1
|
Aadinath W, K S P S T, Saravanakumar I, Muthuvijayan V. Iron oxide nanoparticle-stabilized Pickering emulsion-templated porous scaffolds loaded with polyunsaturated fatty acids (PUFAs) for bone tissue engineering. J Mater Chem B 2024; 12:9312-9324. [PMID: 39171408 DOI: 10.1039/d4tb00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Dietary intake of ω-3-polyunsaturated fatty acids (PUFAs) can significantly improve the expression levels of alkaline phosphatase (ALP) and osteocalcin. However, PUFAs are hydrophobic and highly sensitive to temperature, oxygen concentration, pH, and ionic strength. Hence, it is challenging to use PUFAs as bioactive compounds for bone tissue engineering. Here, we encapsulated PUFAs in liposomes to improve their stability. The hydrodynamic size of the PUFA-loaded liposomes was found to be 121.3 ± 35 nm. GC-MS analysis showed that the encapsulation efficiency of the PUFAs was 19.9 ± 3.4%. These PUFA-loaded liposomes were loaded into porous scaffolds that were prepared by polymerizing glycidyl methacrylate and trimethylolpropane triacrylate monomers using the Pickering emulsion polymerization technique. Oleic acid-coated iron oxide nanoparticles were used as the stabilizing agent to prepare these acrylate-based scaffolds containing PUFA-loaded liposomes (P-Lipo-IO(GMA-TMPTA)). SEM micrographs confirmed the porous nature of the scaffolds and the presence of well-adhered liposomes. An in vitro cytotoxicity study conducted using MG63 cells confirmed that these scaffolds showed desirable cytocompatibility. Cell adhesion study showed a well-spread morphology, indicating firm adhesion of the cells. The alizarin red staining of P-Lipo-IO(GMA-TMPTA) scaffolds showed 3- and 2-fold higher calcium deposition compared to the control on days 7 and 14, respectively. ALP activity was also 2-fold higher than that of the control on day 14. RT-PCR analysis of cells exposed to P-Lipo-IO(GMA-TMPTA) scaffolds showed significantly higher expression of osteogenic markers compared to the control. An antibacterial study conducted on Staphylococcus aureus showed a higher percentage inhibition and reactive oxygen species generation in samples treated with P-Lipo-IO(GMA-TMPTA) scaffolds. These desirable biological properties indicate that the developed scaffolds are suitable for bone tissue engineering.
Collapse
Affiliation(s)
- W Aadinath
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Teja K S P S
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Iniyan Saravanakumar
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Vignesh Muthuvijayan
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
2
|
Dalavi PA, Prabhu A, M S, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces 2023; 232:113595. [PMID: 37913705 DOI: 10.1016/j.colsurfb.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Our regular life can be more challenging by bone abnormalities. Bone tissue engineering is used for repairing, regenerating, or replacing bone tissue that has been injured or infected. It is effective in overcoming the drawbacks of conventional bone grafting methods like autograft and allograft by enhancing the effectiveness of bone regeneration. Recent discoveries have shown that the exfoliation of transition metal dichalcogenides (TMDs) with protein is in great demand for bone tissue engineering applications. WS2 nanosheets were developed using casein and subsequently characterized with different analytical techniques. Strong absorption peaks were observed in the UV-visible spectra at 520 nm and 630 nm. Alginate and alginate-casein WS2 microspheres were developed. Stereomicroscopic images of the microspheres are spherical in shape and have an average diameter of around 0.8 ± 0.2 mm. The alginate-casein WS2 microspheres show higher content of water absorption and retention properties than only alginate-containing microspheres. The apatite formation in the simulated bodily fluid solution was facilitated more effectively by the alginate-casein-WS2 microspheres. Additionally, alginate-casein-WS2 microspheres have a compressive strength is 58.01 ± 4 MPa. Finally, in vitro cell interaction studies reveals that both the microspheres are biocompatible with the C3H10T1/2 cells, and alginate-casein-WS2-based microspheres promote cell growth more significantly. Alginate-casein-WS2 microspheres promote alkaline phosphatase activity, and mineralization process. Additionally, alginate-casein-WS2-based microspheres exponentially enhance the genes for ALP, BMP-2, OCN, and Collage type-1. The produced alginate-casein-WS2 microspheres could be a suitable synthetic graft for a bone transplant replacement.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Venkatesan Jayachandran
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
3
|
