1
|
Lu Z, Teo BM, Tabor RF. Recent developments in polynorepinephrine: an innovative material for bioinspired coatings and colloids. J Mater Chem B 2022; 10:7895-7904. [PMID: 36106821 DOI: 10.1039/d2tb01335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While applications of polydopamine (PDA) are exponentially growing, research concerning the closely related neurotransmitter derivative polynorepinephrine (PNE) is in paucity, even though norepinephrine shares dopamine's ability to self-polymerize and form a coating film that is nearly substrate-agnostic. In this review, we demonstrate that PNE can be used as an alternative to PDA with equal or ever superior performance. PNE offers a thinner and smoother coating surface and thus is capable of more effectively resisting fouling by biofoulants, enhancing cell adhesion capability, surface hydrophilicity and biomolecule immobilisation. With the abundance of catechol, amino and hydroxyl groups in PNE's structure, PNE can perform as an electron donor and receiver at the same time and initiate ring opening and redox reactions. It has also been shown that PNE has the potential to be used as a biosensor due to its bioconjugation and molecular recognition ability. Here, we summarise the applications of PNE to date and discuss its potential research directions in the near future.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Tan B, Li Y, Fei X, Tian J, Xu L, Wang Y. Lipase-polydopamine magnetic hydrogel microspheres for the synthesis of octenyl succinic anhydride starch. Int J Biol Macromol 2022; 219:482-490. [PMID: 35850268 DOI: 10.1016/j.ijbiomac.2022.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Octenyl succinic anhydride (OSA) starch is an important edible additive in the food field, and its synthesis method has attracted much attention. Lipase as a biocatalyst can improve the synthesis efficiency of OSA starch, and significantly inhibit the occurrence of side reactions. However, free lipase has not been widely applied in the synthesis of OSA starch due to the difficulty of separation from starch and poor reusability. In this work, a promising strategy for the synthesis of OSA starch catalyzed by lipase immobilized on polydopamine magnetic hydrogel microspheres (PMHM) is reported. The prepared lipase-polydopamine magnetic hydrogel microspheres (L-PMHM) can be uniformly dispersed in starch slurry, which is conducive to the full contact between lipase and starch. L-PMHM (Km =2.6276 μmol/mL) exhibits better affinity to the substrate than free lipase (Km = 3.4301 μmol/mL). Compared with the OSA starch catalyzed by free lipase (DS = 0.0176), the degree of substitution of OSA starch catalyzed by L-PMHM is up to 0.0277 in a short reaction time. In cyclic catalysis, L-PHMM can remain about 48 % of their original activity after 20 reuses and can be quickly separated from the product. These results suggest that L-PMHM has great potential as a biocatalyst for the efficient synthesis of OSA starch.
Collapse
Affiliation(s)
- Bozhi Tan
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Zhao J, Ma M, Yan X, Zhang G, Xia J, Zeng Z, Yu P, Deng Q, Gong D. Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production. Food Chem 2022; 379:132148. [PMID: 35074745 DOI: 10.1016/j.foodchem.2022.132148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
Abstract
In this study, the polydopamine functionalized magnetic mesoporous biochar (MPCB-DA) was prepared for immobilization of Bacillus licheniformis lipase via covalent immobilization. Under optimized immobilization conditions, the maximum immobilization yield, efficiency and immobilized lipase amount were found to be 45%, 54% and 36.9 mg/g, respectively. The immobilized lipase, MPCB-DA-Lipase showed good thermal stability and alkali resistance. The MPCB-DA-Lipase retained 56% initial activity after 10 reuse cycles, with more than 85% relative activity after 70 days' storage at 4 or 25 °C. The MPCB-DA-Lipase was efficiently applied in the interesterification of Cinnamomum camphora seed kernel oil and perilla seed oil, with maximum interesterification efficiency of 46%. The produced structured lipids belong to the S2U and U2S triacylglycerols, a novel medium-and long-chain triacylglycerol. These results demonstrated that the MPCB-DA-Lipase may be used as an efficient biocatalyst in lipid processing applications of food industries.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Guohua Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Qiang Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
