1
|
Liao F, He J, Li R, Hu Y. Endophytic Fungus UJ3-2 from Urtica fissa: Antibacterial Activity and Mechanism of Action against Staphylococcus aureus. Molecules 2024; 29:4850. [PMID: 39459217 PMCID: PMC11510654 DOI: 10.3390/molecules29204850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Taking the endophytic fungus UJ3-2, isolated from Urtica fissa, as the experimental material, this study aimed to explore the composition of its metabolites and the underlying mechanisms by which it inhibits Staphylococcus aureus. Initially, the MIC, MBC, inhibitory curves, biofilm growth, and extracellular nucleic acids and proteins of S. aureus in response to the metabolites were measured. Secondly, PI staining and SEM were used to evaluate the impact of the metabolites on the integrity of the cell wall and overall morphology of S. aureus. Additionally, UPLC-MS was employed to analyze the composition of the secondary metabolites. The UJ3-2 strain was identified as Xylaria grammica based on ITS sequencing and designated as Xylaria grammica UJ3-2. Our results revealed that the metabolites of UJ3-2 exhibited excellent in vitro antibacterial activity against S. aureus, with both MIC and MBC values of 3.125 mg/mL. The inhibitory curve confirmed that 1 MIC of UJ3-2 metabolites could completely inhibit the growth of S. aureus within 24 h. With increasing concentrations of UJ3-2 metabolites, the growth of S. aureus biofilms was significantly suppressed, and obvious leakage of nucleic acids and proteins was observed. PI fluorescence staining indicated that various concentrations of UJ3-2 metabolites disrupted the integrity of the S. aureus cell membrane. SEM observation revealed that the treated S. aureus surfaces became rough, and the bacteria shrank and adhered to each other, showing a dose-dependent effect. UPLC-MS analysis suggested that the main components of the fermented metabolites were 6-oxocineole (17.92%), (S)-2-acetolactate (9.91%), 3-methyl-cis,cis-muconate (4.36%), and 8-oxogeranial (3.17%). This study demonstrates that the endophytic fungus UJ3-2 exhibits remarkable in vitro antibacterial effects against S. aureus, primarily by enhancing the permeability of the S. aureus cell membrane, causing the leakage of its intracellular contents, and altering the bacterial surface morphology to inhibit the pathogen. The endophytic fungus UJ3-2 has a good antibacterial effect on S. aureus, which gives it certain application prospects in the screening and industrial production of new and efficient natural antibacterial active substances.
Collapse
Affiliation(s)
- Fei Liao
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie He
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Renjun Li
- Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (R.L.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Díaz MA, Vega-Hissi EG, Blázquez MA, Alberto MR, Arena ME. Restraining Staphylococcus aureus Virulence Factors and Quorum Sensing through Lactic Acid Bacteria Supernatant Extracts. Antibiotics (Basel) 2024; 13:297. [PMID: 38666973 PMCID: PMC11047364 DOI: 10.3390/antibiotics13040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
The escalating prevalence of antibiotic-resistant bacteria poses a grave threat to human health, necessitating the exploration of novel alternatives to conventional antibiotics. This study investigated the impact of extracts derived from the supernatant of four lactic acid bacteria strains on factors contributing to the pathogenicity of three Staphylococcus aureus strains. The study evaluated the influence of lactic acid bacteria supernatant extracts on the growth, biofilm biomass formation, biofilm metabolic activity, and biofilm integrity of the S. aureus strains. Additionally, the impact on virulence factors (hemolysin and coagulase) was examined. Gas chromatography coupled with mass spectrometry was used to identify the bioactive compounds in the extracts, while molecular docking analyses explored potential interactions. Predominantly, the extracts contain eight 2,5-diketopiperazines, which are cyclic forms of peptides. The extracts demonstrated inhibitory effects on biofilm formation, the ability to disrupt mature biofilms, and reduce the biofilm cell metabolic activity of the S. aureus strains. Furthermore, they exhibited the ability to inhibit α-hemolysin production and reduce coagulase activity. An in silico docking analysis reveals promising interactions between 2,5-diketopiperazines and key proteins (SarA and AgrA) in S. aureus, confirming their antivirulence and antibiofilm activities. These findings suggest that 2,5-diketopiperazines could serve as a promising lead compound in the fight against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Myriam Anabel Díaz
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Chacabuco 461, San Miguel de Tucumán CP 4000, Argentina;
| | - Esteban Gabriel Vega-Hissi
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, San Luis CP 5700, Argentina;
| | - María Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, Avd. Vicent Andrés Estellés s/n, Burjasot, 46100 Valencia, Spain
| | - María Rosa Alberto
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL, CONICET-UNT), Avenida Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina
| | - Mario Eduardo Arena
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL, CONICET-UNT), Avenida Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina
| |
Collapse
|
3
|
Tran DN, Hoang TTH, Nandanwar S, Ho VTTX, Pham VT, Vu HD, Nguyen XH, Nguyen HT, Nguyen TV, Nguyen TKV, Tran DL, Park M, Lee S, Pham TC. Dual anticancer and antibacterial activity of fluorescent naphthoimidazolium salts. RSC Adv 2023; 13:36430-36438. [PMID: 38099251 PMCID: PMC10719908 DOI: 10.1039/d3ra06555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer has emerged as a significant global health challenge, ranking as the second leading cause of death worldwide. Moreover, cancer patients frequently experience compromised immune systems, rendering them susceptible to bacterial infections. Combining anticancer and antibacterial properties in a single drug could lead to improved overall treatment outcomes and patient well-being. In this context, the present study focused on a series of hydrophilic naphthoimidazolium salts with donor groups (NI-R), aiming to create dual-functional agents with antibacterial and anticancer activities. Among these compounds, NI-TPA demonstrated notable antibacterial activity, particularly against drug-resistant bacteria, with MIC value of 7.8 μg mL-1. Furthermore, NI-TPA exhibited the most potent cytotoxicity against four different cancer cell lines, with an IC50 range of 0.67-2.01 μg mL-1. The observed high cytotoxicity of NI-TPA agreed with molecular docking and dynamic simulation studies targeting c-Met kinase protein. Additionally, NI-TPA stood out as the most promising candidate for two-photo excitation, fluorescence bioimaging, and localization in lysosomes. The study findings open new avenues for the design and development of imidazolium salts that could be employed in phototheranostic applications for cancer treatment and bacterial infections.
