1
|
Wu YJ, Wu JY, Hsieh CW, Chang BC, Whang LM. Biological treatment of N-methylpyrrolidone, cyclopentanone, and diethylene glycol monobutyl ether distilled residues and their effects on nitrogen removal in a full-scale wastewater treatment plant. CHEMOSPHERE 2024; 362:142585. [PMID: 38866333 DOI: 10.1016/j.chemosphere.2024.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Manufacturing processes in semiconductor and photonics industries involve the use of a significant amount of organic solvents. Recycle and reuse of these solvents produce distillate residues and require treatment before being discharged. This study aimed to evaluate the performance of the biological treatment system in a full-scale wastewater treatment plant that treats wastewater containing distillate residues from the recycling of electronic chemicals. Batch experiments were conducted to investigate the optimal operational conditions for the full-scale wastewater treatment plant. To achieve good nitrogen removal efficiency with effluent ammonia and nitrate concentrations below 20 mg N/L and 50 mg N/L, respectively, it was suggested to control the ammonia concentration and pH of the influent below 500 mg N/L and 8.0, respectively. In addition, the biodegradability of N-methylpyrrolidone, diethylene glycol monobutyl ether, and cyclopentanone distillate residues from the electronic chemicals manufacturing process were evaluated under aerobic, anoxic, and anaerobic conditions. N-methylpyrrolidone and cyclopentanone distillate residues were suggested to be treated under anoxic condition. However, substrate inhibition occurred when using cyclopentanone distillate residue as a carbon source with chemical oxygen demand (COD) levels higher than 866 mg/L and nitrate levels higher than 415 mg N/L. Under aerobic condition, the COD from both N-methylpyrrolidone and cyclopentanone distillate residues could be easily degraded. Nevertheless, a negative effect on nitrification was observed, with a prolonged lag time for ammonia oxidation as the initial COD concentration increased. The specific ammonia oxidation rate and nitrate production rate decreased under high COD concentration contributed by N-methylpyrrolidone and cyclopentanone distillate residues. Furthermore, the biodegradability of diethylene glycol monobutyl ether distillate residue was found to be low under aerobic, anoxic, and anaerobic conditions. With respect to the abundance of nitrogen removal microorganisms in the wastewater treatment plant, results showed that Comammox may have an advantage over ammonia oxidizing bacteria under high pH conditions. In addition, Comammox may have higher resistance to environmental changes. Dominance of Comammox over ammonia oxidizing bacteria under high ammonia condition was first reported in this study.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan
| | - Jie-Yu Wu
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan
| | - Chung-Wei Hsieh
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan
| | - Ben-Chiao Chang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University (NCKU), No. 1, University Road, 701, Taiwan.
| |
Collapse
|
2
|
Shi B, Cheng X, Jiang S, Pan J, Zhu D, Lu Z, Jiang Y, Liu C, Guo H, Xie J. Unveiling the power of COD/N on constructed wetlands in a short-term experiment: Exploring microbiota co-occurrence patterns and assembly dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169568. [PMID: 38143001 DOI: 10.1016/j.scitotenv.2023.169568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.
Collapse
Affiliation(s)
- Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China.
| | - Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Junheng Pan
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Zhuoyin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China
| | - Yuheng Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Chunsheng Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Heyi Guo
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
3
|
Tian S, Huang S, Zhu Y, Zhang G, Lian J, Liu Z, Zhang L, Qin X. Effect of low-intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties of extracellular polymeric substances. ULTRASONICS SONOCHEMISTRY 2021; 73:105527. [PMID: 33770745 PMCID: PMC8010210 DOI: 10.1016/j.ultsonch.2021.105527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Ultrasound technology, which is environment-friendly and economical, has emerged as a novel strategy that can be used to enhance the partial nitrification process. However, its effect on this process remains unclear. Therefore, in this study, partial nitrification sludge was subjected to low-intensity (0.15 W/mL) ultrasound treatment for 10 min, and the effect of ultrasonic treatment on the partial nitrification process was evaluated based on changes in reactor performance, sludge characteristics, and the properties of extracellular polymeric substances (EPS). The results obtained showed that the ultrasonic treatment enhanced nitrite accumulation performance as well as the activity of ammonia-oxidizing bacteria from 3.3 to 16.6 mg O2/g VSS,⋅while inhibiting the activity of nitrite-oxidizing bacteria. Further analysis showed that owing to the ultrasonic treatment, there was an increase in EPS contents. Particularly, there was a significant increase in loosely bound polysaccharide (PS) contents, indicating the occurrence of intracellular PS anabolics as well as PS secretion. Additionally, ultrasonic treatment induced a significant increase in carbonyl, hydroxyl, and amine functional group contents, and EPS analysis results revealed that it had a positive effect on mass transfer efficiency; thus, it enhanced the partial nitrification process. Overall, this study describes the effect of intermittent low-intensity ultrasound on the partial nitrification process as well as the associated enhancement mechanism.
