1
|
Šafaříková E, Ehlich J, Stříteský S, Vala M, Weiter M, Pacherník J, Kubala L, Víteček J. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation. Int J Mol Sci 2022; 23:ijms23031107. [PMID: 35163031 PMCID: PMC8835127 DOI: 10.3390/ijms23031107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Collapse
Affiliation(s)
- Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jiří Ehlich
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Stanislav Stříteský
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Vala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Weiter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Correspondence: ; Tel./Fax: +420-541-517104; Fax: +420-541-517104
| |
Collapse
|
2
|
Ul Haq A, Carotenuto F, De Matteis F, Prosposito P, Francini R, Teodori L, Pasquo A, Di Nardo P. Intrinsically Conductive Polymers for Striated Cardiac Muscle Repair. Int J Mol Sci 2021; 22:8550. [PMID: 34445255 PMCID: PMC8395236 DOI: 10.3390/ijms22168550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
| | - Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Fabio De Matteis
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Paolo Prosposito
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Roberto Francini
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Laura Teodori
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Cheah E, Wu Z, Thakur SS, O'Carroll SJ, Svirskis D. Externally triggered release of growth factors - A tissue regeneration approach. J Control Release 2021; 332:74-95. [PMID: 33600882 DOI: 10.1016/j.jconrel.2021.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Tissue regeneration aims to achieve functional restoration following injury by creating an environment to enable the body to self-repair. Strategies for regeneration rely on the introduction of biomaterial scaffolding, cells and bioactive molecules into the body, at or near the injury site. Of these bioactive molecules, growth factors (GFs) play a pivotal role in directing regenerative pathways for many cell populations. However, the therapeutic use of GFs has been limited by the complexity of biological injury and repair, and the properties of the GFs themselves, including their short half-life, poor tissue penetration, and off-target side effects. Externally triggered delivery systems have the potential to facilitate the delivery of GFs into the target tissues with considerations of the timing, sequence, amount, and location of GF presentation. This review briefly discusses the challenges facing the therapeutic use of GFs, then, we discuss approaches to externally trigger GF release from delivery systems categorised by stimulation type; ultrasound, temperature, light, magnetic fields and electric fields. Overall, while the use of GFs for tissue regeneration is still in its infancy, externally controlled GF delivery technologies have the potential to achieve robust and effective solutions to present GFs to injured tissues. Future technological developments must occur in conjunction with a comprehensive understanding of the biology at the injury site to ensure translation of promising technologies into real world benefit.
Collapse
Affiliation(s)
- Ernest Cheah
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
4
|
Jasenská D, Kašpárková V, Radaszkiewicz KA, Capáková Z, Pacherník J, Trchová M, Minařík A, Vajďák J, Bárta T, Stejskal J, Lehocký M, Truong TH, Moučka R, Humpolíček P. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr Polym 2021; 253:117244. [PMID: 33278999 DOI: 10.1016/j.carbpol.2020.117244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
Novel composite films combining biocompatible polysaccharides with conducting polyaniline (PANI) were prepared via the in-situ polymerization of aniline hydrochloride in the presence of sodium hyaluronate (SH) or chitosan (CH). The composite films possess very good cytocompatibility in terms of adhesion and proliferation of two lines of human induced pluripotent stem cells (hiPSC). Moreover, the cardiomyogenesis and even formation of beating clusters were successfully induced on the films. The proportion of formed cardiomyocytes demonstrated excellent properties of composites for tissue engineering of stimuli-responsive tissues. The testing also demonstrated antibacterial activity of the films against E. coli and PANI-SH was able to reduce bacterial growth from 2 × 105 to < 1 cfu cm-2. Physicochemical characterization revealed that the presence of polysaccharides did not notably influence conductivities of the composites being ∼1 and ∼2 S cm-1 for PANI-SH and PANI-CH respectively; however, in comparison with neat PANI, it modified their topography making the films smoother with mean surface roughness of 4 (PANI-SH) and 14 nm (PANI-CH). The combination of conductivity, antibacterial activity and mainly cytocompatibility with hiPSC opens wide application potential of these polysaccharide-based composites.