Collapse
Affiliation(s)
- Dung Ngoc Tran
- Faculty of Chemistry, Hanoi National University of Education Hanoi Vietnam
| | | | - Sondavid Nandanwar
- Eco-friendly New Materials Research Center, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon City Republic of Korea
| | | | - Van Thong Pham
- R&D Center, Vietnam Education and Technology Transfer JSC Cau Giay Hanoi Vietnam
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University Daegu 42472 Korea
| | - Xuan Ha Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Huy Trung Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Trang Van Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thuy Kieu Van Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University Busan 48513 Korea
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Myeongkee Park
- Department of Chemistry, Pukyong National University Busan 48513 Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University Busan 48513 Korea
- Department of Chemistry, Pukyong National University Busan 48513 Korea
| | - Thanh Chung Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
4
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Jothipandiyan S, Suresh D, Sekaran S, Paramasivam N. Palladium(II) Metal Complex Fabricated Titanium Implant Mitigates Dual-Species Biofilms in Artificial Synovial Fluid. Antibiotics (Basel) 2023; 12:1296. [PMID: 37627716 PMCID: PMC10451766 DOI: 10.3390/antibiotics12081296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Metallodrugs have a potent application in various medical fields. In the current study, we used a novel Palladium(II) thiazolinyl picolinamide complex that was directly fabricated over the titanium implant to examine its potency in inhibiting dual-species biofilms and exopolysaccharides. Additionally, inhibition of mono- and dual-species biofilms by coated titanium plates in an in vitro joint microcosm was performed. The study was carried out for 7 days by cultivating mono- and dual-species biofilms on titanium plates placed in both growth media and artificial synovial fluid (ASF). By qPCR analysis, the interaction of co-cultured biofilms in ASF and the alteration in gene expression of co-cultured biofilms were studied. Remarkable alleviation of biofilm accumulation and EPS secretion was observed on the coated titanium plates. The effective impairment of biofilms and EPS matrix of biofilms on Pd(II)-E-coated titanium plates were visualized by Scanning Electron Microscopy. Moreover, coated titanium plates improved the adhesion of osteoblast cells, which is crucial for a bone biomaterial. The potential bioactivity of coated plates was also confirmed at the molecular level using qPCR analysis. The stability of coated plates in ASF for 7 days was examined with FESEM-EDAX analysis. Collectively, the present study provided an excellent anti-infective effect on Pd(II)-E-coated titanium plates without affecting their biocompatibility with bone cells.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India;
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| |
Collapse
|
6
|
Cai T, Li Z, Guo P, Guo J, Wang R, Guo D, Yu J, Lü X, Xia X, Shi C. Antimicrobial and Antibiofilm Efficacy and Mechanism of Oregano Essential Oil Against Shigella flexneri. Foodborne Pathog Dis 2023; 20:209-221. [PMID: 37335913 DOI: 10.1089/fpd.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The aim of this study was to assess the antimicrobial activity of oregano essential oil (OEO) against Shigella flexneri and eradication efficacy of OEO on biofilm. The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of OEO against S. flexneri were 0.02% (v/v) and 0.04% (v/v), respectively. OEO effectively killed S. flexneri in Luria-Bertani (LB) broth and contaminated minced pork (the initial population of S. flexneri was about 7.0 log CFU/mL or 7.2 log CFU/g), and after treatment with OEO at 2 MIC in LB broth or at 15 MIC in minced pork, the population of S. flexneri decreased to an undetectable level after 2 or 9 h, respectively. OEO increased intracellular reactive oxygen species concentration, destroyed cell membrane, changed cell morphology, decreased intracellular ATP concentration, caused cell membrane depolarization, and destroyed proteins or inhibited proteins synthesis of S. flexneri. In addition, OEO effectively eradicated the biofilm of S. flexneri by effectively inactivating S. flexneri in mature biofilm, destroying the three-dimensional structure, and reducing exopolysaccharide biomass of S. flexneri. In conclusion, OEO exerts its antimicrobial action effectively and also has a valid scavenging effect on the biofilm of S. flexneri. These findings suggest that OEO has the potential to be used as a natural antibacterial and antibiofilm material in the control of S. flexneri in meat product supply chain, thereby preventing meat-associated infections.
