1
|
Li G, Chao M, Xu H, Tai S, Mao M, Cao W, Peng C, Ma W, Feng Y, Wang Z. Preparation of Metal Nanocluster Supraparticles for Ultrasensitive Sensing of Tetracycline Based on Multiple Interactions between a Target and Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26536-26546. [PMID: 39555860 DOI: 10.1021/acs.jafc.4c09194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
New strategies for enhancing the fluorescence emission of metal nanoclusters (MNCs) are very crucial for the highly sensitive sensing of food hazards. In this work, we prepared MNC supraparticles (Sc-CB/AuNCs) by simultaneously introducing cucurbit[7]uril (CB[7]) and Sc3+ ions into ATT-AuNCs for the first time. The obtained supraparticles exhibited strong emission enhancement due to synergistic aggregation-induced emission enhancement and restriction of intramolecular motion effects. Notably, the fluorescence of ATT-AuNCs was enhanced by 24-fold due to the combination of CB[7] and Sc3+ ions, and the quantum yield reached 69.1%. Moreover, we found that tetracycline (TC) could bind to the Sc-CB/AuNCs through simultaneous host-guest recognition and ionic complexation, which effectively quenched the Sc-CB/AuNCs through the synergy of photoinduced electron transfer and inner filter effect. Based on the above multiple interactions between TC and Sc-CB/AuNCs, an ultrasensitive sensing method for TC was constructed with an LOD of 0.3 nM. Furthermore, a portable fluorescent gel sensor was constructed and successfully used for TC detection in honey samples. The test took only 2 min. This work not only provided a simple and effective fluorescence enhancement strategy for MNCs but also offered a novel sensing strategy, which may largely extend the potential of host-guest recognition-based sensors for food and environmental hazards.
Collapse
Affiliation(s)
- Guowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Mengjia Chao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Hengyu Xu
- China Tobacco Zhejiang Industrial Co. Ltd., Ningbo 315502, P. R. China
| | - Shengmei Tai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Minxin Mao
- Shandong Institute of Pomology, Taian 271000, P. R. China
| | - Wenbo Cao
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| |
Collapse
|
2
|
Martínez-Moro R, Vázquez L, Pérez M, Del Pozo M, Vilas-Varela M, Castro-Esteban J, Petit-Domínguez MD, Casero E, Quintana C. Enhanced Electrochemical Detection of Nonelectroactive Compounds Based on Surface Supramolecular Interactions on Chevron-like Graphene Nanoribbons Modified through Click Chemistry. ACS OMEGA 2024; 9:39242-39252. [PMID: 39310175 PMCID: PMC11411676 DOI: 10.1021/acsomega.4c06639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
In this study, we have developed a nanostructured electrochemical sensor based on modified graphene nanoribbons tailored for the analysis of nonelectroactive compounds via a surface competitive assay. Stigmasterol, a nonelectroactive phytosterol, was selected as a representative case. Chevron-like graphene nanoribbons, chemically synthesized, were immobilized onto glassy carbon electrodes and covalently functionalized to allow the on-surface formation of a supramolecular complex. To this end, the nanoribbons were first modified through a diazotization process by electrochemical reduction of a 4-azidoaniline diazonium salt, leaving the electrode surface with azide groups exposed to solution. Next, the incorporation of a ferrocene group, as a redox probe, was carried out by a click chemistry reaction between ethynylferrocene and these azide groups. Finally, the recognition event leads to the formation of a supramolecular complex between ferrocene and a macrocyclic receptor on the electrode surface. To this end, the receptors cucurbit[7]uril, cucurbit[8]uril, and β-cyclodextrin were evaluated, with the better results obtained with β-cyclodextrin. Atomic force microscopy and scanning electron microscopy measurements were performed for the morphological characterization of the resulting electrochemical platform surface. The ability of β-cyclodextrin to form an inclusion complex with ferrocene or with stigmasterol allows to perform a competitive assay, which translates into the decrease and recovery of the ferrocene electrochemical signal. For stigmasterol determination, a linear concentration range between 200 and 750 μM and a detection limit of 60 μM were obtained, with relative errors and relative standard deviations less than 7.1 and 9.8%, respectively.