Singh A, Muduli C, Senanayak SP, Goswami L. Graphite nanopowder incorporated xanthan gum scaffold for effective bone tissue regeneration purposes with improved biomineralization. Int J Biol Macromol 2023; 234:123724. [PMID: 36801298 DOI: 10.1016/j.ijbiomac.2023.123724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In the current work, biomaterial composed of Xanthan gum and Diethylene glycol dimethacrylate with impregnation of graphite nanopowder filler in their matrices was fabricated successfully for their potential usage in the engineering of bone defects. Various physicochemical properties associated with the biomaterial were characterized using FTIR, XRD, TGA, SEM etc. The biomaterial rheological studies imparted the better notable properties associated with the inclusion of graphite nanopowder. The biomaterial synthesized exhibited a controlled drug release. Adhesion and proliferation of different secondary cell lines do not generate ROS on the current biomaterial and thus show its biocompatibility and non-toxic nature. The synthesized biomaterial's osteogenic potential on SaOS-2 cells was supported by increased ALP activity, enhanced differentiation and biomineralization under osteoinductive circumstances. The current biomaterial demonstrates that in addition to the drug-delivery applications, it can also be a cost-effective substrate for cellular activities and has all the necessary properties to be considered as a promising alternative material suitable for repairing and restoring bone tissues. We propose that this biomaterial may have commercial importance in the biomedical field.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chinmayee Muduli
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Science, National Institute of Science Education and Research, An OCC of HBNI, Jatni 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
4
|
Golkar N, Sarikhani Z, Aghaei R, Heidari R, Amini A, Gholami A. An oral nanoformulation of insulin: Development and characterization of human insulin loaded graphene oxide-sodium alginate-gold nanocomposite in an animal model. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Soltani M, Alizadeh P. Aloe vera incorporated starch-64S bioactive glass-quail egg shell scaffold for promotion of bone regeneration. Int J Biol Macromol 2022; 217:203-218. [PMID: 35839948 DOI: 10.1016/j.ijbiomac.2022.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Simultaneous promotion of osteoconductive and osteoinductive characteristics through combining bioactive glasses with natural polymers is still a challenge in bone tissue engineering. Starch, 64S bioactive glass (BG), aloe vera (AV) and quail eggshell powder (QE) were utilized to achieve biodegradable, bioactive, biocompatible and mechanically potent multifunctional scaffolds, using freeze-drying mechanism. Cell viability for starch-BG-AV-QE scaffolds at 3 and 7 day intervals was reported to be over 95 %. Acridine orange staining was employed to study live/dead cells cultured on the scaffolds. The high sufficiency of starch-BG-AV-QE scaffolds in osteogenic differentiation and extracellular matrix mineralization was confirmed through alkaline phosphatase activity and alizarin red staining assessments after 7 and 14 days of cell culture. High compressive strength, managed biodegradability and expression of osteocalcin and osteopontin as late markers of osteogenic differentiation were also reached in the range of 30-75 % for starch-BG-AV-QE scaffolds. Hence, starch-BG-AV-QE scaffolds with ideal physico-mechanical and biological characteristics can be considered as promising candidates for promotion of bone regeneration.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Materials Science and Engineering, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| |
Collapse
|
7
|
Ali A, Hasan A, Negi YS. Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. Int J Biol Macromol 2022; 197:1-11. [PMID: 34914910 DOI: 10.1016/j.ijbiomac.2021.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/31/2023]
Abstract
The objective of our present work is to analyze the effect of carbon derived fillers (GO/RGO) on microstructural, mechanical and osteoinductive potential of xylan/chitosan/HAp composite matrix for bone tissue engineering application. The composites were characterized by FTIR, XRD and SEM to evaluate the composition and morphological parameters. Change in microstructural and mechanical properties of scaffold was observed on tuning filler type (GO/RGO) and concentration. Composites with GO and RGO content demonstrated significant mineralization potential with dense apatite growth. A comparative evaluation of cell viability using MG-63 cell line revealed improved cell response in samples incorporated with carbon fillers than their native parent matrix. MTT Assay revealed highest cell viability in composite with 0.75% RGO content. Cell attachment was observed in all the scaffold samples cultured for 72 h. The filler incorporated X/C/HAp matrix demonstrated increase in ALP activity over a period of 7 and 14 days. Synergistic effect of these fillers in enhancing in vitro mineralization tendency and osteogenic differentiation capability make the composites a potential candidate for bone tissue engineering construct.