4
|
Pragya, Sharma KK, Kumar A, Singh D, Kumar V, Singh B. Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit Rev Food Sci Nutr 2021; 63:5465-5487. [PMID: 34965785 DOI: 10.1080/10408398.2021.2020719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phytases are the most widely used food and feed enzymes, which aid in nutritional improvement by reducing anti-nutritional factor. Despite the benefits, enzymes usage in the industry is restricted by several factors such as their short life-span and poor reusability, which result in high costs for large-scale utilization at commercial scale. Furthermore, under pelleting conditions such as high temperatures, pH, and other factors, the enzyme becomes inactive due to lesser stability. Immobilization of phytases has been suggested as a way to overcome these limitations with improved performance. Matrices used to immobilize phytases include inorganic (Hydroxypatite, zeolite, and silica), organic (Polyacrylamide, epoxy resins, alginate, chitosan, and starch agar), soluble matrix (Polyvinyl alcohol), and nanomaterials including nanoparticles, nanofibers, nanotubes. Several surface analysis methods, including thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR analysis, have been used to characterize immobilized phytase. Immobilized phytases have been used in a broad range of biotechnological applications such as animal feed, biodegradation of food phytates, preparations of myo-inositol phosphates, and sulfoxidation by vanadate-substituted peroxidase. This article provides information on different matrices used for phytase immobilization from the last two decades, including the process of immobilization and support material, surface analysis techniques, and multifarious biotechnological applications of the immobilized phytases.
Collapse
Affiliation(s)
- Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, India
| | - Vijay Kumar
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali, India
| |
Collapse
|
5
|
Suo H, Li M, Liu R, Xu L. Enhancing bio-catalytic performance of lipase immobilized on ionic liquids modified magnetic polydopamine. Colloids Surf B Biointerfaces 2021; 206:111960. [PMID: 34224932 DOI: 10.1016/j.colsurfb.2021.111960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, imidazolium-based ionic liquid with [tf2N]- as the anion was successfully grafted to magnetic polydopamine nanoparticles (MPDA). The prepared materials were well characterized and used as supports for lipase immobilization. The immobilized lipase (PPL-ILs-MPDA) exhibited excellent activity and stability. The specific activity of PPL-ILs-MPDA was 2.15 and 1.49 folds higher than that of free PPL and PPL-MPDA. In addition, after 10 rounds of reuse, the residual activity of PPL-ILs-MPDA was 86.2 % higher than that of PPL-MPDA (75.4 %). Furthermore, the kinetic assay indicated that the affinity between PPL-ILs-MPDA and substrate had increased. Analysis of the secondary structure using circular dichroism was used to explain the mechanism underlying the improvement in the performance of PPL-ILs-MPDA. In addition, the immobilized lipase can be easily separated from the reaction system with a magnet. The observations regarding the development of new supports for lipase immobilization may provide new ideas regarding further studies in this field.
Collapse
Affiliation(s)
- Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Moju Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Renmin Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
6
|
Ariaeenejad S, Motamedi E, Hosseini Salekdeh G. Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop. Carbohydr Polym 2020; 256:117511. [PMID: 33483032 DOI: 10.1016/j.carbpol.2020.117511] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
A combined enzymatic treatment/acid hydrolysis technique was utilized to synthesize cellulose nanocrystals (CNCs) from sugar beet pulp. CNCs were functionalized with magnetite nanoparticles and dopamine making a versatile nano-carrier (DA/Fe3O4NPs@CNCs) for covalent enzyme immobilization. Oxygene/amine functionalities, high magnetization value, and specific surface area of DA/Fe3O4NPs@CNCs made it a reusable and green candidate for conjugation to hydrolytic enzyme cocktails (three cellulases, two hemicellulases, and their combinations) to prepare an innovative and practical nano-biocatalyst for biomass conversion. The conjugated enzymes showed an enhanced optimum temperature (∼ 10 °C), improved thermal stability, and shifted optimum pH toward alkaline pHs. Covalent attachment could successfully suppress the enzyme leaching and provide easy recovery/reuse of the nano-biocatalyst up to 10 cycles, with > 50% of initial activity. Application of the nano-biocatalyst in hydrolysis of rice straw and sugar beet pulp showed an increase (20-76%) in the yield of fermentable sugars compared to the free enzyme cocktails.