Collapse
Affiliation(s)
- Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Iqbal S, Qasim M, Rahman H, Khan N, Paracha RZ, Bhatti MF, Javed A, Janjua HA. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant Bacillus paralicheniformis ES-1 isolated from salt mine. Mol Genet Genomics 2023; 298:79-93. [PMID: 36301366 DOI: 10.1007/s00438-022-01964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023]
Abstract
Salinity severely affects crop yield by hindering nitrogen uptake and reducing plant growth. Plant growth-promoting bacteria (PGPB) are capable of providing cross-protection against biotic/abiotic stresses and facilitating plant growth. Genome-level knowledge of PGPB is necessary to translate the knowledge into a product as efficient biofertilizers and biocontrol agents. The current study aimed to isolate and characterize indigenous plant growth-promoting strains with the potential to promote plant growth under various stress conditions. In this regard, 72 bacterial strains were isolated from various saline-sodic soil/lakes; 19 exhibited multiple in vitro plant growth-promoting traits, including indole 3 acetic acid production, phosphate solubilization, siderophore synthesis, lytic enzymes production, biofilm formation, and antibacterial activities. To get an in-depth insight into genome composition and diversity, whole-genome sequence and genome mining of one promising Bacillus paralicheniformis strain ES-1 were performed. The strain ES-1 genome carries 12 biosynthetic gene clusters, at least six genomic islands, and four prophage regions. Genome mining identified plant growth-promoting conferring genes such as phosphate solubilization, nitrogen fixation, tryptophan production, siderophore, acetoin, butanediol, chitinase, hydrogen sulfate synthesis, chemotaxis, and motility. Comparative genome analysis indicates the region of genome plasticity which shapes the structure and function of B. paralicheniformis and plays a crucial role in habitat adaptation. The strain ES-1 has a relatively large accessory genome of 649 genes (~ 19%) and 180 unique genes. Overall, these results provide valuable insight into the bioactivity and genomic insight into B. paralicheniformis strain ES-1 with its potential use in sustainable agriculture.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Naeem Khan
- Department of Agronomy, University of Florida, Gainesville, FL, 32611, USA
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Science (SINES, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
8
|
Antibiofilm activity of 3,3'-diindolylmethane on Staphylococcus aureus and its disinfection on common food-contact surfaces. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abdulhaq AA. Carthamus tinctorius L., as an Anti-virulence Intervention Against Methicillin Resistance Staphylococcus aureus. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1219.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Wang B, Song CR, Zhang QY, Wei PW, Wang X, Long YH, Yang YX, Liao SG, Liu HM, Xu GB. The Fusaric Acid Derivative qy17 Inhibits Staphylococcus haemolyticus by Disrupting Biofilm Formation and the Stress Response via Altered Gene Expression. Front Microbiol 2022; 13:822148. [PMID: 35369527 PMCID: PMC8964301 DOI: 10.3389/fmicb.2022.822148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is the second most commonly isolated coagulase-negative staphylococcus (CoNS) in patients with hospital-acquired infections. It can produce phenol-soluble modulin (PSM) toxins and form biofilms. Compared with the wealth of information on Staphylococcus aureus and Staphylococcus epidermidis, very little is known about S. haemolyticus. There is an urgent need to find an effective preparation to combat the harm caused by S. haemolyticus infection. Chinese herbs have been utilized to cure inflammation and infectious diseases and have a long history of anticancer function in China. Here, we modified fusaric acid characterized from the metabolites of Gibberella intermedia, an endophyte previously isolated from Polygonum capitatum. This study shows that fusaric acid analogs (qy17 and qy20) have strong antibacterial activity against S. haemolyticus. In addition, crystal violet analyses and scanning electron microscopy observations demonstrated that qy17 inhibited biofilm formation and disrupted mature biofilms of S. haemolyticus in a dose-dependent manner. Additionally, it reduced the number of live bacteria inside the biofilm. Furthermore, the antibiofilm function of qy17 was achieved by downregulating transcription factors (sigB), transpeptidase genes (srtA), and bacterial surface proteins (ebp, fbp) and upregulating biofilm-related genes and the density-sensing system (agrB). To further elucidate the bacteriostatic mechanism, transcriptomic analysis was carried out. The following antibacterial mechanisms were uncovered: (i) the inhibition of heat shock (clpB, groES, groL, grpE, dnaK, dnaJ)-, oxidative stress (aphC)- and biotin response (bioB)-related gene expression, which resulted in S. haemolyticus being unable to compensate for various stress conditions, thereby affecting bacterial growth; and (ii) a reduction in the expression of PSM-beta (PSMβ1, PSMβ2, PSMβ3) toxin- and Clp protease (clpP, clpX)-related genes. These findings could have major implications for the treatment of diseases caused by S. haemolyticus infections. Our research reveals for the first time that fusaric acid derivatives inhibit the expression of biofilm formation-related effector and virulence genes of S. haemolyticus. These findings provide new potential drug candidates for hospital-acquired infections caused by S. haemolyticus.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Qing-Yan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology & School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, Guiyang, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, Bao M, Ge F, Li L, Yi J, Du C, Lu C, Tan Y. The Inhibition Effect of Linezolid With Reyanning Mixture on MRSA and its Biofilm is More Significant than That of Linezolid Alone. Front Pharmacol 2022; 12:766309. [PMID: 35046807 PMCID: PMC8762264 DOI: 10.3389/fphar.2021.766309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 μg/ml) to 2 μg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Chu
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Chengqiang Du
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Djebbah FZ, Belyagoubi L, Abdelouahid DE, Kherbouche F, Al-Dhabi NA, Arasu MV, Ravindran B. Isolation and characterization of novel Streptomyces strain from Algeria and its in-vitro antimicrobial properties against microbial pathogens. J Infect Public Health 2021; 14:1671-1678. [PMID: 34627064 DOI: 10.1016/j.jiph.2021.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The constant development of microbial resistance to the traditional antimicrobial agents and the emergence of new infectious diseases justify the urgent need for new effective antimicrobial molecules. However, the irrational use of antibiotics increases microbial resistance dramatically and along with that the frequency of mortality associated with infections is higher. Therefore, to combat the antimicrobial resistance, the screening of compounds with novel chemical structures is essential. This study intended to determine the antimicrobial potential of Streptomyces GLD22 strain isolated from Algeria. METHODS The characterization of Streptomyces strain GLD22 was performed by physiological, biochemical and molecular tests. The antimicrobial activity was tested by the well diffusion method and the minimum inhibitory concentration value calculation were performed using broth micro dilution technique. The extracellular metabolites profiling was done using GC-MS. RESULTS Physiological, biochemical and phylogenetic analysis confirmed that the strain GLD22 showed maximum identity towards Streptomyces species. The extra cellular metabolites revealed their antimicrobial activity at 1 mg/ml for Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, whereas Staphylococcus aureus, Bacillus cereus and Bacillus subtilis documented 0.5, 1 and 1 mg/ml respectively. GC-MS analysis confirmed that 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl) phenol, Dibutyl phthalate and Cyclo(leucyloprolyl) were the major drug molecules present in the extract. CONCLUSION The novel Streptomyces strain GLD22 recovered from the Gueldaman cave of Algeria showed better antimicrobial activity towards both Gram positive and Gram negative pathogens. Interestingly, the MIC values were comparable with the standard drug molecules. In addition, the identification of active metabolites present in the crude extracts was an advantage.