Collapse
Affiliation(s)
- Asif Ali
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India
| | - Abshar Hasan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India.
| |
Collapse
|
8
|
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5104. [PMID: 34501203 PMCID: PMC8434078 DOI: 10.3390/ma14175104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
While conventional dental implants focus on mechanical properties, recent advances in functional carbon nanomaterials (CNMs) accelerated the facilitation of functionalities including osteoinduction, osteoconduction, and osseointegration. The surface functionalization with CNMs in dental implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for mechanical reinforcing, osseointegration, and antimicrobial properties. Numerous developments in the fabrication and biological studies of CNMs have provided various opportunities to expand their application to dental regeneration and restoration. In this review, we discuss the advances in novel dental implants with CNMs in terms of tissue engineering, including material combination, coating strategies, and biofunctionalities. We present a brief overview of recent findings and progression in the research to show the promising aspect of CNMs for dental implant application. In conclusion, it is shown that further development of surface functionalization with CNMs may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | | | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| |
Collapse
|
9
|
G.V YD, Prabhu A, Anil S, Venkatesan J. Preparation and characterization of dexamethasone loaded sodium alginate-graphene oxide microspheres for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Rezaei H, Shahrezaee M, Jalali Monfared M, Fathi Karkan S, Ghafelehbashi R. Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.
Collapse
Affiliation(s)
- Hessam Rezaei
- Department of Orthopedic Surgery , School of Medicine, AJA University of Medical Sciences , Tehran , Iran
- Department of Biomedical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Mostafa Shahrezaee
- Department of Orthopedic Surgery , School of Medicine, AJA University of Medical Sciences , Tehran , Iran
| | - Marziyeh Jalali Monfared
- Department of Biomaterials and Medicinal Chemistry Research Center, AJA University of Medical Sciences , Tehran , Iran
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Robabehbeygom Ghafelehbashi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Ryu JH, Kang TY, Shin H, Kim KM, Hong MH, Kwon JS. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Int J Mol Sci 2020; 21:ijms21228501. [PMID: 33198074 PMCID: PMC7696815 DOI: 10.3390/ijms21228501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Min-Ho Hong
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
12
|
Unagolla JM, Jayasuriya AC. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:1-11. [PMID: 31146979 PMCID: PMC6546300 DOI: 10.1016/j.msec.2019.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
For tissue engineering applications, a porous scaffold with an interconnected network is essential to facilitate the cell attachment and proliferation in a three dimensional (3D) structure. This study aimed to fabricate the scaffolds by an extrusion-based 3D printer using a blend of polycaprolactone (PCL), and graphene oxide (GO) as a favorable platform for bone tissue engineering. The mechanical properties, morphology, biocompatibility, and biological activities such as cell proliferation and differentiation were studied concerning the two different pore sizes; 400 μm, and 800 μm, and also with two different GO content; 0.1% (w/w) and 0.5% (w/w). The compressive strength of the scaffolds was not