Collapse
Affiliation(s)
- Rut Martínez-Moro
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Sor Juana Inés de la Cruz, No. 3, Madrid 28049, Spain
| | - María Pérez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - M Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| |
Collapse
|
3
|
Chaiyo S, Kunpatee K, Kalcher K, Yakoh A, Pungjunun K. 3D Paper-Based Device Integrated with a Battery-Less NFC Potentiostat for Nonenzymatic Detection of Cholesterol. ACS MEASUREMENT SCIENCE AU 2024; 4:432-441. [PMID: 39184358 PMCID: PMC11342457 DOI: 10.1021/acsmeasuresciau.4c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Portable electrochemical analytical devices such as cholesterol sensors are widely used for disease diagnosis. However, these tools are bulky and require bioreceptors for the specific detection of cholesterol. Herein, a novel 3D electrochemical paper-based analytical device (3D-ePAD) combined with a near-field communication (NFC) potentiostat was developed and applied to the nonenzymatic detection of cholesterol. This 3D-ePAD platform was designed so that all working operations are performed on a single device, which is separated into an origami PAD (oPAD) and an inset PAD (iPAD). β-Cyclodextrin (β-CD), which is immobilized on oPAD, is used as a specific material for the nonenzymatic detection of cholesterol. Through this device, cholesterol detection is integrated with a battery-free NFC potentiostat on a smartphone. The concentration of cholesterol was examined through a [Fe(CN)6]3-/4- current signal as a redox indicator, which was previously stored in the detection part of an iPAD. Under optimal conditions, 3D-ePAD/NFC exhibited a linear detection efficiency of 1-500 μM and a maximum detection limit of 0.3 μM for cholesterol detection. Moreover, the proposed sensor was successfully used to measure cholesterol in real serum samples from humans, and the results were consistent with those of a commercial cholesterol meter. Therefore, the new NFC-operated 3D-ePAD platform can be used as an alternative tool for the nonenzymatic quantification of various biomarkers. In addition, 3D-ePAD/NFC can support the diagnosis of other diseases in the future, as the device is inexpensive, portable, and disposable and functions with low sample volumes.
Collapse
Affiliation(s)
- Sudkate Chaiyo
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of
Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanjana Kunpatee
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kurt Kalcher
- Institute
of Chemistry, Karl-Franzens University, Universitätsplatz 1, Graz A-8010, Austria
| | - Abdulhadee Yakoh
- The
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of
Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kingkan Pungjunun
- Sensor
Technologist, Silicon Craft Technology Public
Company Limited, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
5
|
Makhmutova LI, Shurpik DN, Mostovaya OA, Lachugina NR, Gerasimov AV, Guseinova A, Evtugyn GA, Stoikov II. A supramolecular electrochemical probe based on a tetrazole derivative pillar[5]arene/methylene blue system. Org Biomol Chem 2024; 22:4353-4363. [PMID: 38736397 DOI: 10.1039/d4ob00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For the first time, an original synthetic approach has been developed that enables the introduce ten tetrazole fragments into the pillar[5]arene structure. A supramolecular electrochemical probe was assembled for the first time from the obtained macrocycles and an electrochemically active signal converter: methylene blue (MB) dye. The ability of pillar[5]arene containing tetrazole fragments to selectively bind MB was confirmed by UV-vis and 2D 1H-1H NOESY spectroscopy. The stoichiometry of the resulting pillar[5]arene/MB complex = 1 : 2. This new supramolecular probe pillar[5]arene/MB allowed the detection of changes in the electrochemical signals of MB implemented in the supramolecular complex depending on the presence or absence of some metal ions (Zn2+ and Co2+) that do not exert their own redox activity. This will find further applications for the enhancement of the range of analytes detected by their influence on host-guest complexation and for the design of biosensors based on specific DNA-MB interactions.