Collapse
Affiliation(s)
- Fatima Zohra Djebbah
- Laboratoire de Microbiologie Appliquée à l'Agro-alimentaire, Au Biomédical et à l'Environnement (LAMAABE), Département de Biologie, Université Abou Bekr Belkaid, BP 119, Imama, 13000 Tlemcen, Algeria.
| | - Larbi Belyagoubi
- Laboratoire des Produits Naturels (LAPRONA), Département de Biologie, Université Abou Bekr Belkaid, BP 119, Imama, 13000 Tlemcen, Algeria
| | - Djamel Eddine Abdelouahid
- Laboratoire de Microbiologie Appliquée à l'Agro-alimentaire, Au Biomédical et à l'Environnement (LAMAABE), Département de Biologie, Université Abou Bekr Belkaid, BP 119, Imama, 13000 Tlemcen, Algeria
| | - Farid Kherbouche
- Centre National de Recherches Préhistoriques, Anthropologiqes et Historiques (CNRPAH), 3 rue Franklin Roosevelt, 16000 Alger, Algeria
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| |
Collapse
|
13
|
Chemical Investigation of Diketopiperazines and N-Phenethylacetamide Isolated from Aquimarina sp. MC085 and Their Effect on TGF-β-Induced Epithelial–Mesenchymal Transition. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical investigations of Aquimarina sp. MC085, which suppressed TGF-β-induced epithelial–mesenchymal transition (EMT) in A549 human lung cancer cells, led to the isolation of compounds 1–3. Structural characterization using spectroscopic data analyses in combination with Marfey’s analysis revealed that they were two diketopiperazines [cyclo(l-Pro-l-Leu) (1) and cyclo(l-Pro-l-Ile) (2)] and one N-phenethylacetamide (3). Cyclo(l-Pro-l-Leu) (1) and N-phenethylactamide (3) inhibited the TGF-β/Smad pathway and suppressed the metastasis of A549 cells by affecting TGF-β-induced EMT. However, cyclo(l-Pro-l-Ile) (2) downregulated mesenchymal factors via a non-Smad-mediated signaling pathway.
Collapse
|
14
|
Wu Y, Wang S, Nie W, Wang P, Fu L, Ahmad I, Zhu B, Chen G. A key antisense sRNA modulates the oxidative stress response and virulence in Xanthomonas oryzae pv. oryzicola. PLoS Pathog 2021; 17:e1009762. [PMID: 34297775 PMCID: PMC8336823 DOI: 10.1371/journal.ppat.1009762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/04/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens integrate multiple environmental signals to navigate the host and control the expression of virulence genes. In this process, small regulatory noncoding RNAs (sRNAs) may function in gene expression as post-transcriptional regulators. In this study, the sRNA Xonc3711 functioned in the response of the rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), to oxidative stress. Xonc3711 repressed production of the DNA-binding protein Xoc_3982 by binding to the xoc_3982 mRNA within the coding region. Mutational analysis showed that regulation required an antisense interaction between Xonc3711 and xoc_3982 mRNA, and RNase E was needed for degradation of the xoc_3982 transcript. Deletion of Xonc3711 resulted in a lower tolerance to oxidative stress due to the repression of flagella-associated genes and reduced biofilm formation. Furthermore, ChIP-seq and electrophoretic mobility shift assays showed that Xoc_3982 repressed the transcription of effector xopC2, which contributes to virulence in Xoc BLS256. This study describes how sRNA Xonc3711 modulates multiple traits in Xoc via signals perceived from the external environment. Small, stable RNA species perform diverse functions in both prokaryotes and eukaryotes. In this study, the sRNA Xonc3711 decreased the production of DNA-binding protein Xoc_3982 in the bacterium Xanthomonas oryzae pv. oryzicola (Xoc) by base pairing with the xoc_3982 transcript. When Xonc3711 was mutated, Xoc was impaired in its ability to form flagella and produce biofilms, which reduced Xoc tolerance to oxidative stress. We also discovered that the DNA-binding protein Xoc_3982 represses the expression of xopC2, which encodes an effector protein, and reduces its expression. Our results show that Xonc3711 modulates and integrates multiple systems in Xoc to protect cells from oxidative damage.
Collapse
Affiliation(s)
- Yan Wu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luoyi Fu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
15
|
Interference in Staphylococcus Aureus Biofilm and Virulence Factors Production by Human Probiotic Bacteria with Antimutagenic Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05934-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Baharudin MMAA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, Sabri S. Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus. PLoS One 2021; 16:e0251514. [PMID: 33974665 PMCID: PMC8112681 DOI: 10.1371/journal.pone.0251514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40–80°C), pH (4–12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
Collapse
Affiliation(s)
- Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
17
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
18
|
Sowndarya J, Rubini D, Sinsinwar S, Senthilkumar M, Nithyanand P, Vadivel V. Gallic Acid an Agricultural Byproduct Modulates the Biofilm Matrix Exopolysaccharides of the Phytopathogen Ralstonia solanacearum. Curr Microbiol 2020; 77:3339-3354. [PMID: 32749521 DOI: 10.1007/s00284-020-02141-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Ralstonia solanacearum is a soil-borne plant pathogen which causes wilt disease in economically important crops of the Solanaceae family in tropical and temperate regions. As biofilm formation is the major virulence factor in R. solanacearum, research inputs are necessary to identify natural biofilm inhibitors to mitigate virulence of this bacterium. Hence in the present work, the anti-biofilm potential of phytochemical compound gallic acid (GA) isolated from an agricultural byproduct (cashewnut shell) was investigated. Initially the Minimum inhibitory concentration (MIC) of crude extracts of cashewnut shell and coconut shell against R. solanacearum were investigated. The MIC of both the extracts were 400 µg/ml and their sub-MIC (200 µg/ml) inhibited biofilms in the range of 62-70% and 49-57%, respectively. As the cashewnut shell extract have higher biofilm inhibitory effect compared to coconut shell extract, we proceeded our further study by isolating the major compound GA from cashewnut shell by acid hydrolysate method. The sub-MIC of crude cashewnut shell extract inhibited 85% of young biofilms. The MIC of GA were observed at 3 mg/ml and sub-MIC (1.5 mg/ml) was found to eradicate 85% of mature biofilms which was confirmed by standard crystal violet assay and the biofilm reduction was further visualized under light microscopy and scanning electron microscopic images. Toxicity of GA was evaluated against R. solanacearum through XTT cell viability assay and found no antibacterial effect at sub-MIC. Additionally, it is confirmed with growth curve and time kill assays. Swimming and twitching motility were considered as an important virulence factors to invade plants and to block the xylem vessels. Therefore, sub-MIC of GA was found to inhibit both swimming and twitching motility of about 93% and 63% respectively. Anti-biofilm efficacy of GA was also worked well with tomato plant model where remarkable biofilm inhibition was found on treatment with GA before and after 24 h of infection with R. solanacearum. Hence GA will be an alternative, cheap source which is eco-friendly as well as novel source for the treatment of R. solanacearum biofilms and to prevent wilt disease in important crops.