Collapse
Affiliation(s)
- Shuai Tian
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuchang Huang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yichun Zhu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Junfeng Lian
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Zuwen Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xinxin Qin
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
4
|
Chen X, Wang K, Li X, Qiao Y, Dong K, Yang L. Microcystis blooms aggravate the diurnal alternation of nitrification and nitrate reduction in the water column in Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144884. [PMID: 33636785 DOI: 10.1016/j.scitotenv.2020.144884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
To explore the effects of Microcystis blooms on nitrogen (N) cycling in the water column, the community structures of the Microcystis-attached and free-living bacteria in Lake Taihu were assessed and a mesocosm experiment was further conducted on the shore of Lake Taihu. The bacterial communities of Microcystis-attached and free-living bacteria were dominated by heterotrophic bacteria, such as Pseudomonas and Massilia, while the relative abundances of the genera related to traditional autotrophic nitrification were surprisingly low. However, the dramatic increase in nitrate (NO3-) levels at the daytime suggested that in the mesocosms nitrification did occur, during which the heterotrophic nitrifiers played a predominant role as revealed by the acetylene inhibition experiment. The ammonium (NH4+) concentrations were always maintained at a low level, indicating that most of the substrates for daytime nitrification originated from organic N. The total N being removed during the experiment was much less than the sum of daily NO3- reduction, while the decrease in NO3- concentration was much higher than the increase in NH4+ concentration during the night, indicating that assimilation was the main explanation for nocturnal NO3- reduction. Thus, the cycling of organic N (remineralization) - heterotrophic nitrification - NO3- assimilation (reduction) promoted by Microcystis blooms aggravates the diurnal variation of NO3- in the water column.
Collapse
Affiliation(s)
- Xiaofeng Chen
- School of Environmental Science and Engineering, Yangzhou University, West Huayang Road 196, Yangzhou 225127, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Road 163, Nanjing 210146, People's Republic of China.
| | - Kun Wang
- School of Environmental Science and Engineering, Yangzhou University, West Huayang Road 196, Yangzhou 225127, People's Republic of China
| | - Xing Li
- School of Environmental Science and Engineering, Yangzhou University, West Huayang Road 196, Yangzhou 225127, People's Republic of China
| | - Yuqi Qiao
- School of Environmental Science and Engineering, Yangzhou University, West Huayang Road 196, Yangzhou 225127, People's Republic of China
| | - Kunming Dong
- School of Environmental Science and Engineering, Yangzhou University, West Huayang Road 196, Yangzhou 225127, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Road 163, Nanjing 210146, People's Republic of China
| |
Collapse
|
5
|
Chen S, Dougherty M, Chen Z, Zuo X, He J. Managing biofilm growth and clogging to promote sustainability in an intermittent sand filter (ISF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142477. [PMID: 33039892 PMCID: PMC7519011 DOI: 10.1016/j.scitotenv.2020.142477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/11/2020] [Accepted: 09/17/2020] [Indexed: 05/14/2023]
Abstract
The sustainability of rural sanitation includes the long-term welfare of both rural and urban societies. As a commonly used rural sanitation technology, operation of intermittent sand filters (ISF) is impacted by biofilm clogging inside the ISF. In this study ISF performance is studied at low hydraulic loading rates (HLR) to explore the interaction between biofilm growth and wastewater treatment efficiency. CW2D/HYDRUS, a simulation model which does not include media hydraulic property changes caused by biofilm growth, is utilized as a numerical control to contrast the effects of biofilm growth inside an experimental ISF. A paired experiment with simulation demonstrate that biofilm clogging comprised dominantly of heterotrophs occurred in the top layers of the ISF. Lowered HLR slows clogging development but not final clogging extent. The biofilm clogging development zone offers adequate removal of applied biodegradable COD and NH4+ - N. However, the spatial distribution of heterotrophs and biodegradable COD does not match the denitrification requirement of the resulting NO3- - N. A simultaneous nitrification and denitrification (SND) potential is manifested in the clogging development zone, but lowered HLR reduces media moisture level to a less favorable level for denitrification. Furthermore, slowed water movement under lower HLR aggravates the accumulation of NO3- - N, which can potentially result in counterproductive salt accumulation. Since biofilm growth is a natural and self-adaptive response to wastewater application, this study suggests accepting limited, managed biofilm growth and clogging in ISFs. In addition, this study calls for further research to manage biofilm growth and clogging for long-term ISF sustainability.