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Wang Y, Luo L, Wang Z, Tawiah B, Liu C, Xin JH, Fei B, Wong WY. Growing Poly(norepinephrine) Layer over Individual Nanoparticles To Boost Hybrid Perovskite Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27578-27586. [PMID: 32456422 DOI: 10.1021/acsami.0c06081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To address the poor stability of lead halide perovskite nanoparticles (NPs), monodisperse methylammonium lead bromide (MAPbBr3, M-PE) NPs were successfully encapsulated with a thin layer (10 nm) of poly(norepinephrine) (PNE) by in situ polymerization. The PNE layer endowed M-PE NPs with high structural stability against severe environmental conditions. Furthermore, the chemical interaction between M-PE and PNE facilitates the construction of the core@shell composite, as well as contributes to the enhanced light-harvesting capacity and improved photoelectronic conversion efficiency in photocatalytic activity. The encapsulated NP M-PE@PNE with a band gap of 2.04 eV degraded the organic pollutant of malachite green by 81% in less than 2 h under visible light, which was 4.5 times higher than pristine M-PE NPs. This work provides a practical approach to stabilize and boost the MAPbX3 photocatalyst and carries enormous potential in wide engineering applications.
Collapse
Affiliation(s)
- Yidi Wang
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Liangfeng Luo
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Ziqi Wang
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Benjamin Tawiah
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Chang Liu
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - John H Xin
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Bin Fei
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
8
|
Polynorepinephrine: state-of-the-art and perspective applications in biosensing and molecular recognition. Anal Bioanal Chem 2020; 412:5945-5954. [DOI: 10.1007/s00216-020-02578-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/26/2023]
|
9
|
Norepinephrine as new functional monomer for molecular imprinting: An applicative study for the optical sensing of cardiac biomarkers. Biosens Bioelectron 2020; 157:112161. [PMID: 32250934 DOI: 10.1016/j.bios.2020.112161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/23/2022]
Abstract
The continuous research for alternatives to antibody-based detection drove, in the last decades, the development of numerous strategies. Molecularly imprinted polymers (MIPs) emerged thanks to the low-cost and long-term stability features, where the choice of natural functional monomer(s) represents the key step for efficient imprinting of biomolecules. The chemical structure of dopamine (DA), one of the most used natural functional monomers, provided the inspiration for this work. We wondered why norepinephrine (NE) that differs from dopamine only for an additional hydroxyl group was not investigated at all in biosensing applications. In fact, there is only one paper exploiting polynorepinephrine (PNE) in molecular recognition applications, taking advantage of molecular imprinting, but not for biosensing purposes. In contrast, hundreds of papers describe polydopamine-based sensors. Therefore, we firstly investigated how the additional hydroxyl group of NE could affect the properties of the resulting polymer, and how these properties could be exploited for biosensing applications. The results highlighted the reduced non-specific adsorption of proteins onto PNE with respect to dopamine polymer. Furthermore, as a case study, we successfully developed a PNE-based imprinted biosensor for the early detection of Troponin I, a crucial biomarker for heart failure, by coupling the MIP biosensor with surface plasmon resonance (SPR) detection. The results indicate the feasible use of imprinted PNE as synthetic receptor for biomolecules, opening new perspectives for this biopolymer, so far not considered, and encouraging further investigations on its potential application in biosensing.