Collapse
Affiliation(s)
- Jothipandiyan Sowndarya
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Simran Sinsinwar
- Chemical Biology Laboratory (ASK II 409), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Murugaiyan Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| | - Vellingiri Vadivel
- Chemical Biology Laboratory (ASK II 409), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
19
|
Lakshmi SA, Bhaskar JP, Krishnan V, Sethupathy S, Pandipriya S, Aruni W, Pandian SK. Inhibition of biofilm and biofilm-associated virulence factor production in methicillin-resistant Staphylococcus aureus by docosanol. J Biotechnol 2020; 317:59-69. [PMID: 32353392 DOI: 10.1016/j.jbiotec.2020.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a major public health concern in infection control. Hence, a multi-pronged approach is necessary to curb the severity of infections. The present study entails the identification of docosanol (fatty alcohol) from Streptomyces as a novel antibiofilm agent which can target the virulence factors of MRSA. Results showed that docosanol as a potent antibiofilm agent and found to inhibit several virulence factors of MRSA. The antibiofilm efficacy of docosanol analyzed through light and scanning electron microscopy showed a significant reduction in adherent cells. Moreover, analysis of three-dimensional structure of biofilm matrix by confocal laser scanning microscope demonstrated effective antibiofilm potential of docosanol. In addition, docosanol reduced the survival rate of MRSA in healthy human blood and enhanced the neutrophil-mediated killing by interfering with hemolysin production. RT-qPCR analysis revealed the down regulation of several virulence genes, possibly by affecting the expression of the accessory gene regulator (agr) system and transcriptional regulator sarA. These findings suggest that docosanol could effectively reduce the biofilm phenotype and virulence production, and thus becomes a promising candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | | | - Sivasamy Sethupathy
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Selvapandi Pandipriya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Wilson Aruni
- Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India; Musculoskeletal Disease Research Center, US Department of Veteran Affairs, VA, California, USA
| | | |
Collapse
|
20
|
Shi X, Amarnath Praphakar R, Suganya K, Murugan M, Sasidharan P, Rajan M. In vivo approach of simply constructed pyrazinamide conjugated chitosan-g-polycaprolactone micelles for methicillin resistance Staphylococcus aureus. Int J Biol Macromol 2020; 158:636-647. [PMID: 32353501 DOI: 10.1016/j.ijbiomac.2020.04.214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an extensive origin of nosocomial infections that are very much challenging as well as complicated to eradicate mostly due to their strong resistance against all existing antibiotic therapies. Here the chitosan-grafted-polycaprolactone/maleic anhydride-pyrazinamide (CS-g-PCL/MA-PZA) polymeric drug carrier constructed via dialysis for anti-MRSA drugs like rifampicin (RF) and pyrazinamide (PZA) delivery. Nearly 200 nm size of the spherical particle with -20.04 mV of zeta potential observed. The cumulative PZA and RF releases from the carrier were observed 83.25% and 76.54% respectively in pH 5.5, and the in vitro drug release profile demonstrates that the fabricated micelle was pH-responsive. For the intestinal colonization, an in vivo assay performed using C. elegans, and the CS-g-PCL/MA-PZA/RF micelles treated worms generally belong to the weakly colonized category. Therefore, the study revealed that CS-g-PCL/MA-PZA/RF micelle could be a promising approach for therapeutic applications to achieve efficient anti-MRSA drug delivery.
Collapse
Affiliation(s)
- Xiaoxin Shi
- Department of Internal Medicine, Fuwai Central China Cardiovascular Hospital, Zhengzhou City, Henan Province 450000, China
| | - Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Kannan Suganya
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Perumal Sasidharan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
| |
Collapse
|
21
|
Rajkumar D, Rubini D, Sudharsan M, Suresh D, Nithyanand P. Novel thiazolinyl-picolinamide based palladium(II) complex-impregnated urinary catheters quench the virulence and disintegrate the biofilms of uropathogens. BIOFOULING 2020; 36:351-367. [PMID: 32401555 DOI: 10.1080/08927014.2020.1765159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.