Collapse
Affiliation(s)
- Siqi Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mark Dougherty
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| | - Xingtao Zuo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
The Operating Characteristics of Partial Nitrification by Controlling pH and Alkalinity. WATER 2021. [DOI: 10.3390/w13030286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In many experiments, a partial nitrification device is initiated with the use of highly active nitrating sludge because of the large number of nitrifying bacteria. Ammonia-oxidizing bacteria (AOB) are more adaptable to low-dissolved oxygen environments than nitrite-oxidizing bacteria (NOB). NOB activity was inhibited when the dissolved oxygen (DO) levels were decreased, causing the nitrate-nitrogen concentration to gradually decrease in the effluent and the nitrite-nitrogen concentration to gradually increase, achieving the accumulation of nitrous nitrogen. In this experiment, a sequencing batch reactor (SBR) was used to suppress NOB activity at a given pH while maintaining DO at a very low level so that the ammonia–water reaction mainly occurred in the device, and then the mud and water separated. Compared with other experiments, this approach can occur in 25 days, and it runs stably for more than two months until the device closes when the ammonia-nitrogen concentration is about 170 mg/L. This experiment also compared the difference between the pH change at the beginning of the device operation and after the device was stable. In order to increase the efficiency of bacterial appreciation, supplementing NaHCO3 increased the HCO3− concentration by 300 mg/L on the 25th day. It was found that some nitrification reactions still occurred, but they were not enough to destabilize the device. The nitrosate accumulation efficiency still gradually increased, and the average nitrite accumulation efficiency was 87.25% after NaHCO3 supplementation.
Collapse
|
7
|
He J, Dougherty M, Chen Z. Numerical assessment of a soil moisture controlled wastewater SDI disposal system in Alabama Black Belt Prairie. CHEMOSPHERE 2021; 263:128210. [PMID: 33297169 PMCID: PMC7467105 DOI: 10.1016/j.chemosphere.2020.128210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
To promote the environmental sustainability of rural sanitation, a soil moisture controlled wastewater subsurface drip irrigation (SDI) dispersal system was field tested in the Black Belt Prairie of Alabama, USA. The soil moisture control strategy was designed to regulate wastewater disposal timing according to drain field conditions to prevent hydraulic overloading and corresponding environmental hazard. CW2D/HYDRUS simulation modeling was utilized to explore difficult-to-measure aspects of system performance. While the control system successfully adapted hydraulic loading rate to changing drain field conditions, saturated field conditions during the dormant season presented practical application challenges. The paired field experiment and simulation model demonstrate that soil biofilm growth was stimulated in the vicinity of drip emitters. Although biofilm growth is critical in maintaining adequate COD and NH4+-N removal efficiencies, the efficient removal of biodegradable COD itself by soil biofilm limits denitrification of formed NO3--N . Furthermore, stimulated soil biofilm growth can create soil clogging around drip emitters, which was discerned in the field experiment along with salt accumulation, both of which were verified by simulation. Comparable modeling of system performance in sand and clay media demonstrate that the placement of soil moisture sensors within the drain field can have pronounced impacts on system hydraulic performance, depending on the soil permeability. Overall, the soil moisture control strategy tested is shown as a viable supplemental technology to promote the environmental sustainability of rural sanitation systems.