Collapse
Affiliation(s)
- Lyaysan I Makhmutova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Dmitriy N Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Olga A Mostovaya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Natalia R Lachugina
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Alexander V Gerasimov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Adelya Guseinova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Gennady A Evtugyn
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| | - Ivan I Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia.
| |
Collapse
|
6
|
Li G, Pan Q, Zhang C, Wang J, Peng C, Wang Z. Fluorescence "turn-on" sensing for five PDE5 inhibitors in functional food based on bimetallic nanoclusters. Anal Chim Acta 2023; 1280:341883. [PMID: 37858562 DOI: 10.1016/j.aca.2023.341883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Some phosphodiesterase type-5 (PDE5) inhibitors are active ingredients of prescription drugs that are widely used in the treatment of erectile dysfunction (ED). Recently, a large number of substances with this activity have been developed. Illegal addition of PDE5 inhibitors to foods could lead to cardiovascular diseases and even death, which poses a serious threat to food safety, therefore an on-site rapid screening method is urgently needed. Herein, a host functionalized bimetallic nanoclusters, CD/Au Ag NCs, were synthesized through self-assembly of 6-Aza-2-thiothymine gold nanoclusters (ATT-Au NCs), Arginine silver nanoclusters (Arg-Ag NCs) and carboxymethyl β-cyclodextrin (β-CMCD). The introduction of Rhodamine 6G (R6G) could quench the fluorescence of CD/Au Ag NCs based on the inner filter effect (IFE) and fluorescence resonance energy transfer effect (FRET). Importantly, it was discovered that several PDE5 inhibitors exhibited a higher binding affinity to β-CMCD and could displace R6G binding with CD cavity, which disrupted the fluorescence quenching effects and resulted in the fluorescence recovery of CD/Au Ag NCs. This fluorescence turn-on signal could be utilized for the detection of PDE5 inhibitors. At present, emerging PDE5 inhibitor analogues pose a great challenge to food safety due to their unknown efficacy and safety. The proposed method holds the advantages of high sensitivity, simple probe synthesis, easy operation, and simultaneous detection of multiple PDE5 inhibitors. Meanwhile, the successful application in functional food sample demonstrated its high application potential in multiple PDE5 inhibitors screening.
Collapse
Affiliation(s)
- Guowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China
| | - Qiuli Pan
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, 250101, PR China
| | - Chun Zhang
- School of Life Science and Health Engineering, Jiangnan University, PR China
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, 250101, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China; International Joint Laboratory on Food Safety, Jiangnan University, PR China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, PR China; International Joint Laboratory on Food Safety, Jiangnan University, PR China
| |
Collapse
|
7
|
Singh P, Sreekumar A, Badhulika S. Tin oxide-polyaniline nanocomposite modified nickel foam for highly selective and sensitive detection of cholesterol in simulated blood serum samples. NANOTECHNOLOGY 2023; 34:435501. [PMID: 37551658 DOI: 10.1088/1361-6528/acea2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Cholesterol (CH) is a vital diagnostic marker for a variety of diseases, making its detection crucial in biological applications including clinical practice. In this work, we report the synthesis of tin oxide-polyaniline nanocomposite-modified nickel foam (SnO2-PANI/NF) for non-enzymatic detection of CH in simulated human blood serum. SnO2was synthesized via the hydrothermal method, followed by the synthesis of SnO2-PANI nanocomposite throughin situchemical polymerization of aniline using ammonium persulfate as the oxidizing agent. Morphological studies display agglomerated SnO2-PANI, which possess diameters ranging from an average particle size of ∼50 to ∼500 nm, and the XRD analysis revealed the tetragonal structure of the SnO2-PANI nanocomposite. Optimization studies demonstrating the effect of pH and weight percentage are performed to improve the electrocatalytic performance of the sensor. The non-enzymatic SnO2-PANI/NF sensor exhibits a linear range of 1-100μM with a sensitivity of 300μAμM-1/cm-2towards CH sensing and a low limit of detection of 0.25μM (=3 S m-1). SnO2-PANI/NF facilitates the electrooxidation of CH to form cholestenone by accepting electrons generated during the reaction and transferring them to the nickel foam electrode via Fe (III)/Fe (IV) conversion, resulting in an increased electrochemical current response. The SnO2-PANI/NF sensor demonstrated excellent selectivity against interfering species such as Na+, Cl-, K+, glucose, ascorbic acid, and SO42-. The sensor successfully determined the concentration of CH in simulated blood serum samples, demonstrating SnO2-PANI as a potential platform for a variety of electrochemical-based bioanalytical applications.