Collapse
Affiliation(s)
- Daniela Jasenská
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Věra Kašpárková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | | | - Zdenka Capáková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Jiří Pacherník
- Masaryk University, Faculty of Science, 625 00 Brno, Czech Republic.
| | - Miroslava Trchová
- University of Chemistry and Technology Prague, Central Laboratories, 166 28 Prague 6, Czech Republic.
| | - Antonín Minařík
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Jan Vajďák
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Tomáš Bárta
- Masaryk University, Faculty of Science, 625 00 Brno, Czech Republic.
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic.
| | - Marián Lehocký
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Thanh Huong Truong
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Robert Moučka
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Petr Humpolíček
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| |
Collapse
|
5
|
Gonçalves JP, de Oliveira CC, da Silva Trindade E, Riegel-Vidotti IC, Vidotti M, Simas FF. In vitro biocompatibility screening of a colloidal gum Arabic-polyaniline conducting nanocomposite. Int J Biol Macromol 2021; 173:109-117. [PMID: 33476624 DOI: 10.1016/j.ijbiomac.2021.01.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment. The results obtained from a series of in vitro assays showed that, after up to 48 h of exposure to a range of PANI-GA concentrations (1-50 μg/mL), both mouse BALB/3T3 fibroblasts and RAW 264.7 macrophages showed no evidence of change in cellular proliferation, viability and metabolic activity. An increase in macrophage granularity poses as evidence of phagocytic uptake of PANI-GA, without resulting activation of this cell type. Additionally, the PANI-GA nanoparticles modulated the cell morphology changes induced on fibroblasts by GA in a concentration-dependent manner. Thus, this unprecedented biocompatibility study of PANI nanoparticles stabilized by a plant gum exudate polysaccharide showed promising results. This simple biomaterial might be further developed into colloidal formulations for biological and biomedical applications, taking advantage of its versatility, biocompatibility, and conductive properties.
Collapse
Affiliation(s)
- Jenifer Pendiuk Gonçalves
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Izabel Cristina Riegel-Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Marcio Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil; Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. Int J Mol Sci 2021; 22:ijms22020501. [PMID: 33419082 PMCID: PMC7825406 DOI: 10.3390/ijms22020501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.
Collapse
|
7
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Farokhi M, Mottaghitalab F, Saeb MR, Shojaei S, Zarrin NK, Thomas S, Ramakrishna S. Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromol Biosci 2020; 21:e2000123. [PMID: 33015992 DOI: 10.1002/mabi.202000123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Indexed: 01/23/2023]
Abstract
The injuries and defects in the central nervous system are the causes of disability and death of an affected person. As of now, there are no clinically available methods to enhance neural structural regeneration and functional recovery of nerve injuries. Recently, some experimental studies claimed that the injuries in brain can be repaired by progenitor or neural stem cells located in the neurogenic sites of adult mammalian brain. Various attempts have been made to construct biomimetic physiological microenvironment for neural stem cells to control their ultimate fate. Conductive materials have been considered as one the best choices for nerve regeneration due to the capacity to mimic the microenvironment of stem cells and regulate the alignment, growth, and differentiation of neural stem cells. The review highlights the use of conductive biomaterials, e.g., polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), multi-walled carbon nanotubes, single-wall carbon nanotubes, graphene, and graphite oxide, for controlling the neural stem cells activities in terms of proliferation and neuronal differentiation. The effects of conductive biomaterials in axon elongation and synapse formation for optimal repair of central nervous system injuries are also discussed.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research CentreFaculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | | | - Shahrokh Shojaei
- Stem Cells Research CenterTissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran.,Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, 1316943551, Iran
| | - Negin Khaneh Zarrin
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
9
|
Volkov AV, Muraev AA, Zharkova II, Voinova VV, Akoulina EA, Zhuikov VA, Khaydapova DD, Chesnokova DV, Menshikh KA, Dudun AA, Makhina TK, Bonartseva GA, Asfarov TF, Stamboliev IA, Gazhva YV, Ryabova VM, Zlatev LH, Ivanov SY, Shaitan KV, Bonartsev AP. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110991. [PMID: 32994018 DOI: 10.1016/j.msec.2020.110991] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023]
Abstract