Collapse
Affiliation(s)
- Deeksha Rajkumar
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| | - M Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - D Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| |
Collapse
|
22
|
Rubini D, Varthan PV, Jayasankari S, Vedahari BN, Nithyanand P. Suppressing the phenotypic virulence factors of Uropathogenic Escherichia coli using marine polysaccharide. Microb Pathog 2020; 141:103973. [PMID: 31927002 DOI: 10.1016/j.micpath.2020.103973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the keystone pathogen that cause 80-90% of community acquired urinary tract infections (UTIs) and Catheter associated urinary tract infections (CAUTIs). Pathogenicity and ability of UPEC to colonize the bladder majorly relies on the expression of phenotypic virulence factors like flagella, pili, curli, and non pilus adhesion. Pathogens that colonize on the indwelling medical devices are able to communicate using quorum sensing (QS) signals. QS Plays a vital role in coordinating biofilm formation which results in the bacterial cells encased inside an extracellular polymeric substance (EPS). Chitosan is a marine polysaccharide which is known for its antibacterial activity. In the present study we investigated the ability of chitosan extracted from marine biowaste to mitigate the QS mediated biofilm formation in UPEC. Extracted chitosan (EC) and Commercial chitosan (CC) showed percentage inhibition of 80-85% and 60-75% respectively on young biofilm inhibition and preformed biofilm disruption. EC and CC were assessed for its ability to suppress QS mediated virulence in UPEC. Hemolysis assay showed a percentage inhibition of 79% against EC. Both chitosan showed profound activity to suppress the phenotypic virulence factors like swarming motility which is mediated by type I pili and colony morphology assay showed repression in cellulose production in UPEC. Furthermore, Real-Time PCR confirmed the ability of EC to down regulate the virulent genes which are responsible for invasion in UPEC. Accordingly, the current study foresees the quorum sensing inhibiting (QSI) potential of chitosan extracted from marine biowaste which offers an antibiotic free approach to combat UTI caused by UPEC.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Prakash Vishnu Varthan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Senthilganesh Jayasankari
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Vedahari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
23
|
Selvaraj A, Jayasree T, Valliammai A, Pandian SK. Myrtenol Attenuates MRSA Biofilm and Virulence by Suppressing sarA Expression Dynamism. Front Microbiol 2019; 10:2027. [PMID: 31551964 PMCID: PMC6737500 DOI: 10.3389/fmicb.2019.02027] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a deleterious human pathogen responsible for severe morbidity and mortality worldwide. The pathogen has attained high priority in the World Health Organization (WHO) - Multidrug-resistant (MDR) pathogens list. Emerging MDR strains of S. aureus are clinically challenging due to failure in conventional antibiotic therapy. Biofilm formation is one of the underlying mechanisms behind the antibiotic resistance. Hence, attenuating biofilm formation has become an alternative strategy to control persistent infections. The current study is probably the first that focuses on the antibiofilm and antivirulence potential of myrtenol against MRSA and its clinical isolates. Myrtenol exhibited a concentration-dependent biofilm inhibition without causing any harmful effect on cell growth and viability. Further, microscopic analysis validated the biofilm inhibitory efficacy of myrtenol against MRSA. In addition, myrtenol inhibited the synthesis of major virulence factors including slime, lipase, α-hemolysin, staphyloxanthin and autolysin. Inhibition of staphyloxanthin in turn sensitized the MRSA cells to healthy human blood and hydrogen peroxide (H2O2). Notably, myrtenol treated cells were deficient in extracellular DNA (eDNA) mediated autoaggregation as eDNA releasing autolysis was impaired by myrtenol. Biofilm disruptive activity on preformed biofilms was observed at concentrations higher than minimum biofilm inhibitory concentration (MBIC) of myrtenol. Also, the non-cytotoxic effect of myrtenol on human peripheral blood mononuclear cell (PBMC) was evidenced by trypan blue and Alamar blue assays. Transcriptional analysis unveiled the down-regulation of global regulator sarA and sarA mediated virulence genes upon myrtenol treatment, which is well correlated with results of phenotypic assays. Thus, the results of the present study revealed the sarA mediated antibiofilm and antivirulence potential of myrtenol against MRSA.
Collapse
|
24
|
Rubini D, Banu SF, Subramani P, Hari BNV, Gowrishankar S, Pandian SK, Wilson A, Nithyanand P. Extracted chitosan disrupts quorum sensing mediated virulence factors in Urinary tract infection causing pathogens. Pathog Dis 2019; 77:5364546. [PMID: 30801640 DOI: 10.1093/femspd/ftz009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) plays an important role during the aetiology of urinary tract infection (UTI), as several virulence factors are under the regulation of QS. Pseudomonas aeruginosa and Serratia marcescens, the primary causative agents of UTI, employ acyl homoserine lactone (AHL) as signal molecules to coordinate various virulence factors. In this present study, chitosan extracted from the marine crab Portunus sanguinolentus was screened for its ability to inhibit the QS-signaling molecules of P. aeruginosa (PA01) and few clinical isolates of P. aeruginosa and S. marcescens. The extracted chitosan on comparison with a commercial chitosan showed significant inhibition of several QS-dependent virulence factors in P. aeruginosa and S. marscenes. Furthermore, qPCR analysis was carried out to confirm the down-regulation of fimA, fimC and flhD genes involved in adhesion and pathogenesis of S. marcescens and lasI and rhlI genes that governs the P. aeruginosa quorum sensing system. Moreover, the chitosan when coated on a catheter was also able to disrupt the mature biofilms which was revealed by scanning electron microscopy. Collectively, the present study showcases the QS inhibitory property of extracted chitosan from crab shells which is being discarded as a recalcitrant biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Prabha Subramani
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi - 630004, Tamil Nadu, India
| | | | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, 11021 Campus Street, Loma Linda, California 92350, USA
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| |
Collapse
|
25
|
Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Front Microbiol 2018; 9:2835. [PMID: 30534118 PMCID: PMC6275436 DOI: 10.3389/fmicb.2018.02835] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
In recent decades, fungal infections have incredibly increased with Candida genus as the major cause of morbidity and mortality in hospitalized and immunocompromised patients. Most of the Candida species are proficient in biofilm formation on implanted medical devices as well as human tissues. Biofilm related Candida infections are very difficult to treat using common antifungal agents owing to their increased drug resistance. To address these issues, the present study investigated the antibiofilm and antivirulent properties of Syzygium cumini derived quinic acid in combination with known antifungal compound undecanoic acid. Initially, antibiofilm potential of S. cumini leaf extract was assessed and the active principles were identified through gas chromatography and mass spectrometry analysis. Among the compounds identified, quinic acid was one of the major compounds. The interaction between quinic acid and undecanoic acid was found to be synergistic in the Fractional inhibitory concentration index (≤0.5). Results of in vitro assays and gene expression analysis suggested that the synergistic combinations of quinic acid and undecanoic acid significantly inhibited virulence traits of Candida spp. such as the biofilm formation, yeast-to-hyphal transition, extracellular polymeric substances production, filamentation, secreted hydrolases production and ergosterol biosynthesis. In addition, result of in vivo studies using Caenorhabditis elegans demonstrated the non-toxic nature of QA-UDA combination and antivirulence effect against Candida spp. For the first time, synergistic antivirulence ability of quinic acid and undecanoic acid was explored against Candida spp. Thus, results obtained from the present study suggest that combination of phytochemicals might be used an alternate therapeutic strategy for the prevention and treatment of biofilm associated Candida infection.