significantly changed due to the small amount of GO, but, as expected scaffolds with 400 μm pores showed a higher compressive modulus in comparison to the scaffolds with 800 μm pores. The data indicated that the cell attachment and proliferation were increased by adding a small amount of GO. According to the results, pore size did not play a significant role in cell proliferation and differentiation. Alkaline Phosphate (ALP) activity assay further confirmed that the GO increase the ALP activity and further Elemental analysis of Calcium and Phosphorous showed that the GO increased the mineralization compared to PCL only scaffolds. Western blot analysis showed the porous structure facilitate the secretion of bone morphogenic protein-2 (BMP-2) and osteopontin at both day 7 and 14 which galvanizes the osteogenic capability of PCL and PCL + GO scaffolds.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA; Department of Orthopedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
13
|
Nie L, Wang C, Hou R, Li X, Sun M, Suo J, Wang Z, Cai R, Yin B, Fang L, Wei X, Yuan H. Preparation and characterization of dithiol-modified graphene oxide nanosheets reinforced alginate nanocomposite as bone scaffold. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0581-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Duan P, Shen J, Zou G, Xia X, Jin B. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1708-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Li M, Xiong P, Yan F, Li S, Ren C, Yin Z, Li A, Li H, Ji X, Zheng Y, Cheng Y. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater 2018; 3:1-18. [PMID: 29744438 PMCID: PMC5935763 DOI: 10.1016/j.bioactmat.2018.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023] Open
Abstract
Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhichen Yin
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Huafang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yufeng Zheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Hu WP, Zhang B, Zhang J, Luo WL, Guo Y, Chen SJ, Yun MJ, Ramakrishna S, Long YZ. Ag/alginate nanofiber membrane for flexible electronic skin. NANOTECHNOLOGY 2017; 28:445502. [PMID: 28825406 DOI: 10.1088/1361-6528/aa8746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flexible electronic skin has stimulated significant interest due to its widespread applications in the fields of human-machine interactivity, smart robots and health monitoring. As typical elements of electrical skin, the fabrication process of most pressure sensors combined nanomaterials and PDMS films are redundant, expensive and complicated, and their unknown biological toxicity could not be widely used in electronic skin. Hence, we report a novel, cost-effective and antibacterial approach to immobilizing silver nanoparticles into-electrospun Na-alginate nanofibers. Due to the unique role of carboxyl and hydroxyl groups in Na-alginate, the silver nanopaticles with 30 nm size in diameter were uniformly distributed inside and outside the alginate nanofibers, which obtained pressure sensor shows stable response, including an ultralow detection limited (1 pa) and high durability (>1000 cycles). Notably, the pressure sensor fabricated by these Ag/alginate nanofibers could not only follow human respiration but also accurately distinguish words like 'Nano' and 'Perfect' spoke by a tester. Interestingly, the pixelated sensor arrays based on these Ag/alginate nanofibers could monitor distribution of objects and reflect their weight by measuring the different current values. Moreover, these Ag/alginate nanofibers exhibit great antibacterial activity, implying the great potential application in artificial electronic skin.
