength of Alkenylphosphines by Twisting the C=C Double Bond. Angew Chem Int Ed Engl 2025; 64:e202416764. [PMID: 39345025 DOI: 10.1002/anie.202416764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Electron-rich phosphines play a crucial role in transition metal-based homogeneous catalysis. While alkyl groups have traditionally been employed to increase the phosphine donor strength, recent studies have shown that zwitterionic functional groups such as phosphorus ylides can result in a further enhancement. Herein we report the concept of twisting a C=C double bond to introduce a zwitterionic substituent by the synthesis and application of N-heterocyclic olefin phosphines with a sulfonyl substituent (sNHOP). This sulfonyl group enables the twisting of the olefin moiety due to steric and electronic stabilization of the carbanionic center. The resulting zwitterionic structure leads to a significant increase of the donor strength of the sNHOP ligands compared to conventional NHOP systems with a planar N-heterocyclic olefin moiety. The potential of this new ligand platform for catalysis is demonstrated by its application in the gold-catalyzed hydroamination and cyclo-isomerization of alkynes. Here, the ligands outperform the original NHOP ligands suggesting favorable properties for future catalysis applications.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse150, 44801, Bochum, Germany
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
| | - Yu-Wen Hsiao
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
| | - Julian Löffler
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse150, 44801, Bochum, Germany
| | - Nicolas Kaiser
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse150, 44801, Bochum, Germany
| | - Bo-Hong Huang
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
| | - Chao-Hsien Lee
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
| | - Chen-Hsun Hung
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
| | | | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware Newark, DE, USA
| | - Viktoria H Gessner
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse150, 44801, Bochum, Germany
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica Taipei, Taiwan, ROC
- Department of Chemistry, National Taiwan University Taipei (Taiwan, ROC) and Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung, Taiwan, ROC
| |
Collapse
|
2
|
Hess KM, Leach IF, Wijtenhorst L, Lee H, Klein JEMN. Valence Tautomerism Induced Proton Coupled Electron Transfer:X-H Bond Oxidation with a Dinuclear Au(II) Hydroxide Complex. Angew Chem Int Ed Engl 2024; 63:e202318916. [PMID: 38324462 DOI: 10.1002/anie.202318916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.
Collapse
Affiliation(s)
- Kristopher M Hess
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Lisa Wijtenhorst
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Hangyul Lee
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
3
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
4
|
Abstract
Multimetallic catalysis is a powerful strategy to access complex molecular scaffolds efficiently from easily available starting materials. Numerous reports in the literature have demonstrated the effectiveness of this approach, particularly for capitalizing on enantioselective transformations. Interestingly, gold joined the race of transition metals very late making its use in multimetallic catalysis unthinkable. Recent literature revealed that there is an urgent need to develop gold-based multicatalytic systems based on the combination of gold with other metals for enabling enantioselective transformations that are not possible to capitalize with the use of a single catalyst alone. This review article highlights the progress made in the field of enantioselective gold-based bimetallic catalysis highlighting the power of multicatalysis for accessing new reactivities and selectivities which are beyond the reach of individual catalysts.
Collapse
Affiliation(s)
- Shivhar B Ambegave
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Tushar R More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
5
|
Tathe AG, Saswade SS, Patil NT. Gold-catalyzed multicomponent reactions. Org Chem Front 2023. [DOI: 10.1039/d3qo00272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Multicomponent reactions (MCRs) have emerged as an important branch in organic synthesis for the creation of complex molecular structures. This review is focused on gold-catalyzed MCRs with a special emphasis on the recent developments.