A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing. To obtain PHB/HA/ALG/MSC scaffolds seeded with MSCs, the scaffolds were filled with ALG hydrogel containing MSCs; acellular PHB/ALG and PHB/ALG filled with empty ALG hydrogel were prepared for comparison. The produced scaffolds have high porosity and irregular interconnected pore structure. PHB/HA scaffolds supported MSC growth and induced cell osteogenic differentiation in a regular medium in vitro that was manifested by an increase in ALP activity and expression of the CD45 phenotype marker. The data of computed tomography and histological studies showed 94% and 92%, respectively, regeneration of critical-sized calvarial bone defect in vivo at 28th day after implantation of MSC-seeded PHB/HA/ALG/MSC scaffolds with 3.6 times higher formation of the main amount of bone tissue at 22-28 days in comparison with acellular PHB/HA/ALG scaffolds that was shown at the first time by fluorescent microscopy using the original technique of intraperitoneal administration of fluorescent dyes to living postoperative rats. The obtained in vivo results can be associated with the MSC-friendly microstructure and in vitro osteogenic properties of PHB/HA base-scaffolds. Thus, the obtained data demonstrate the potential of MSCs encapsulated in the bioactive biopolymer/mineral/hydrogel scaffold to improve the bone regeneration process in critical-sized bone defects.
Collapse
Affiliation(s)
- Alexey V Volkov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; N.N. Priorov National Medical Research Center of Traumatology and Orthopedics of the Ministry of Health of the Russian Federation, Priorova Str. 10, 127299 Moscow, Russia
| | - Alexander A Muraev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Elizaveta A Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Vsevolod A Zhuikov
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Dolgor D Khaydapova
- Faculty of Soil Science, M.V.Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119234 Moscow, Russia
| | - Dariana V Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Andrej A Dudun
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Tatiana K Makhina
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Garina A Bonartseva
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Teymur F Asfarov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Ivan A Stamboliev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia V Gazhva
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Valentina M Ryabova
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Lubomir H Zlatev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Sergey Y Ivanov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
10
|
The biocompatibility of polyaniline and polypyrrole 2: Doping with organic phosphonates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110986. [PMID: 32487402 DOI: 10.1016/j.msec.2020.110986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.
Collapse
|
11
|
Gupta S, Sharma A, Verma RS. Polymers in biosensor devices for cardiovascular applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Prasopthum A, Deng Z, Khan IM, Yin Z, Guo B, Yang J. Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells. Biomater Sci 2020; 8:4287-4298. [DOI: 10.1039/d0bm00621a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a conductive and biodegradable 3D printed polymer scaffold that promotes chondrogenic differentiation of chondroprogenitor cells. The conductive material consists of tetraniline-b-polycaprolactone-b-tetraaniline and polycaprolactone.
Collapse
Affiliation(s)
- Aruna Prasopthum
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
- School of Pharmacy
| | - Zexing Deng
- Frontier Institute of Science and Technology
- and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research
- College of Stomatology
- Xi'an Jiaotong University
- China
| | - Ilyas M. Khan
- Centre of Nanohealth
- Swansea University Medical School
- Swansea
- UK
| | - Zhanhai Yin
- Department of Orthopaedics
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | - Baolin Guo
- Frontier Institute of Science and Technology
- and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research
- College of Stomatology
- Xi'an Jiaotong University
- China
| | - Jing Yang
- School of Pharmacy
- University of Nottingham
- Nottingham
- UK
- Biodiscovery Institute
| |
Collapse
|
13
|
In-Vitro Hemocompatibility of Polyaniline Functionalized by Bioactive Molecules. Polymers (Basel) 2019; 11:polym11111861. [PMID: 31718055 PMCID: PMC6918175 DOI: 10.3390/polym11111861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
Hemocompatibility is an essential prerequisite for the application of materials in the field of biomedicine and biosensing. In addition, mixed ionic and electronic conductivity of conducting polymers is an advantageous property for these applications. Heparin-like materials containing sulfate, sulfamic, and carboxylic groups may have an anticoagulation effect. Therefore, sodium dodecylbenzenesulfonate, 2-aminoethane-1-sulfonic acid and N-(2-acetamido)-2-aminoethanesulfonic acid were used for modification of the representative of conducting polymers, polyaniline, and the resulting products were studied in the context of interactions with human blood. The anticoagulation activity was then correlated to surface energy and conductivity of the materials. Results show that anticoagulation activity is highly affected by the presence of suitable functional groups originating from the used heparin-like substances, and by the properties of polyaniline polymer itself.