Collapse
Affiliation(s)
- Pratiksha Singh
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal, (M.P.), 462033, India
| | - Anjali Sreekumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| |
Collapse
|
8
|
Kumar NM, Gruhs P, Casini A, Biedermann F, Moreno-Alcántar G, Picchetti P. Electrochemical Detection of Drugs via a Supramolecular Cucurbit[7]uril-Based Indicator Displacement Assay. ACS Sens 2023. [PMID: 37339775 PMCID: PMC10391622 DOI: 10.1021/acssensors.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.
Collapse
Affiliation(s)
- Nilima Manoj Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Gruhs
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Guillermo Moreno-Alcántar
- School of Natural Sciences, Department of Chemistry, Chair of Medicinal and Bioinorganic Chemistry, Technical University of Munich (TUM), 85748 Garching b. München, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Electrochemical devices for cholesterol detection. J Pharm Biomed Anal 2023; 224:115195. [PMID: 36493575 DOI: 10.1016/j.jpba.2022.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Cholesterol can be considered as a biomarker of illnesses such as heart and coronary artery diseases or arteriosclerosis. Therefore, the fast determination of its concentration in blood is interesting as a means of achieving an early diagnosis of these unhealthy conditions. Electrochemical sensors and biosensors have become a potential tool for selective and sensitive detection of this biomolecule, combining the analytical advantages of electrochemical techniques with the selective recognition features of modified electrodes. This review covers the different approaches carried out in the development of electrochemical sensors for cholesterol, differentiating between enzymatic biosensors and non-enzymatic systems, highlighting lab-on-a-chip devices. A description of the different modification procedures of the working electrode has been included and the role of the different functional materials used has been discussed.
Collapse
|
10
|
Chen HY, Xin PL, Xu HB, Lv J, Qian RC, Li DW. Self-Assembled Plasmonic Nanojunctions Mediated by Host-Guest Interaction for Ultrasensitive Dual-Mode Detection of Cholesterol. ACS Sens 2023; 8:388-396. [PMID: 36617720 DOI: 10.1021/acssensors.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a fluorescence and surface-enhanced Raman spectroscopy dual-mode system was designed for cholesterol detection based on self-assembled plasmonic nanojunctions mediated by the competition of rhodamine 6G (R6G) and cholesterol with β-cyclodextrin modified on gold nanoparticles (HS-β-CD@Au). The fluorescence of R6G was quenched by HS-β-CD@Au due to the fluorescence resonance energy transfer effect. When cholesterol was introduced as the competitive guest, R6G in the cavities of HS-β-CD@Au was displaced to recover its fluorescence. Moreover, two of HS-β-CD@Au can be linked by one cholesterol to form a more stable 2:1 complex, and then, plasmonic nanojunctions were generated, which resulted in the increasing SERS signal of R6G. In addition, fluorescence and SERS intensity of R6G increased linearly with the increase in the cholesterol concentrations with the limits of detection of 95 and 74 nM, respectively. Furthermore, the dual-mode strategy can realize the reliable and sensitive detection of cholesterol in the serum with good accuracy, and two sets of data can mutually validate each other, which demonstrated great application prospects in the surveillance of diseases related with cholesterol.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Pei-Lin Xin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| |
Collapse
|
11
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Ahmad M, Nisar A, Sun H. Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. BIOSENSORS 2022; 12:955. [PMID: 36354463 PMCID: PMC9687930 DOI: 10.3390/bios12110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The development of a highly sensitive and selective non-enzymatic electrochemical biosensor for precise and accurate determination of multiple disease biomarkers has always been challenging and demanding. The synthesis of novel materials has provided opportunities to fabricate dependable biosensors. In this perspective, we have presented and discussed recent challenges and technological advancements in the development of non-enzymatic cholesterol electrochemical biosensors and recent research trends in the utilization of functional nanomaterials. This review gives an insight into the electrochemically active nanomaterials having potential applications in cholesterol biosensing, including metal/metal oxide, mesoporous metal sulfide, conductive polymers, and carbon materials. Moreover, we have discussed the current strategies for the design of electrode material and key challenges for the construction of an efficient cholesterol biosensor. In addition, we have also described the current issues related to sensitivity and selectivity in cholesterol biosensing.