Collapse
|
26
|
Quorum quelling efficacy of marine cyclic dipeptide -cyclo(L-leucyl-L-prolyl) against the uropathogen Serratia marcescens. Food Chem Toxicol 2018; 123:326-336. [PMID: 30419322 DOI: 10.1016/j.fct.2018.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022]
Abstract
In the current study, the anti-quorum sensing (QS) efficacy of cyclic dipeptide -cyclo(L-leucyl-L-prolyl) (CLP) of marine origin was explored against Serratia marcescens. Minimal -inhibitory (MIC) and -bactericidal concentrations (MBC) of CLP against both reference as well as a clinical isolate of S. marcescens was identified to be 200 and 400 µg/mL, respectively. CLP proficiently inhibited the QS controlled prodigiosin production in S. marcescens, which affirm its anti-QS efficacy towards S. marcescens. At sub-MIC (100 µg/mL), CLP exhibited a phenomenal inhibitory propensity towards the production of virulence traits viz. biofilm, exopolymeric substance, protease and lipase to the level of 81, 77, 71 and 92%, respectively. Further, the confocal and scanning electron microscopic analyses validated the antibiofilm efficacy of CLP. Besides, CLP effectively modified the hydrophobic and motility characteristics of S. marcescens. Furthermore, the in vivo assay using C. elegans revealed the non-toxic and anti-adherence propensity of CLP. Concomitantly, the down regulation of QS controlled virulence genes (unveiled through qPCR analysis) are in accordance with the data of phenotypic and in vivo assays. Therefore, this study exemplifies that CLP could plausibly be a convincing alternative over conventional antibiotics in preventing the QS associated pathogenesis of uropathogens.
Collapse
|
27
|
Rubini D, Farisa Banu S, Veda Hari BN, Ramya Devi D, Gowrishankar S, Karutha Pandian S, Nithyanand P. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 2018; 118:733-744. [PMID: 29908268 DOI: 10.1016/j.fct.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus is a major cause of biofilm-associated and indwelling device related infections. The present study explores the anti-virulent and antibiofilm potency of chitosan extracted from the shells of the marine crab Portunus sanguinolentus against Methicillin Resistant Staphylococcus aureus (MRSA). The chemical characterization results revealed that the extracted chitosan (EC) has structural analogy to that of a commercial chitosan (CC). The extracted chitosan was found to be effective in reducing the staphyloxanthin pigment, a characteristic virulence feature of MRSA that promotes resistance to reactive oxygen species. Furthermore, Confocal laser scanning microscope (CLSM) revealed that EC exhibited a phenomenal dose dependent antibiofilm efficacy against mature biofilms of the standard as well as clinical MRSA strains and Scanning Electron Microscopy (SEM) confirmed EC had a higher efficacy in disrupting the thick Exopolysaccharide (EPS) layer than CC. Additionally, EC and CC did not have any cytotoxic effects when tested on lung epithelial cell lines. Thus, the study exemplifies the anti-virulent properties of a marine bioresource which is till date discarded as a biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Veda Hari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Durai Ramya Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 004, Tamil Nadu, India
| | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
28
|
Ramanathan S, Arunachalam K, Chandran S, Selvaraj R, Shunmugiah K, Arumugam V. Biofilm inhibitory efficiency of phytol in combination with cefotaxime against nosocomial pathogen Acinetobacter baumannii. J Appl Microbiol 2018; 125:56-71. [DOI: 10.1111/jam.13741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 12/29/2022]
Affiliation(s)
- S. Ramanathan
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - K. Arunachalam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - S. Chandran
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - R. Selvaraj
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - K.P. Shunmugiah
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - V.R. Arumugam
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| |
Collapse
|
29
|
Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida
spp. J Basic Microbiol 2018; 58:343-357. [DOI: 10.1002/jobm.201700529] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - Vivekanandham Amsa Devi
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | | | | | | |
Collapse
|
30
|
Gowri M, Suganya K, Latha N, Murugan M, Ahmed M, Alarfaj AA, Rajan M. Metal oxide nanoparticle-functionalized sebacic acid-grafted PHEAM nanocarriers for enriched activity of metronidazole against food borne bacteria: in vitro and in vivo study. NEW J CHEM 2018. [DOI: 10.1039/c8nj03718c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food borne infection is a serious complication caused by Listeria monocytogenes (L. monocytogenes), a dangerous bacteria.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry
- Kandaswami Kandar's College
- Namakkal District
- India
| | - Kannan Suganya
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai
- India
| | - Nachimuthu Latha
- Department of Chemistry
- Kandaswami Kandar's College
- Namakkal District
- India
| | - Marudhamuthu Murugan
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai
- India
| | - Mukhtar Ahmed
- Department of Zoology
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai
| |
Collapse
|
31
|
Satish L, Santhakumari S, Gowrishankar S, Pandian SK, Ravi AV, Ramesh M. Rapid biosynthesized AgNPs from Gelidiella acerosa aqueous extract mitigates quorum sensing mediated biofilm formation of Vibrio species-an in vitro and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27254-27268. [PMID: 28965300 DOI: 10.1007/s11356-017-0296-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The present study explores the non-bactericidal anti-virulence efficacy of green synthesized silver nanoparticles (AgNPs) from Gelidiella acerosa against multi-drug resistant Vibrio spp. Spectral characterization of AgNPs was performed through UV-Visible, FT-IR, and energy-dispersive spectroscopic techniques followed by X-ray crystallography and zeta potential analysis. Further, the structural characterization was done by electron and atomic force microscopic techniques. AgNPs profoundly quelled the quorum sensing mediated violacein production in Chromobacterium violaceum and CV026. Characterized AgNPs at 100 μg mL-1 concentrations depicted a phenomenal anti-biofilm efficacy against Vibrio parahaemolyticus (71%) and Vibrio vulnificus (83%) biofilms, which was further confirmed through light, confocal, and scanning electron microscopic analyses. In vitro bioassays revealed the remarkable inhibitory values of AgNPs, by inhibiting the exopolysaccharide production, hydrophobicity, and motility. In vivo studies using Artemia franciscana larvae also confirmed the anti-infective proficiency, as the AgNPs effectively reduced the bacterial colonization and enhanced the survival rate of larvae up to 100% without any toxicity effect. Graphical abstract Rapid biosynthesized AgNPs from Gelidiella acerosa quench quorum sensing controlled virulence traits in vibrios.