Collapse
|
14
|
Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901229. [PMID: 31637164 PMCID: PMC6794627 DOI: 10.1002/advs.201901229] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Indexed: 05/17/2023]
Abstract
Conductive hydrogels are attractive to mimic electrophysiological environments of biological tissues and toward therapeutic applications. Injectable and conductive hydrogels are of particular interest for applications in 3D printing or for direct injection into tissues; however, current approaches to add conductivity to hydrogels are insufficient, leading to poor gelation, brittle properties, or insufficient conductivity. Here, an approach is developed using the jamming of microgels to form injectable granular hydrogels, where i) hydrogel microparticles (i.e., microgels) are formed with water-in-oil emulsions on microfluidics, ii) microgels are modified via an in situ metal reduction process, and iii) the microgels are jammed into a solid, permitting easy extrusion from a syringe. Due to the presence of metal nanoparticles at the jammed interface with high surface area in this unique design, the granular hydrogels have greater conductivity than non-particle (i.e., bulk) hydrogels treated similarly or granular hydrogels either without metal nanoparticles or containing encapsulated nanoparticles. The conductivity of the granular hydrogels is easily modified through mixing conductive and non-conductive microgels during fabrication and they can be applied to the 3D printing of lattices and to bridge muscle defects. The versatility of this conductive granular hydrogel will permit numerous applications where conductive materials are needed.
Collapse
Affiliation(s)
- Mikyung Shin
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Kwang Hoon Song
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Justin C. Burrell
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegeneration and RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - D. Kacy Cullen
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegeneration and RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - Jason A. Burdick
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
15
|
Garrudo FF, Chapman CA, Hoffman PR, Udangawa RW, Silva JC, Mikael PE, Rodrigues CA, Cabral JM, Morgado JM, Ferreira FC, Linhardt RJ. Polyaniline-polycaprolactone blended nanofibers for neural cell culture. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Khorshidi S, Karkhaneh A. Particle-coated electrospun scaffold: A semi-conductive drug eluted scaffold with layered fiber/particle arrangement. J Biomed Mater Res A 2018; 106:3248-3254. [DOI: 10.1002/jbm.a.36522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering Faculty; Amirkabir University of Technology, (Tehran Polytechnic); Tehran Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty; Amirkabir University of Technology, (Tehran Polytechnic); Tehran Iran
| |
Collapse
|
17
|
Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech 2018; 8:328. [PMID: 30073113 DOI: 10.1007/s13205-018-1350-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Development of biocompatible 3D scaffolds is one of the most important challenges in tissue engineering. In this study, we developed polymer scaffolds of different design and microstructure to study cell growth in them. To obtain scaffolds of various microstructure, e.g., size of pores, we used double- and one-stage leaching methods using porogens with selected size of crystals. A composite of poly(3-hydroxybutyrate) (PHB) with poly(ethylene glycol) (PEG) (PHB/PEG) was used as polymer biomaterial for scaffolds. The morphology of scaffolds was analyzed by scanning electron microscopy; the Young modulus of scaffolds was measured by rheometry. The ability to support growth of mesenchymal stem cells (MSCs) in scaffolds was studied using the XTT assay; the phenotype of MSC was preliminarily confirmed by flow cytometry and the activity of alkaline phosphatase and expression level of CD45 marker was studied to test possible MSC osteogenic differentiation. The obtained scaffolds had different microstructure: the scaffolds with uniform pore size of about 125 µm (normal pores) and 45 µm (small pores) and scaffolds with broadly distributed pores size from about 50-100 µm. It was shown that PHB/PEG scaffolds with uniform pores of normal size did not support MSCs growth probably due to their marked spontaneous osteogenic differentiation in these scaffolds, whereas PHB/PEG scaffolds with diverse pore size promoted stem cells growth that was not accompanied by pronounced differentiation. In scaffolds with small pores (about 45 µm), the growth of MSC was the lowest and cell growth suppression was only partially related to stem cells differentiation. Thus, apparently, the broadly distributed pore size of PHB/PEG scaffolds promoted MSC growth in them, whereas uniform size of scaffold pores stimulated MSC osteogenic differentiation.