Collapse
|
10
|
Wu J, Xiao X, Li Z, Jia L. Enantioseparation of chiral β-blockers using polynorepinephrine-coated nanoparticles and chiral capillary electrophoresis. Anal Bioanal Chem 2019; 411:2121-2129. [DOI: 10.1007/s00216-019-01641-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 11/30/2022]
|
11
|
Liu Y, Nan X, Shi W, Liu X, He Z, Sun Y, Ge D. A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine. RSC Adv 2019; 9:16439-16446. [PMID: 35516374 PMCID: PMC9064379 DOI: 10.1039/c9ra02054c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/12/2019] [Indexed: 01/16/2023] Open
Abstract
The PNE/GOD/AuNPs@PNE/Au electrode exhibited a low Michaelis–Menten constant, a fast response to glucose, outstanding anti-interference ability and high sensitivity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Xu Nan
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| |
Collapse
|
12
|
He Z, Su H, Shen Y, Shi W, Liu X, Liu Y, Zhang F, Zhang Y, Sun Y, Ge D. Poly(norepinephrine)-coated FeOOH nanoparticles as carriers of artemisinin for cancer photothermal-chemical combination therapy. RSC Adv 2019; 9:9968-9982. [PMID: 35520919 PMCID: PMC9062392 DOI: 10.1039/c9ra01289c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022] Open
Abstract
The photothermal-chemical combination therapy is a promising approach for cancer treatment, however, chemotherapy often causes severe toxic and side effects on normal tissues. Herein, tumor-specific FeOOH@PNE-Art nanoparticles were fabricated via coating poly(norepinephrine) (PNE) on FeOOH nanoparticles, followed by loading of artemisinin (Art). The as-prepared nanoparticles exhibited excellent biocompatibility, strong near-infrared (NIR) absorbance and pH-responsive synchronous release of Art and iron ions. The released iron ions could not only supply iron ions in cancer cells which mediate endoperoxide bridge cleavage of Art and generate reactive oxygen species (ROS), but also react with H2O2 at tumour sites via the Fenton reaction and produce hydroxyl radicals, inducing a tumour-specific killing. Moreover, owing to the synchronous release of Art and iron ions as well as the low leakage of iron ions, FeOOH@PNE-Art nanoparticles showed extremely low toxicity to normal tissue. Under NIR light irradiation, the tumours in FeOOH@PNE-Art injected mice were thoroughly eliminated after 7 days of treatment and no tumour recurrence was found 30 days after treatment, manifesting very high efficacy of combination therapy. Tumor-specific FeOOH@PNE-Art nanoparticles were fabricated that showed high efficacy of photothermal-chemical combination therapy and low toxicity to normal tissue.![]()
Collapse
Affiliation(s)
- Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Huiling Su
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Yuqing Shen
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Fuhui Zhang
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Yansheng Zhang
- Xiamen Maternal and Child Health Hospital
- Xiamen 361003
- China
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| |
Collapse
|
13
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
|
15
|
Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7523-7540. [PMID: 29465221 PMCID: PMC6320233 DOI: 10.1021/acsami.7b19865] [Citation(s) in RCA: 874] [Impact Index Per Article: 124.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polydopamine is one of the simplest and most versatile approaches to functionalizing material surfaces, having been inspired by the adhesive nature of catechols and amines in mussel adhesive proteins. Since its first report in 2007, a decade of studies on polydopamine molecular structure, deposition conditions, and physicochemical properties have ensued. During this time, potential uses of polydopamine coatings have expanded in many unforeseen directions, seemingly only limited by the creativity of researchers seeking simple solutions to manipulating surface chemistry. In this review, we describe the current state of the art in polydopamine coating methods, describe efforts underway to uncover and tailor the complex structure and chemical properties of polydopamine, and identify emerging trends and needs in polydopamine research, including the use of dopamine analogs, nitrogen-free polyphenolic precursors, and improvement of coating mechanical properties.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Carbon Fusion Engineering, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, California 94720-1760, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Road, Daejeon 34141, South Korea
- Center for Nature-inspired Technology (CNiT), KAIST Institute of NanoCentury, 291 University Road, Daejeon 34141, South Korea
| |
Collapse
|
16
|
Magnetic cellulose nanocrystals: Synthesis by electrostatic self-assembly approach and efficient use for immobilization of papain. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Affiliation(s)
- Radosław Mrówczyński
- NanoBioMedical Centre; Adam Mickiewicz University; Umultowska 85 61-614 Poznan Poland
| | - Roksana Markiewicz
- NanoBioMedical Centre; Adam Mickiewicz University; Umultowska 85 61-614 Poznan Poland
| | - Jürgen Liebscher
- National Institute of Research and Development for Isotopic and Molecular Technologies; Donat 67-103 RO-400293 Cluj-Napoca Romania
- Department of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|