Collapse
Affiliation(s)
- Lakkakula Satish
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
- Department of Biotechnology Engineering, Ben-Gurion University of Nagev, Beer Sheva, 84105, Israel
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
32
|
Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Sci Rep 2017; 7:16328. [PMID: 29180790 PMCID: PMC5703977 DOI: 10.1038/s41598-017-16507-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022] Open
Abstract
Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.
Collapse
|
33
|
Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol 2017; 66:1506-1515. [DOI: 10.1099/jmm.0.000570] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Murugesan Sivaranjani
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Ramanathan Srinivasan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Janarthanam Rathna
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
34
|
Gowrishankar S, Pandian SK. Modulation of Staphylococcus epidermidis (RP62A) extracellular polymeric layer by marine cyclic dipeptide-cyclo( l -leucyl- l -prolyl) thwarts biofilm formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1254-1262. [DOI: 10.1016/j.bbamem.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
|
35
|
In Vitro and In Vivo Biofilm Characterization of Methicillin-Resistant Staphylococcus aureus from Patients Associated with Pharyngitis Infection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1289157. [PMID: 27761465 PMCID: PMC5059529 DOI: 10.1155/2016/1289157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022]
Abstract
The present investigation was deliberately aimed at evaluating the biofilm-forming ability of 63 clinical MRSA isolates recovered from pharyngitis patients through different phenotypic assays. The molecular detection of adhesion (icaA/icaD/icaB/icaC), adhesins (fnbA/fnbB, clfA, and cna), staphylococcal accessory regulator (sarA), and α-toxin (hla) genes was done by employing polymerase chain reaction (PCR). Out of 63 isolates, 49 (77.8%) were found slime positive by the Congo red agar (CRA) method and 44 (69.8%) as biofilm positive by the quantitative microtitre plate assays. The results of MATH assay showed that most of the test pathogens are hydrophilic in nature. The molecular investigation of biofilm-associated genes revealed that 84.13% (n = 53) of isolates were found positive for icaADBC genes. The fnbA and fnbB genes were present in 49 (77.8%) and 51 (81%) MRSA isolates, respectively. In addition, 58.7% (n = 37), 73% (n = 46), and 69.8% (n = 44) of the isolates harboured the clfA, cna, and hla genes, respectively. Further, nearly 81% (n = 51) of the isolates were found positive for the gene sarA and all the ica negative isolates were also negative for the gene. Furthermore, the results of in vivo adherence assay unveiled the factual commonness in the in vitro adherence method.
Collapse
|
36
|
Sivaranjani M, Gowrishankar S, Kamaladevi A, Pandian SK, Balamurugan K, Ravi AV. Morin inhibits biofilm production and reduces the virulence of Listeria monocytogenes - An in vitro and in vivo approach. Int J Food Microbiol 2016; 237:73-82. [PMID: 27543817 DOI: 10.1016/j.ijfoodmicro.2016.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 01/22/2023]
Abstract
The current study explores the in vitro and in vivo antibiofilm efficacy of morin against a leading foodborne pathogen-Listeria monocytogenes (LM). Minimum inhibitory concentration (MIC) of morin against LM strains was found to be 100μg/ml. The non-antibacterial effect of morin at its sub-MICs (6.25, 12.5 and 25μg/ml) was determined through growth curve and XTT assay. Morin at its sub-MICs demonstrated a significant dose dependent inhibitory efficacy against LM biofilm formation which was also evidenced through light, confocal and scanning electron microscopic analyses. However, morin failed to disperse the mature biofilm of LM even at its MIC. Our data also revealed the anti-virulence efficacy of morin, as it significantly inhibited the production of hemolysin and motility of LM. Concentration-dependent susceptibility of morin treated LM cells to normal human serum was observed. In vivo studies revealed that morin extended the lifespan of LM infected Caenorhabditis elegans by about 85%. Furthermore, the non-toxic nature and in vivo anti-adherence efficacy of morin were also ascertained through C. elegans-LM infection model. Overall, the data of the current study identifies morin as a promising antibiofilm agent and its suitability to formulate protective strategies against biofilm associated infections caused by LM.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Arumugam Kamaladevi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | | | - Kirshnaswamy Balamurugan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India.
| |
Collapse
|
37
|
Gowrishankar S, Sivaranjani M, Kamaladevi A, Ravi AV, Balamurugan K, Karutha Pandian S. Cyclic dipeptide cyclo(l-leucyl-l-prolyl) from marineBacillus amyloliquefaciensmitigates biofilm formation and virulence inListeria monocytogenes. Pathog Dis 2016; 74:ftw017. [DOI: 10.1093/femspd/ftw017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
|