Collapse
Affiliation(s)
- Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mark Dougherty
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| |
Collapse
|
8
|
Wang R, Wang X, Deng C, Chen Z, Chen Y, Feng X, Zhong Z. Partial nitritation performance and microbial community in sequencing batch biofilm reactor filled with zeolite under organics oppression and its recovery strategy. BIORESOURCE TECHNOLOGY 2020; 305:123031. [PMID: 32126482 DOI: 10.1016/j.biortech.2020.123031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Influences of organics on partial nitritation performance were investigated in a lab-scale sequencing batch biofilm reactor filled with zeolite. Significant differences in nitrite production rate (NPR) were observed between different dosages of glucose. With influent COD/N ratio from 0 to 1.5, NPR declined from 0.4 to 0.05 kg/(m3·d). Meanwhile, an appropriate NO2--N/NH4+-N ratio (1.4 ± 0.5) could be obtained for simultaneous anammox denitrification at COD/N ratio of 0.5. Increasing airflow rate was found as an effective recovery strategy. Other than competition of heterotrophs with nitrifiers for dissolved oxygen, it has been verified that addition of organics generated higher free ammonia, and then further inhibitedammonium oxidizing bacteria (AOB). Moreover, three-dimensional excitation-emission matrix (3D-EEM) results revealed that protein-like and humic acid-like substances were the main components in extracellularpolymericsubstances (EPS). And high-throughput sequencing analysis demonstrated that the relative abundance of AOB decreased.
Collapse
Affiliation(s)
- Ruixin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| | - Cuilan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; Hua An Biotech Co., Ltd., Foshan 528300, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xinghui Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China
| | - Zhong Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| |
Collapse
|
9
|
Wang S, Yang H, Zhang F, Zhou Y, Wang J, Liu Z, Su Y. Analysis of rapid culture of high-efficiency nitrifying bacteria and immobilized filler application for the treatment of municipal wastewater. RSC Adv 2020; 10:19240-19246. [PMID: 35515475 PMCID: PMC9054103 DOI: 10.1039/d0ra01498b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022] Open
Abstract
Activated sludge from the A2/O process in a wastewater treatment plant (WWTP) was used as the seed sludge for enrichment to achieve faster growth of nitrifying bacteria and higher nitrification efficiency of the filler made by nitrifying bacteria. The bacterial community was enriched in a self-circulating bacteria culture tank by a continuous ammonia feeding mode. The study found that the nitrifying bacteria community was enriched in 38 days with the ammonia oxidation rate of approximately 275.58 mg (L h)-1. High-throughput sequencing demonstrated that Nitrosomonas belonging to ammonia-oxidizing bacteria (AOB) was predominant in the sludge after 38 days at a ratio extending from 0.43% to 61.91%. The enriched sludge was used as the bacterial source and the immobilization was carried out with polyvinyl alcohol (PVA). After the recovery culture, the ammonia oxidation rate of the filler was up to 44.61 mg (L h)-1 for the treatment of municipal wastewater, and the effluent ammonia was below 1 mg L-1, indicating that the immobilized filler is effective for municipal wastewater nitrification. Scanning electron microscope (SEM) observations showed that immobilized fillers were highly porous and bacteria adhered to the network structure, demonstrating that the filler provided a good growth microenvironment for microorganisms.
Collapse
Affiliation(s)
- Shaolun Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Fan Zhang
- China Wuzhou Engineering Group Corporation Ltd. China
| | - Yakun Zhou
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Jiawei Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Zongyue Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Yang Su
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
10
|
Guo F, Zhang J, Yang X, He Q, Ao L, Chen Y. Impact of biochar on greenhouse gas emissions from constructed wetlands under various influent chemical oxygen demand to nitrogen ratios. BIORESOURCE TECHNOLOGY 2020; 303:122908. [PMID: 32028219 DOI: 10.1016/j.biortech.2020.122908] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Biochar is widely used for nutrient removal in constructed wetlands (CWs); however, its influence on greenhouse gas (GHG) emissions from CWs remains unclear. Here, biochar was used to mitigate the global warming potential (GWP) from CWs and promote the removal of contaminants from simulated domestic wastewater under different influent chemical oxygen demand to nitrogen ratios (COD/N = 3, 6, 9, 12). Results demonstrated that biochar could improve the removal of COD, NH4+- N, and TN. The average N2O and CO2 fluxes were significantly lower and CH4 fluxes were higher in biochar-added CWs than those in none-biochar CWs. Biochar reduced GWP values of N2O and CH4 from 18.5% to 24.0%. N2O fluxes and GWP decreased, while CH4 and CO2 fluxes increased as COD/N ratios increased. Additionally, biochar increased the abundance of Geobacter and denitrifiers such as Hydrogenophaga. Overall, biochar could not only promote the removal of nutrients but also mitigate GWP in CWs.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Junmao Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiangyu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lianggen Ao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Chongqing Municipal Institute of Municipal Design and Research, Chongqing 400044, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