Collapse
Affiliation(s)
- Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
13
|
Silva M, Simoes R, Leao A, Lapa R, Rascon J, Cesarino I. Competitive host‐guest electrochemical detection of ivermectin drug using a β‐cyclodextrin/graphene‐based electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Thakur N, Gupta D, Mandal D, Nagaiah TC. Ultrasensitive electrochemical biosensors for dopamine and cholesterol: recent advances, challenges and strategies. Chem Commun (Camb) 2021; 57:13084-13113. [PMID: 34811563 DOI: 10.1039/d1cc05271c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and accurate determination of the dopamine (neurotransmitter) and cholesterol level in bio-fluids is significant because they are crucial bioanalytes for several lethal diseases, which require early diagnosis. The level of DA in the brain is modulated by the dopamine active transporter (DAT), and is influenced by cholesterol levels in the lipid membrane environment. Accordingly, electrochemical biosensors offer rapid and accurate detection and exhibit unique features such as low detection limits even with reduced volumes of analyte, affordability, simple handling, portability and versatility, making them appropriate to deal with augmented challenges in current clinical and point-of-care diagnostics for the determination of dopamine (DA) and cholesterol. This feature article focuses on the development of ultrasensitive electrochemical biosensors for the detection of cholesterol and DA for real-time and onsite applications that can detect targeted analytes with reduced volumes and sub-picomolar concentrations with quick response times. Furthermore, the development of ultrasensitive biosensors via cost-effective, simple fabrication procedures, displaying high sensitivity, selectivity, reliability and good stability is significant in the impending era of electrochemical biosensing. Herein, we emphasize on recent advanced nanomaterials used for the ultrasensitive detection of DA and cholesterol and discuss in depth their electrochemical activities towards ultrasensitive responses. Key points describing future perspectives and the challenges during detection with their probable solutions are discussed, and the current market is also surveyed. Further, a comprehensive review of the literature indicates that there is room for improvement in the miniaturization of cholesterol and dopamine biosensors for lab-on-chip devices and overcoming the current technical limitations to facilitate full utilization by patients at home.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.
| |
Collapse
|
15
|
Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Anal Bioanal Chem 2021; 413:6523-6533. [PMID: 34462789 DOI: 10.1007/s00216-021-03616-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/16/2023]
Abstract
Advances in materials science have accelerated the development of diagnostic tools with the last decade witnessing the development of enzyme-free sensors, owing to the improved stability, low cost and simple fabrication of component materials. However, the specificity of non-enzymatic sensors for certain analytes still represents a challenging task, for example the determination of cholesterol level in blood is vital due to its medical relevance. In this work, a reagent displacement assay for cholesterol sensing in serum samples was developed. It is based on coating of a glassy carbon electrode with a polymer of intrinsic microporosity (PIM) that forms a host-guest complex with methylene blue (MB). In the presence of cholesterol, the MB electroactive probe was displaced due to the stronger association of cholesterol guest to the PIM host. The decrease in the oxidative current was proportional to the cholesterol concentration achieving a detection limit of approximately 0.1 nM. Moreover, to further assist the experimental studies, comprehensive theoretical calculations are also performed by using density functional theory (DFT) calculations.
Collapse
|
16
|
Ning Y, Lu F, Liu Y, Yang S, Wang F, Ji X, He Z. Glow-type chemiluminescent hydrogels for point-of-care testing (POCT) of cholesterol. Analyst 2021; 146:4775-4780. [PMID: 34231558 DOI: 10.1039/d1an00676b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cholesterol is an essential compound for human health, and a high or low concentration of cholesterol is closely related to various diseases. Thus, developing a simple method for POCT of cholesterol has great significance in clinical diagnosis. In this work, alginate (Alg) hydrogels with glow-type chemiluminescence (CL) were prepared and applied for rapid and quantitative cholesterol detection via a smartphone. The glow-type CL hydrogels (HRP/COD/luminol/Alg hydrogels) contained luminol as a chemiluminescent reagent, horseradish peroxidase (HRP) and cholesterol oxidase (COD) for enzymatic cascade reactions. The HRP/COD/luminol/Alg hydrogels exhibited outstanding stability, which effectively avoided the enzyme inactivation during long-term storage. Furthermore, the HRP/COD/luminol/Alg hydrogels exhibited longer and more stable glow-type CL. With the help of COD catalytic specificity for cholesterol and bi-enzymatic cascade reactions, the glow-type CL hydrogels realized the specific and sensitive detection of cholesterol. The smartphone was used as a detector instead of a special large instrument for responding to the glow-type CL emission, and a LOD of 7.2 μM was obtained. Therefore, the proposed sensor expands the application of the glow-type CL in POCT and provides an alternative way for cholesterol detection in clinical diagnosis.