Collapse
Affiliation(s)
- Wei-Peng Hu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kuo YC, Ku HF, Rajesh R. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly- l -lysine for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:265-277. [DOI: 10.1016/j.msec.2017.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022]
|
18
|
Sharma R, Kapusetti G, Bhong SY, Roy P, Singh SK, Singh S, Balavigneswaran CK, Mahato KK, Ray B, Maiti P, Misra N. Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization. Bioconjug Chem 2017; 28:2254-2265. [DOI: 10.1021/acs.bioconjchem.7b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Govinda Kapusetti
- Department
of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad 380054, India
| | - Sayali Yashwant Bhong
- Department
of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad 380054, India
| | - Partha Roy
- Department
of Biotechnology, Indian Institute of Technology, Roorkee 247667, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shikha Singh
- Department
of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | | | | | - Biswajit Ray
- Department
of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
19
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
21
|
Tan H, Wang H, Chai Y, Yu Y, Hong H, Yang F, Qu X, Liu C. Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Adv 2017. [DOI: 10.1039/c6ra27308d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(1) HApNPs are conferred with negative charges by surface modification with heparin. (2) Heparinized HApNPs and polycation CS are assembled to form a hybrid coating. (3) RhBMP-2 is introduced into the coating via the intermolecular binding with heparin.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yanjun Chai
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Fei Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
22
|
Holt BD, Wright ZM, Arnold AM, Sydlik SA. Graphene oxide as a scaffold for bone regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27781398 DOI: 10.1002/wnan.1437] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Graphene oxide (GO), the oxidized form of graphene, holds great potential as a component of biomedical devices, deriving utility from its ability to support a broad range of chemical functionalities and its exceptional mechanical, electronic, and thermal properties. GO composites can be tuned chemically to be biomimetic, and mechanically to be stiff yet strong. These unique properties make GO-based materials promising candidates as a scaffold for bone regeneration. However, questions still exist as to the compatibility and long-term toxicity of nanocarbon materials. Unlike other nanocarbons, GO is meta-stable, water dispersible, and autodegrades in water on the timescale of months to humic acid-like materials, the degradation products of all organic matter. Thus, GO offers better prospects for biological compatibility over other nanocarbons. Recently, many publications have demonstrated enhanced osteogenic performance of GO-containing composites. Ongoing work toward surface modification or coating strategies could be useful to minimize the inflammatory response and improve compatibility of GO as a component of medical devices. Furthermore, biomimetic modifications could offer mechanical and chemical environments that encourage osteogenesis. So long as care is given to assure their safety, GO-based materials may be poised to become the next generation scaffold for bone regeneration. WIREs Nanomed Nanobiotechnol 2017, 9:e1437. doi: 10.1002/wnan.1437 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Brian D Holt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zoe M Wright
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Ge M, Xue L, Nie T, Ma H, Zhang J. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1685-1697. [PMID: 27569555 DOI: 10.1080/09205063.2016.1229901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A thermal-induced phase separation combined sugar template method was used to fabricate the Poly (L-lactide) acid (PLLA) scaffolds with precisely regulated porous structure. The effect of tuned porous structure of scaffolds on osteoblasts proliferation and differentiation was investigated. The results showed that the pore diameters (200-300, 300-400, 400-500 μm), porosity and interconnectivity of PLLA scaffolds can be accurately controlled indicated by scanning electron microscope. The results of cell experiments showed that the porous structure including the pore size and interconnectivity of scaffolds dramatically influence the cell proliferation and differentiation. The scaffold with pore diameter of 400-500 μm exhibited the highest cell viability and alkaline phosphatase activity among all the scaffolds for the MC3T3-E1 cells. The higher cell proliferation and biocompatibility observed in the 400-500 μm scaffold indicated the high selectivity for MC3T3-E1cells on the pore size of scaffold in tissue engineering. The precise control of the porous structure of scaffold may better guide the cell-matrix interaction in the future research.