11
|
Ge CH, Dong Y, Li H, Li Q, Ni SQ, Gao B, Xu S, Qiao Z, Ding S. Nitritation-anammox process - A realizable and satisfactory way to remove nitrogen from high saline wastewater. BIORESOURCE TECHNOLOGY 2019; 275:86-93. [PMID: 30579105 DOI: 10.1016/j.biortech.2018.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 05/14/2023]
Abstract
In this study, acclimation of freshwater nitritation-anammox sludge to remove nitrogen in high saline and hypersaline wastewater was evaluated, during which the microbes activity and microbial community revolution were revealed to understand the fate of a nitritation-anammox process (SNAP) in response to increasing salt stress. By enhanced aeration, the SNAP system can treat saline (3%) ammonium-rich (185 mg/L) wastewater after gradual adaption. Hypersalinity (5%) caused final deterioration of the SNAP system due to a severe inhibition on anammox activity. Genera Kuenenia (anammox), Nitrosomonas (AOB) and Nitrosovibrio (AOB) bacteria were salt adaptable microbes, while genus Nitrospira (NOB) bacteria were sensitive to salinity. Under the enhanced aeration, AOB bacteria could bear 3% salinity with possible enriched ammonia monooxygenase to stimulate the conversion of ammonium to nitrite by producing more intermediate-hydroxylamine, which could alleviate the negative effect of insufficient hydroxylamine oxidase members in AOB bacteria.
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Ying Dong
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, PR China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, PR China
| |
Collapse
|
12
|
Zhang F, Yang H, Wang J, Liu Z, Guan Q. Effect of free ammonia inhibition on NOB activity in high nitrifying performance of sludge. RSC Adv 2018; 8:31987-31995. [PMID: 35547484 PMCID: PMC9085912 DOI: 10.1039/c8ra06198j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022] Open
Abstract
The inhibition of free ammonia (FA) on nitrite-oxidizing bacteria (NOB) was investigated using an enriched NOB community with high nitrifying performance. A continuous-flow reactor was operated for the enrichment of the bacterial community. High-throughput sequencing analysis showed that Nitrospira (NOB) using in batch experiments was extended from 4.78% to 12.08% during the under continuous-flow operation for 27 days. For each batch experiments, an ammonia injection at the start-up resulted in the desired initial FA concentration (at pH = 8.1-8.2, T = 25 °C), and a continuous ammonia feeding stream allowed for a relatively stabilized FA levels as much as the initial one. Results indicated that FA inhibition on NOB was not instantaneous but occurred gradually at a certain reaction time. Low concentrations of FA (18.08-24.95 mg L-1) had a limited inhibition on NOB with increasingly high nitrate production rates, whereas high FA levels (36.06-50.66 mg L-1) exerted a significant negative impact on the NOB. Also, strong adaptation happened in these high levels of FA inhibition on NOB, which resulted in an overall low NOB activity during the whole aerobic operation.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Jiawei Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Ziqi Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Qingkun Guan
- Beijing General Municipal Engineering Design & Research Institute Co. Ltd. China
| |
Collapse
|
13
|
Zhang X, Hu Z, Ngo HH, Zhang J, Guo W, Liang S, Xie H. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland. WATER RESEARCH 2018; 130:79-87. [PMID: 29202344 DOI: 10.1016/j.watres.2017.11.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 05/13/2023]
Abstract
Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH4+-N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H2S, NH3, greenhouse gas (N2O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H2S, NH3 and N2O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Jinan 250100, PR China
| |
Collapse
|
14
|
Zhang X, Hu Z, Zhang J, Fan J, Ngo HH, Guo W, Zeng C, Wu Y, Wang S. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2018; 250:94-101. [PMID: 29156370 DOI: 10.1016/j.biortech.2017.08.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH4+-N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H2S, NH3 and N2O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Chujun Zeng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Yiwen Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Siyuan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| |
Collapse
|
15
|