Collapse
|
18
|
Humpolíček P, Kašpárková V, Pacherník J, Stejskal J, Bober P, Capáková Z, Radaszkiewicz KA, Junkar I, Lehocký M. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:303-310. [PMID: 30033259 DOI: 10.1016/j.msec.2018.05.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
Conducting polymers (CP), namely polyaniline (PANI) and polypyrrole (PPy), are promising materials applicable for the use as biointerfaces as they intrinsically combine electronic and ionic conductivity. Although a number of works have employed PANI or PPy in the preparation of copolymers, composites, and blends with other polymers, there is no systematic study dealing with the comparison of their fundamental biological properties. The present study, therefore, compares the biocompatibility of PANI and PPy in terms of cytotoxicity (using NIH/3T3 fibroblasts and embryonic stem cells) and embryotoxicity (their impact on erythropoiesis and cardiomyogenesis within embryonic bodies). The novelty of the study lies not only in the fact that embryotoxicity is presented for the first time for both studied polymers, but also in the elimination of inter-laboratory variations within the testing, such variation making the comparison of previously published works difficult. The results clearly show that there is a bigger difference between the biocompatibility of the respective polymers in their salt and base forms than between PANI and PPy as such. PANI and PPy can, therefore, be similarly applied in biomedicine when solely their biological properties are considered. Impurity content detected by mass spectroscopy is presented. These results can change the generally accepted opinion of the scientific community on better biocompatibility of PPy in comparison with PANI.
Collapse
Affiliation(s)
- Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Jiří Pacherník
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | | | - Ita Junkar
- Josef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
| | - Marián Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| |
Collapse
|
19
|
Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci Rep 2018; 8:135. [PMID: 29317683 PMCID: PMC5760658 DOI: 10.1038/s41598-017-18290-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues.
Collapse
|
20
|
Lalegül-Ülker Ö, Elçin AE, Elçin YM. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:135-153. [PMID: 30357622 DOI: 10.1007/978-981-13-0950-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrinsically conductive polymer nanocomposites have a remarkable potential for cellular applications such as biosensors, drug delivery systems, cell culture systems and tissue engineering biomaterials. Intrinsically conductive polymers transmit electrical stimuli between cells, and induce regeneration of electroactive tissues such as muscle, nerve, bone and heart. However, biocompatibility and processability are common issues for intrinsically conductive polymers. Conductive polymer composites are gaining importance for tissue engineering applications due to their excellent mechanical, electrical, optical and chemical functionalities. Here, we summarize the different types of intrinsically conductive polymers containing electroactive nanocomposite systems. Cellular applications of conductive polymer nanocomposites are also discussed focusing mainly on poly(aniline), poly(pyrrole), poly(3,4-ethylene dioxythiophene) and poly(thiophene).