Collapse
Affiliation(s)
- Min Ge
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China.,b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding , China
| | - Li Xue
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Taotao Nie
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Haiyun Ma
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China
| | - Jinchao Zhang
- a College of Chemistry and Environmental Science, Hebei University , Baoding , China.,b Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding , China
| |
Collapse
|
24
|
Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 2016; 6:32456. [PMID: 27578567 PMCID: PMC5006027 DOI: 10.1038/srep32456] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/03/2022] Open
Abstract
Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Eduardo Garcia
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Atzimba Casas
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Calvin M. Stewart
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
25
|
Liu C, Wong HM, Yeung KWK, Tjong SC. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers (Basel) 2016; 8:E287. [PMID: 30974562 PMCID: PMC6432366 DOI: 10.3390/polym8080287] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 01/15/2023] Open
Abstract
Graphene oxide (GO) and a nanohydroxyapatite rod (nHA) of good biocompatibility were incorporated into polylactic acid (PLA) through electrospinning to form nanocomposite fiber scaffolds for bone tissue engineering applications. The preparation, morphological, mechanical and thermal properties, as well as biocompatibility of electrospun PLA scaffolds reinforced with GO and/or nHA were investigated. Electron microscopic examination and image analysis showed that GO and nHA nanofillers refine the diameter of electrospun PLA fibers. Differential scanning calorimetric tests showed that nHA facilitates the crystallization process of PLA, thereby acting as a nucleating site for the PLA molecules. Tensile test results indicated that the tensile strength and elastic modulus of the electrospun PLA mat can be increased by adding 15 wt % nHA. The hybrid nanocomposite scaffold with 15 wt % nHA and 1 wt % GO fillers exhibited higher tensile strength amongst the specimens investigated. Furthermore, nHA and GO nanofillers enhanced the water uptake of PLA. Cell cultivation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase tests demonstrated that all of the nanocomposite scaffolds exhibit higher biocompatibility than the pure PLA mat, particularly for the scaffold with 15 wt % nHA and 1 wt % GO. Therefore, the novel electrospun PLA nanocomposite scaffold with 15 wt % nHA and 1 wt % GO possessing a high tensile strength and modulus, as well as excellent cell proliferation is a potential biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chen Liu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hoi Man Wong
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kelvin Wai Kwok Yeung
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sie Chin Tjong
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
26
|
Rajesh R, Dominic Ravichandran Y, Jeevan Kumar Reddy M, Ryu SH, Shanmugharaj AM. Development of functionalized multi-walled carbon nanotube-based polysaccharide–hydroxyapatite scaffolds for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra16709h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
fMWCNT–amylopectin–HAP and fMWCNT–gellan gum–HAP were prepared and characterized and their in vitro cell proliferation and ALP activity were checked for the first time.
Collapse
Affiliation(s)
- R. Rajesh
- Department of Science and Humanities
- Karpagam College of Engineering
- Coimbatore-641032
- India
- Materials Chemistry Division
| | | | | | - Sung Hun Ryu
- Department of Chemical Engineering
- Kyung Hee University
- Yongin
- South Korea
| | | |
Collapse
|
27
|
Shi C, Gao J, Wang M, Shao Y, Wang L, Wang D, Zhu Y. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability. Biomater Sci 2016; 4:699-710. [DOI: 10.1039/c6bm00009f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteogenic Ag/HAp bioceramics possess significant bacteria-killing abilities under ultra-low Ag+concentrations and the stern-interface induced antibacterial mechanism was explicitly proposed.
Collapse
Affiliation(s)
- Chao Shi
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jianyong Gao
- Department of Stomatology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Ming Wang
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yiran Shao
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Liping Wang
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Dalin Wang
- Department of Stomatology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Yingchun Zhu
- Key Lab of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
28
|
Ramanathan G, Singaravelu S, Raja MD, Nagiah N, Padmapriya P, Ruban K, Kaveri K, Natarajan TS, Sivagnanam UT, Perumal PT. Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c5ra19529b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The collagen coated nanofibrous scaffold mimics the function of the extra cellular matrix with good biocompatibility, cell adhesion, cell proliferation and aids to provide as a promising tool in skin tissue engineering application.
Collapse
Affiliation(s)
| | | | - M. D. Raja
- Bioproducts Lab
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | - Naveen Nagiah
- Department of Mechanical Engineering
- University of Colorado
- Boulder
- USA
| | - P. Padmapriya
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - K. Ruban
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - Krishnasamy Kaveri
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - T. S. Natarajan
- Conducting Polymers Lab
- Department of Physics
- Indian Institute of Technology Madras
- Chennai
- India
| | | | | |
Collapse
|