Collapse
|
6
|
Mandal D, Kumar A, Patil NT. Gold catalysis in organic synthesis: fifteen years of research in India. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Mishra S, Urvashi, Patil NT. Chiral Ligands for Au(I), Au(III), and Au(I)/Au(III) Redox Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sampoorna Mishra
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Urvashi
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
8
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
9
|
Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chem Rev 2021; 121:8478-8558. [PMID: 33555193 DOI: 10.1021/acs.chemrev.0c00903] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalyst-directed divergent synthesis, commonly termed as "divergent catalysis", has emerged as a promising technique as it allows chartering of structurally distinct products from common substrates simply by modulating the catalyst system. In this regard, gold complexes emerged as powerful catalysts as they offer unique reactivity profiles as compared to various other transition metal catalysts, primarily due to their salient electronic and geometrical features. Owing to the tunable soft π-acidic nature, gold catalysts not only evolved as superior contenders for catalyzing the reactions of alkynes, alkenes, and allenes but also, more intriguingly, have been found to provide divergent reaction pathways over other π-acid catalysts such as Ag, Pt, Pd, Rh, Cu, In, Sc, Hg, Zn, etc. The recent past has witnessed a renaissance in such examples wherein, by choosing gold catalysts over other transition metal catalysts or by fine-tuning the ligands, counteranions or oxidation states of the gold catalyst itself, a complete reactivity switch was observed. However, reviews documenting such examples are sporadic; as a result, most of the reports of this kind remained scattered in the literature, thereby hampering further development of this burgeoning field. By conceptualizing the idea of "Divergent Gold Catalysis (DGC)", this review aims to consolidate all such reports and provide a unified approach necessary to pave the way for further advancement of this exciting area. Based on the factors governing the divergence in product formation, an explicit classification of DGC has been provided. To gain a fundamental understanding of the divergence in observed reactivities and selectivities, the review is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Amit K Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
10
|
Sancheti SP, Akram MO, Roy R, Bedi V, Kundu S, Patil NT. ortho-Oxygenative 1,2-Difunctionalization of Diarylalkynes under Merged Gold/Organophotoredox Relay Catalysis. Chem Asian J 2019; 14:4601-4606. [PMID: 31589800 DOI: 10.1002/asia.201901275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Indexed: 02/05/2023]
Abstract
Reported herein is an ortho-oxygenative 1,2-difunctionalization of diarylalkynes under merged gold/organophotoredox catalysis to access highly functionalized 2-(2-hydroxyaryl)-2-alkoxy-1-arylethan-1-ones. Detailed mechanistic studies suggested a relay process, initiating with gold-catalyzed hydroalkoxylation of alkynes, to generate enol-ether followed by a key formal [4+2]-cycloaddition reaction. The successful application of the present methodology was also shown for the synthesis of benzofurans.
Collapse
Affiliation(s)
- Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Manjur O Akram
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - Rupam Roy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Vaibhav Bedi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Shubhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
11
|
Akram MO, Banerjee S, Saswade SS, Bedi V, Patil NT. Oxidant-free oxidative gold catalysis: the new paradigm in cross-coupling reactions. Chem Commun (Camb) 2018; 54:11069-11083. [DOI: 10.1039/c8cc05601c] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of C–C and C–X (X = hetero atom) bonds is the core aspect for the assembly of molecules. This feature article critically presents an overview of all the redox neutral cross-coupling reactions enabled by gold catalysis, which we believe would stimulate further research activities in this promising area.
Collapse
Affiliation(s)
- Manjur O. Akram
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Somsuvra Banerjee
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Sagar S. Saswade
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Vaibhav Bedi
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Nitin T. Patil
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| |
Collapse
|
12
|
Zohreh N, Hosseini SH, Jahani M, Xaba MS, Meijboom R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Wu WT, Xu RQ, Zhang L, You SL. Construction of spirocarbocycles via gold-catalyzed intramolecular dearomatization of naphthols. Chem Sci 2016; 7:3427-3431. [PMID: 29997837 PMCID: PMC6006865 DOI: 10.1039/c5sc04130a] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
A highly efficient, gold-catalyzed intramolecular dearomatization reaction of naphthols via 5-endo-dig cyclization is described. This facile and direct approach furnishes spirocarbocycles in excellent yields under mild conditions.
Collapse
Affiliation(s)
- Wen-Ting Wu
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| | - Ren-Qi Xu
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| | - Liming Zhang
- University of California , Santa Barbara , California 93106 , USA .
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| |
Collapse
|
14
|
Zhu Y, Laval S, Tang Y, Lian G, Yu B. A Polystyrene-Bound Triphenylphosphine Gold(I) Catalyst for the Glycosylation of Glycosylortho-Hexynylbenzoates. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yugen Zhu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Stéphane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yu Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Gaoyan Lian
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|