Collapse
Affiliation(s)
- Özge Lalegül-Ülker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Stem Cell Institute, Ankara University, Ankara, Turkey. .,Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
21
|
Interaction of nanostructured TiO2 biointerfaces with stem cells and biofilm-forming bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:500-507. [DOI: 10.1016/j.msec.2017.03.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
|
22
|
Kašpárková V, Humpolíček P, Capáková Z, Bober P, Stejskal J, Trchová M, Rejmontová P, Junkar I, Lehocký M, Mozetič M. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids Surf B Biointerfaces 2017; 157:309-316. [PMID: 28601759 DOI: 10.1016/j.colsurfb.2017.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
Conducting polyaniline can be prepared and modified using several procedures, all of which can significantly influence its applicability in different fields of biomedicine or biotechnology. The modifications of surface properties are crucial with respect to the possible applications of this polymer in tissue engineering or as biosensors. Innovative technique for preparing polyaniline films via in-situ polymerization in colloidal dispersion mode using four stabilizers (poly-N-vinylpyrrolidone; sodium dodecylsulfate; Tween 20 and Pluronic F108) was developed. The surface energy, conductivity, spectroscopic features, and cell compatibility of thin polyaniline films were determined using contact-angle measurement, the van der Pauw method, Fourier-transform infrared spectroscopy, and assay conducted on mouse fibroblasts, respectively. The stabilizers significantly influenced not only the surface and electrical properties of the films but also their cell compatibility. Sodium dodecylsulfate seems preferentially to combine both the high conductivity and good cell compatibility. Moreover, the films with sodium dodecylsulfate were non-irritant for skin, which was confirmed by their in-vitro exposure to the 3D-reconstructed human tissue model.
Collapse
Affiliation(s)
- Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlin, 76001 Zlin, Czech Republic; Department of Fat, Surfactant, and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, 76001 Zlin, Czech Republic; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlin, 76001 Zlin, Czech Republic
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Miroslava Trchová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic
| | - Petra Rejmontová
- Centre of Polymer Systems, Tomas Bata University in Zlin, 76001 Zlin, Czech Republic; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Ita Junkar
- Department of Surface Engineering, Plasma Laboratory, Josef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marián Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlin, 76001 Zlin, Czech Republic
| | - Miran Mozetič
- Department of Surface Engineering, Plasma Laboratory, Josef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces. Int J Mol Sci 2016; 17:ijms17091439. [PMID: 27649159 PMCID: PMC5037718 DOI: 10.3390/ijms17091439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 07/28/2016] [Accepted: 08/26/2016] [Indexed: 11/17/2022] Open
Abstract
Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.
Collapse
|
24
|
Della Pina C, Capáková Z, Sironi A, Humpolíček P, Sáha P, Falletta E. On the cytotoxicity of poly(4-aminodiphenylaniline) powders: Effect of acid dopant type and sample posttreatment. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1190928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Radaszkiewicz KA, Sýkorová D, Karas P, Kudová J, Kohút L, Binó L, Večeřa J, Víteček J, Kubala L, Pacherník J. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:024301. [PMID: 26931869 DOI: 10.1063/1.4941776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.
Collapse
Affiliation(s)
| | - Dominika Sýkorová
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Karas
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jana Kudová
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lukáš Kohút
- Research Center for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Binó
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Josef Večeřa
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics ASCR v.v.i., Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Pacherník
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
26
|
Wang S, Wei C, Gong Y, Lv J, Yu C, Yu J. Cellulose nanofiber-assisted dispersion of cellulose nanocrystals@polyaniline in water and its conductive films. RSC Adv 2016. [DOI: 10.1039/c5ra19346j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellulose nanofibers as an efficient and environmentally friendly dispersant have been proven to be an efficient way to disperse cellulose nanocrystals@polyaniline. The obtained film show high electrical conductivity.
Collapse
Affiliation(s)
- Shiqi Wang
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Chun Wei
- Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
- Guangxi Zhuang Autonomous Region
- China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
| | - Yongyang Gong
- Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
- Guangxi Zhuang Autonomous Region
- China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
| | - Jian Lv
- Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
- Guangxi Zhuang Autonomous Region
- China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
| | - Chuanbai Yu
- Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
- Guangxi Zhuang Autonomous Region
- China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
| | - Jinhong Yu
- Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
- Guangxi Zhuang Autonomous Region
- China
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
| |
Collapse
|