Collapse
Affiliation(s)
- Yu Ning
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ebrahimi S, Afkhami A, Madrakian T. Target -responsive host-guest binding-driven dual-sensing readout for enhanced electrochemical chiral analysis. Analyst 2021; 146:4865-4872. [PMID: 34231570 DOI: 10.1039/d1an00795e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Achieving efficient chiral discrimination by a convenient method remains a challenge in pharmaceutical and biotechnology industries. Our aim in this paper was to develop a dual-signaling enantioselective sensing strategy based on the competitive binding assay. A combination of β-cyclodextrin (β-CD) and methylene blue (MB) was used as an enantioselective discrimination probe to develop a straightforward electrochemical chiral sensor using the drug naproxen (R-and S-NaX) as the representative enantiomers. The principle relied on the difference between two enantiomers in the ability to replace a pre-binding redox probe, which in turn resulted in different dual signals for the two enantiomers. The applicability of the optimized procedure was demonstrated by the analysis of NaX enantiomers in the range of 0.4-6.0 μM. Featuring both signal-on and signal-off elements, the electrode presented significantly enhanced electrochemical activity with a low limit of detection (LOD) of 0.07 μM. We expect that our work will inspire interesting engineering strategies for developing novel enantioselective electrochemical sensors.
Collapse
Affiliation(s)
- Somaye Ebrahimi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran.
| | | | | |
Collapse
|
18
|
A new electrochemical modified graphite pencil electrode developed for cholesterol assessing. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02296-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional nanomaterials have attracted significant attention in a variety of research fields (in particular, in the healthcare system) because of the easily controllable morphology, their high chemical and environmental stability, biocompatibility, and unique optoelectronic and sensing properties. The sensing properties of nanomaterials can be used to detect biomolecules such as cholesterol. Over the past few decades, remarkable progress has been made in the production of cholesterol biosensors that contain nanomaterials as the key component. In this article, various nanomaterials for the electrochemical sensing of cholesterol were reviewed. Cholesterol biosensors are recognized tools in the clinical diagnosis of cardiovascular diseases (CVDs). The function of nanomaterials in cholesterol biosensors were thoroughly discussed. In this study, different pathways for the sensing of cholesterol with functional nanomaterials were investigated.