Yang L, Ren YX, Chen N, Cui S, Wang XH, Xiao Q. Organic loading rate shock impact on extracellular polymeric substances and physicochemical characteristics of nitrifying sludge treating high-strength ammonia wastewater under unsteady-state conditions. RSC Adv 2018; 8:41681-41691. [PMID: 35558802 PMCID: PMC9091943 DOI: 10.1039/c8ra08357f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Laboratory experimentation was used to investigate the impact of the organic loading rate shock on extracellular polymeric substances (EPSs) and the physicochemical characteristics of nitrifying sludge (NS) treating high-strength ammonia wastewater. The increased organic loading rates (OLRs) strongly influenced the stability of the NS with regard to nutrient removal, biomass–liquid separation, and surface properties, leading to the sludge system collapse at the OLR of 0.75 kg COD per kg MLVSS d. However, an incomplete recovery of the NS after the high OLRs shock was observed when decreasing the OLRs. In addition, the variations of OLRs resulted in relatively stable amounts of tightly bound EPS (TB-EPS), but a significant change in loosely bound EPS (LB-EPS). Both in LB-EPS and TB-EPS, the proteins (PN) contents and proteins to polysaccharides (PN/PS) ratios decreased with the increase in OLRs. Results from the excitation emission matrix spectra implied that the tryptophan PN-like substances were the major components in EPS at low OLRs, while the humic acid-like and fulvic acid-like substrates increased markedly at high OLRs. Furthermore, correlation analysis demonstrated that PN and the PN/PS ratio were the most important factors in determining the physicochemical properties of the NS. It was indicated that the PN could accurately reflect the sludge properties of the NS, and thus effectively change the surface properties of the sludge, contributing to the cohesion between the aggregates to maintain a stable structure. Laboratory experimentation was used to investigate the impact of the organic loading rate shock on extracellular polymeric substances (EPSs) and the physicochemical characteristics of nitrifying sludge (NS) treating high-strength ammonia wastewater.![]()
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Ning Chen
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Shen Cui
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Xu-Hui Wang
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| | - Qian Xiao
- Key Laboratory of Northwest Water Resource
- Environment and Ecology
- MOE
- Engineering Technology Research Center for Wastewater Treatment and Reuse
- China
| |
Collapse
|
16
|
Wang Z, Liu X, Ni SQ, Zhang J, Zhang X, Ahmad HA, Gao B. Weak magnetic field: A powerful strategy to enhance partial nitrification. WATER RESEARCH 2017; 120:190-198. [PMID: 28486170 DOI: 10.1016/j.watres.2017.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Partial nitrification (PN) combined with anaerobic ammonium oxidation process has been recognized as a promising technology for the removal of nitrogenous contaminants from wastewater. This research aimed to investigate the potential of external magnetic field for enhancing the PN process in short and long term laboratory-scale experiments. Different strength magnetic fields (0, 5, 10, 15, 20 and 25 mT) were evaluated in short-term batch tests and 5 mT magnetic field was found to have better ability to increase the activities of aerobic ammonium oxidizing bacteria (AOB) of PN consortium. Long-term effect of magnetic field on PN consortium was studied with 5 mT magnetic field. The results demonstrated that the positive effect of magnetic field on PN process could also be testified at all of the four stages. Furthermore, a decrease of bacterial diversity was noted with the increase of magnetic field strength. Relative abundance of Nitrosomonadaceae decreased significantly (p < 0.01) from 13.9% in RCK to 12.9% in R5mT and 5.5% in R25mT. Functional genes forecast based on KEGG database indicated that the expressions of functional genes related to signal transduction and cell motility in 5 mT environment were higher expressed compared with no magnetic field addition and high magnetic field addition. The existence of 5 mT magnetic field didn't increase the abundance of AOB but increased the activity of AOB by increasing the rate of free ammonia into the interior of microbial cells. Addition of magnetic field couldn't change the final state of PN process according to the hypothesis proposed in this article. These findings indicated that the weak magnetic field was useful and reliable for the fast start-up of PN process since it was proved as a simple and convenient approach to enhance AOB activity.
Collapse
Affiliation(s)
- Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China; Institute of Marine Science and Technology, Shandong University, 250000, China
| | - Xiaolin Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
17
|
Zhang X, Wang X, Zhang J, Huang X, Wei D, Lan W, Hu Z. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). BIORESOURCE TECHNOLOGY 2016; 218:789-795. [PMID: 27423546 DOI: 10.1016/j.biortech.2016.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoqing Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoyu Huang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Dong Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Wei Lan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| |
Collapse
|