Collapse
|
20
|
Selective and sensitive detection of cholesterol using intrinsic peroxidase-like activity of biogenic palladium nanoparticles. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Wu Y, Peng D, Qi Z, Zhao J, Huang W, Zhang Y, Liu C, Deng T, Liu F. Magnetic Nanoparticle-Based Ligand Replacement Strategy for Chemical Luminescence Determination of Cholesterol. Front Chem 2020; 8:601636. [PMID: 33304887 PMCID: PMC7693431 DOI: 10.3389/fchem.2020.601636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
Determination of serum cholesterol (Chol) is important for disease diagnosis, and has attracted great attention during the last few decades. Herein, a new magnetic nanoparticle-based ligand replacement strategy has been presented for chemical luminescence detection of Chol. The detection depends on ligand replacement from ferrocene (Fc) to Chol through a β-cyclodextrin (β-CD)-based host-guest interaction, which releases Fc-Hemin as a catalyst for the luminol/hydrogen peroxide chemical luminescence system. More importantly, the luminescence signal can be captured by the camera of a smartphone, thus realizing Chol detection with less instrument dependency. The limit of detection of this method is calculated to be 0.18 μM, which is comparable to some of the developed methods. Moreover, this method has been used successfully to quantify Chol from serum samples with a simple extraction process.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danfeng Peng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
| | - Jing Zhao
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhang
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Derina K, Korotkova E, Barek J. Non-enzymatic electrochemical approaches to cholesterol determination. J Pharm Biomed Anal 2020; 191:113538. [PMID: 32919143 DOI: 10.1016/j.jpba.2020.113538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
Cholesterol plays a vital role in a human body. It is known as one of the most important sterols, because it forms cell walls and participates in signal transduction. Moreover, cholesterol was recognized as biomarker of cardiovascular diseases and of some metabolic disorders. As a result, cholesterol blood levels should be controlled in a variety of diseases such as ischemic heart disease, cerebrovascular ischemia, stroke, hypertension, type II diabetes, and many others. Hence, the accurate cholesterol quantification plays an important role in diagnosis and treatment of these diseases. Modern voltammetric and amperometric methods are increasingly used for cholesterol monitoring. Consequently, the problem of electrode fabrication for cholesterol detection has high importance for clinical tests. Novel electrode materials initiated the fast growth of electrochemical biosensors. Biomaterials are still the most frequently used modifiers for cholesterol sensors due to their high selectivity. However, biomaterials have low stability complicating their practical applications. This fact is crucial for analytical parameters such as limit of detection (LOD) and sensitivity. Therefore, nanomaterials are used to eliminate disadvantages of biomaterials and to improve sensors performance by increasing the electrode surface, conductivity and sensitivity. This review is focused on the use of non-enzymatic electrodes for cholesterol quantification and on different approaches to their fabrication. Firstly, the necessity and role of modifier is discussed. Afterwards, the advantages and disadvantages of currently used modifiers are critically compared together with all aspects and approaches to sensors fabrication. Finally, the prospects of non-enzymatic electrodes application for cholesterol sensors engineering are summarised.
Collapse
Affiliation(s)
- Ksenia Derina
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Elena Korotkova
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Jiří Barek
- National Research Tomsk Polytechnic University, Division for Chemical Engineering, School of Earth Science and Engineering, Lenin Avenue 30, 634050 Tomsk, Russia; Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
23
|
Yan Y, Chen M, Ge Q, Cong H, Fan Y, Sun L, Liu M, Tao Z. Enhanced response of benzo[6]urils sustained by graphene oxide for umbelliferones and its applications for quantitative detection of diquat. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Affiliation(s)
- Mandana Amiri
- Department of ChemistryUniversity of Mohaghegh Ardabili Ardabil Iran
| | - Simin Arshi
- Department of ChemistryUniversity of Mohaghegh Ardabili Ardabil Iran
- Department of Chemical SciencesBernal Institute University of Limerick Ireland
| |
Collapse
|
25
|
Chen Y, Yang G, Gao S, Zhang L, Yu M, Song C, Lu Y. Highly rapid and non-enzymatic detection of cholesterol based on carbon nitride quantum dots as fluorescent nanoprobes. RSC Adv 2020; 10:39596-39600. [PMID: 35515374 PMCID: PMC9057425 DOI: 10.1039/d0ra07495k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
In this work, we reported a highly rapid and non-enzymatic method for cholesterol measuring based on carbon nitride quantum dots (CNQDs) as fluorescent nanoprobes, which were synthesized through chemical oxidation. The obtained CNQDs displayed high quantum yield up to 35% as well as excellent photostability, water solubility and low toxicity. We found that the fluorescence of CNQDs could be quenched more than 90% within 30 seconds by cholesterol through the formation of hydrogen bonds between –NH2, –NH on the surface of CNQDs and cholesterol containing –OH. According to this phenomenon, a cholesterol detection method was constructed with a wide linear region over the range of 0–500 μmol L−1 and a detection limit as low as 10.93 μmol L−1, and it possessed the obvious advantages of being a very rapid process and avoiding the use of enzymes. In addition, this method showed high selectivity in the presence of various interfering reagents and applicability to the measurement of cholesterol in fetal bovine serum, which indicated its potential application value in clinical settings. Highly rapid and non-enzymatic method for the detection of cholesterol was constructed based on carbon nitride quantum dots (CNQDs) as fluorescent nanoprobes. The fluorescence of CNQDs could be effectively and rapidly quenched by cholesterol.![]()
Collapse
Affiliation(s)
- Ying Chen
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Gege Yang
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Shanshan Gao
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Liangliang Zhang
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Mengdi Yu
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Chunxia Song
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Ying Lu
- Department of Applied Chemistry
- School of Science
- Anhui Agricultural University
- Hefei 230036
- China
| |
Collapse
|
26
|
A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Mikrochim Acta 2018; 185:526. [DOI: 10.1007/s00604-018-3063-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/19/2018] [Indexed: 01/19/2023]
|
28
|
Nawaz MAH, Majdinasab M, Latif U, Nasir M, Gokce G, Anwar MW, Hayat A. Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry. J Pharm Biomed Anal 2018; 159:398-405. [DOI: 10.1016/j.jpba.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
|
29
|
Gao Y, Jiao T, Ma K, Xing R, Zhang L, Zhou J, Peng Q. Variable self-assembly and in situ host–guest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds. RSC Adv 2017. [DOI: 10.1039/c7ra07109d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different composite Langmuir films (GO–CD/N-Azo and GO–CD/PAA-Azo) are prepared via simple interfacial self-assembly process and host–guest reaction, demonstrating variable self-assembly for wide applications.
Collapse
Affiliation(s)
- Yagui Gao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Kai Ma
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Ruirui Xing
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| |
Collapse
|
30
|
Insights into the recognition of dimethomorph by disulfide bridged β–cyclodextrin and its high selective fluorescence sensing based on indicator displacement assay. Biosens Bioelectron 2017; 87:737-744. [DOI: 10.1016/j.bios.2016.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022]
|
31
|
Liu QY, Zuo F, Chong YY, Zhao ZG, Kwon Y, Chen JX, Kim CK. Molecular simulation of liquid crystal sensor based on competitive inclusion effect. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0678-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Ye H, Yang L, Zhao G, Zhang Y, Ran X, Wu S, Zou S, Xie X, Zhao H, Li CP. A FRET-based fluorescent approach for labetalol sensing using calix[6]arene functionalized MnO2@graphene as a receptor. RSC Adv 2016. [DOI: 10.1039/c6ra14835b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A turn-on fluorescent sensing platform for labetalol has been developed based on competitive host–guest interaction between p-sulfonated calix[6]arene (SCX6) and target molecule by using SCX6 functionalized MnO2@reduced graphene oxide as a receptor.
Collapse
Affiliation(s)
- Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Shilian Wu
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Suo Zou
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-Resource
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
33
|
Yang L, Zhao H, Li Y, Ran X, Deng G, Xie X, Li CP. Fluorescent Detection of Tadalafil Based on Competitive Host-Guest Interaction Using p-Sulfonated Calix[6]arene Functionalized Graphene. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26557-26565. [PMID: 26571350 DOI: 10.1021/acsami.5b07833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A competitive fluorescence method toward tadalafil detection has been developed based on host-guest recognition by selecting rhodamine B (RhB) and p-sulfonated calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". Upon the presence of tadalafil to the performed CX6-Gra-RhB complex, the RhB molecules are displaced by tadalafil, leading to a "switch-on" fluorescence signal. The observed fluorescence signal can be used for quantitative detection of tadalafil ranging from 1.00 to 50.00 μM with a detection limit of 0.32 μM (S/N = 3). The inclusion complex of tadalafil and CX6 was studied by molecular docking and the results indicated that a 1:1 host-guest stoichiometry had the lowest ΔG value of -7.18 kcal/mol. The docking studies demonstrated that the main forces including π-π interactions, electrostatic interactions, and hydrophobic interactions should be responsible for the formation of this inclusion compound. The mechanism of the competitive host-guest interaction was clarified. The binding constant (K) of the tadalafil/CX6 complex was more than 5 times greater than that of RhB/CX6.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University , Kunming 650091, People's Republic of China
| | - Yucong Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xin Ran
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Guogang Deng
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xiaoguang Xie
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Can-Peng Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| |
Collapse
|